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Abstract—Superblocks represent regions in a program code
that consist of multiple basic blocks. Compilers benefit from
this structure since it enables optimization across block bound-
aries. This increased optimization potential was thoroughly
studied in the past for average-case execution time (ACET)
reduction at assembly level.

In this paper, the concept of superblocks is exploited for
the optimization of embedded real-time systems that have to
meet stringent timing constraints specified by the worst-case
execution time (WCET). To achieve this goal, our superblock
formation is based on a novel trace selection algorithm which is
driven by WCET data. Moreover, we translate superblocks for
the first time from assembly to source code level. This approach
enables an early code restructuring in the optimizer, providing
more optimization opportunities for both subsequent source
code and assembly level transformations. An adaption of the
traditional optimizations common subexpression and dead code
elimination to our WCET-aware superblocks allows an effective
WCET reduction. Using our techniques, we significantly out-
perform standard optimizations and achieve an average WCET
reduction of up to 10.2% for a total of 55 real-life benchmarks.

I. INTRODUCTION

Modern embedded real-time systems are characterized by

both efficiency requirements and critical timing constraints.

Average-case performance, power consumption and resource

utilization are objectives describing the efficiency of a sys-

tem. In physical environments, such as safety-critical auto-

motive or avionic systems, where time is a crucial resource,

the precise knowledge of the maximal program run time,

defined by the WCET, is mandatory. This key parameter is

exploited for schedulability analyses and verification as well

as for the design of hard real-time systems in order to enable

a safe interaction with the system’s environment.

With the increasing complexity of today’s embedded

software, program code is typically generated by a com-

piler. State-of-the-art compilers offer a vast variety of opti-

mizations with the objective to minimize the average-case

execution time or energy dissipation. In contrast, a compiler-

guided reduction of the WCET is still a novel research area

with an increasing academic and industrial interest. WCET-

aware compilation requires the integration of static timing

analyses into the compiler framework to provide a worst-
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case timing model that can be exploited for an effective

reduction of the program’s WCET.

Numerous compiler optimizations are not able to deploy

their full optimization potential since they are considerably

limited by basic block boundaries found in the applica-

tion code. To overcome this problem, a program structure

called superblock was introduced. It comprises several basic

blocks and allows optimizations across block boundaries.

This technique was thoroughly studied in the past for

ACET minimization and substantial program speedups were

reported [1], [2]. To find promising block candidates for

superblock formation, block execution counts are required.

For ACET minimization, profiling typically identifies assem-

bly blocks on the most frequently executed path within the

program’s control flow graph (CFG).

In this paper, we aim at an automatic WCET reduction

for embedded real-time systems. Unlike the profiling-based

ACET optimizations, our techniques rely on WCET data

provided by a static timing analyzer to construct superblocks

for an effective WCET reduction. In addition, our optimiza-

tions must face the challenge of a switching worst-case

execution path (WCEP). The WCEP is the longest path

through the CFG and its length corresponds to the program’s

WCET. Real applications typically consist of more than one

path, however only the WCEP is relevant for the program’s

WCET and compiler optimizations aim at its reduction. The

modification of WCEP π may lead to a WCEP switch,

i. e., after reducing the length of π, a new path π′ may

become the longest path in the CFG. To enable a continuous

WCET reduction, WCET-aware optimizations must ensure

that they do not proceed on the outdated path π but perform

further transformations on path π′. This path switch makes

WCET-aware optimizations more demanding compared to

traditional compiler optimizations.

The main contributions of this paper are as follows:

1) The superblock formation is driven by WCET data.

2) For the first time, the concept of superblocks has been

translated from assembly to source code level in order

to exploit the compiler’s full optimization potential.

3) We propose a novel trace selection algorithm which

is more suitable for WCET reduction than standard

selection approaches.

4) The compiler optimizations common subexpression

(CSE) and dead code elimination (DCE) were re-



designed to exploit superblocks for an effective WCET

reduction.

5) Our techniques are evaluated on a large number of

real-life benchmarks to show their practical use.

The rest of this paper is organized as follows: Section II

gives a survey of related work. In Section III, concepts for

the formation of WCET-aware superblocks are presented.

These concepts are exploited for the WCET-aware opti-

mizations common subexpression elimination and dead code

elimination that are introduced in Section IV. A description

of our experimental environment and results achieved on

real-life benchmarks are given in Sections V and VI, resp.

Finally, Section VII summarizes this paper and gives direc-

tions for future work.

II. RELATED WORK

Superblocks are based on the model of traces which

represent the most frequently executed paths in the program.

The initial idea was presented by Fisher [3] who considered

traces as extended regions in the code to perform instruction

scheduling across basic blocks. Different trace selection

algorithms were evaluated in [4].

The main drawback of trace scheduling is the arising over-

head for the insertion of compensation code after scheduling

a trace to preserve program semantics. To overcome this

complex bookkeeping, Chang introduced superblocks [1]

which allow an easier instruction scheduling. Moreover, this

work discusses ideas for the exploitation of superblocks by

standard optimizations. These ideas serve as motivation for

our novel WCET-aware optimizations. All these presented

works have in common that they target at the ACET and

are applied at assembly level.

To conduct WCET-aware compilation, a static WCET

analyzers is required that provides the compiler with WCET

data. In our work, we use the sophisticated analyzer aiT [6].

Most approaches to WCET reduction operate on assem-

bly level or exploit memory hierarchies (e. g., scratchpad

allocation or WCET-aware register allocation [14]). The

exploitation of the optimization potential for WCET reduc-

tion at source code level requires the translation of worst-

case timing information from the compiler back-end into

the front-end. This step is called back-annotation and was

introduced in [16]. Since our superblocks are constructed at

source code level, we also rely on a back-annotation step.

The only work considering superblocks for WCET min-

imization was published by Zhao [7]. This paper is most

related to our work but also significantly differs in several

ways. Most importantly, Zhao performs the superblock for-

mation at assembly level while we construct superblocks

early in the compiler’s optimization process at source code

level. Thus, our approach enables further potential for both

source code and assembly level optimizations as shown

in [2]. Moreover, in [7] no novel superblock-based WCET

optimizations were developed while we propose two tech-

niques, the CSE and DCE. Finally, Zhao used small pro-

grams for the evaluation of his approach, thus it is not clear

if his approach also scales well for realistic applications.

In contrast, we apply our optimizations to large real-life

benchmarks, which represent applications used in industry.

III. WCET-AWARE SOURCE CODE SUPERBLOCK

FORMATION

In this section, the required steps for the WCET-aware

formation of superblocks are discussed.

A. Concepts of Superblocks

In general, a superblock is a program structure that

comprises several basic blocks. The main advantage of this

approach is that these blocks can be considered as a larger

unit in the CFG, and thus provide higher flexibility to

optimizations that operate on them.

The selection of basic blocks used for a superblock is

based on the idea of program traces which were developed

by Fisher [3] to enable a more efficient instruction schedul-

ing across basic block boundaries.

Definition 1: Given a control flow graph, which is a di-

rected (cyclic or acyclic) graph G = (V, E) with nodes V
corresponding to basic blocks and edges E connecting two

nodes vi, vj ∈ V . A trace T is a sequence of basic blocks

T = (ba, ..., bk), such that for a ≤ i < k, (bi, bi+1) ∈ E.

If there is a loop L, with ∃vk ∈ L : vk ∈ T , then T is

restricted by the respective loop boundaries, i. e., T does

not span across basic blocks that lie outside L.

Assembly Superblocks

Chang [1] developed superblocks at assembly level to

circumvent some of the problems that exist in the trace-

scheduling approach.

Definition 2: A superblock S is a trace which can be

entered only at the first basic block bstart, i. e., S is a trace

T = (bstart, ..., bend) such that ∀b ∈ T \{bstart} : ∀(bi, b) ∈
E : bi ∈ T .

Since the size of natural superblocks found in the pro-

gram code is typically small, superblock enlarging optimiza-

tions [5] are used. The main technique is tail duplication

which eliminates side entrances of arbitrary traces. For a

side entrance bin in a trace T = (ba, ..., btrc, bin, ..., be), a

copy of the tail portion of the trace from the side entrance

to the end bin, ..., be is created and all side entrance edges

e ∈ {(bpred, bin) ∈ E | bpred 6= btrc} are redirected to the

corresponding duplicated basic block b′in. This is illustrated

in Figure 1. The trace is marked in bold, the superblock is

represented by the dotted box. The superblock formation at

this abstraction level of the code is easy since merely block

labels have to be adjusted, while the code in the duplicated

tail portions remains the same as in the original code.



(a) The original assembly code (b) After tail duplication

Figure 1. Superblock Formation at Assembly Level

(a) The original source code (b) After tail duplication

Figure 2. Superblock Formation at Source Code Level

Source Code Superblocks

The definition of basic blocks at source code level is

equivalent to its counterpart at assembly level, making a

translation of the superblock concepts possible. Following

Definition 2, superblocks at source code level are defined as

traces in a high-level control flow graph with no side en-

trances. However, our source code superblocks differ in one

point from Chang’s definition: we allow that a superblock

S = (b0, b1, ..., bn) contains inner loops. These loops are

represented in the trace by their loop headers. Hence, a loop

L is referred to as an inner loop if its loop header is a basic

block bhead such that bhead = bk with k ∈ 1, ..., n, and

block bk+1 is the next basic block after loop L. This idea

of a special handling of inner loops is similar to Fischer’s

trace definition [3] which treats loops as a single operation.

An example for a superblock formation at source code

level for the programming language C is depicted in Fig-

ure 2. Basic blocks at this level are not distinguished by

unique block labels, making an explicit control flow modifi-

cation from one block to another arbitrary block difficult. As

can be seen in Figure 2(b), the superblock formation requires

a duplication and insertion of the statement j = i into the

CFG paths other than the trace. A detailed discussion of

the WCET-aware superblock formation at source code level

follows in Section III-C.

The triplication of statement j = i could be avoided if,

similar to assembly level, a new basic block holding this

statement would be generated and control flow would be

redirected to this block by using gotos. We intentionally

avoided this since many compiler optimizations, which could

possibly be enabled by the superblocks, rely on well-

structured, goto-free code. Also, gotos generate additional

jump instructions that decrease performance.

B. Trace Selection

The previous section introduced the concept of su-

perblocks and motivated the need for traces. Here, we show

why common trace selection approaches are not suitable for

a WCET-aware superblock formation and present a novel

trace selection algorithm as a possible solution.

Existing Approaches

The popular trace selection algorithms [4] rely on execu-

tion counts of basic blocks (w(bi)) or control flow edges

between blocks (w(ei)). For a trace Ti, both approaches

begin at a block bstart having the highest execution count

w(bstart) and being not part of any other trace Tj . In

the following steps, the trace Ti = (ba, ..., bstart, ..., bk) is

alternately extended at both ends. With Traces denoting the

set of already selected traces and δ+(b) denoting the set of

outgoing edges from block b, the two trace selection algo-

rithms for the expansion of a trace at its end (extension at

the trace beginning works equivalently) operate as follows:

• Selection via node weights: Select bnew such that edge

(bk, bnew) ∈ E, ∀Tj ∈ Traces : bnew /∈ Tj and

w(bnew) = max {w(bi) | (bk, bi) ∈ E}.
• Selection via edge weights: Select bnew such that edge

enew = (bk, bnew) ∈ E, ∀Tj ∈ Traces : bnew /∈ Tj and

w(enew) = max {w(e) | e ∈ δ+(bk)}, with δ+(bk) =
{(bi, bj) ∈ E | bi = bk}.

The trace selection based on node weights may find

less suitable traces than the edge weight-based selection

since adjacent CFG blocks with high node weights may be

infrequently executed in sequence.

Longest Path Approach

The previously presented greedy trace selection algo-

rithms may produce traces that do not enable full optimiza-

tion opportunities, as a result of their limited, local view on

the program’s CFG.

Consider the weighted CFG in Figure 3, where blocks are

annotated with their worst-case execution times (in parenthe-

ses) and edges are annotated with their worst-case execution

counts. Starting at the if-condition, both the node and the

edge weight-based approach would select blockC for trace

expansion. Such a trace following the false edge comprises

code that consumes 6 ∗ 100 cycles + 6 ∗ 220 cycles =
1920 cycles. However, if the true edge were taken, the



Figure 3. Failure of Existing Trace Selection Approaches

trace would comprise all three blocks with a length of

4∗100 cycles+4∗210 cycles+4∗220 cycles = 2120 cycles.

Obviously, focusing on the longer trace promises more

optimization potential.

The selection of a trace based on the longest path outper-

forms the greedy algorithms. It requires precise information

about the WCET of each basic block, which is obtained from

the static WCET analyzer aiT. This information is computed

at assembly level and propagated to the source code level

using back-annotation.

If the starting block (see below) is located within a loop,

the algorithm finds a trace T within this loop. Otherwise, an

entire function is used for trace selection. We describe the

former case, the function-wide selection works analogously.

The following steps have to be performed:

1) Find block bstart with the maximal WCET serving as

a heuristically promising starting point for the trace.

2) For loop L, with bstart ∈ L, a directed, acyclic graph

GL = (VL, EL) is constructed, such that all blocks in

L that have the same loop depth as L are added to

VL. Inner loops I of L are represented by a special

node bI
loop. The set of edges EL contains all edges

between blocks b ∈ VL. Moreover, each edge (vi, vj)
with ∃I : vi /∈ I ∩ vj ∈ I is replaced by an edge

(vi, b
I
loop) and is added to EL (the symmetric case is

handled analogously).

3) L is entered through the source block denoted as

bsource. Each block having successors outside L
is called bi

sink . Furthermore, a distinguished node

bsupersink is created and connected with all bi
sink.

4) To find the longest path in GL, we use a cost function

cL that models the WCET of an edge e ∈ EL

so that for any path P through GL

∑
e∈P cL(e) =

WCET (P ) holds. Note that GL is acyclic by con-

struction, so that we can compute the longest path

in GL by supplying GL together with the negated

cost function −cL to a Bellman-Ford shortest path

algorithm.

5) The final trace is selected by starting at bstart and

adding alternately one block from the longest path to

the beginning and end of the trace. Our trace selection

at each step takes user-defined code expansion restric-

tions into account to avoid extensive code expansion

during the superblock formation.

C. Superblock Formation

The superblock formation consists of a preprocessing and

the actual formation phase.

Algorithm 1 Algorithm for Source Code Superblock Formation

Input: WCET-aware Trace T
1: block currBB ← endNode(T )
2: block lastBB ← endNode(T )
3:

4: /* Iterate trace, starting at the end. */

5: while currBB 6= startNode(T ) do

6: /* Perform tail duplication. */

7: if |δ−(currBB)| > 1 then

8: for all predBB ∈ δ−(currBB) do

9: if predBB == tracePred(currBB) then

10: moveStmts(firstStmt(currBB),
lastStmt(lastBB), lastStmt(predBB))

11: else

12: copyStmts(firstStmt(currBB),
lastStmt(lastBB), lastStmt(predBB))

13: end if

14: end for

15: end if

16: currBB ← tracePred(currBB)
17: if isPrecededByInnerLoop(currBB) then

18: currBB ← predBeforeLoop(currBB)
19: end if

20: if isConditional(lastStmt(currBB)) then

21: lastBB ← currBB
22: end if

23: end while

Preprocessing

The preprocessing phase begins with the application

of the well-known optimizations function inlining and

loop unrolling to enlarge code fragments suitable for su-

perblocks [5]. In the next step, programming language

constructs that lead to unstructured code are tried to be

eliminated since they prevent a proper superblock formation.

Examples are C goto-statements. A detailed approach for

the elimination of unstructured code can be found in [9].

If the undesired construct can not be removed, then func-

tions containing these constructs are omitted for superblock

formation.

Formation Algorithm

After preprocessing, a WCET analysis of the program

is performed at assembly level and the worst-case timing

model is made available at source code level using back-

annotation. This information allows to perform superblock

optimizations in decreasing order of the functions’ WCETs.

Such a strategy allows to exploit maximal optimization

potential before code expansion restrictions are exceeded.

Next, for each function a trace based on the longest path

approach is iteratively selected and used to build a su-

perblock which is subsequently exploited by our superblock-

based optimizations. Afterwards, the WCEP is updated (to



(a) Original code with trace (b) Side entrance elimination

Figure 4. Successive Source Code Superblock Formation

cope with path switches) and the next trace is processed if

there still are unprocessed blocks which are not part of any

trace and have a WCET > 0.

Source code superblock formation is depicted in Algo-

rithm 1. Figure 4 shows an example code with a trace

marked by the arrows and serves for illustration of the

algorithm. The basic idea of the algorithm is to traverse trace

T (line 5) backwards beginning at the last block and to elim-

inate found side entrances by duplicating the so far traversed

tail portions of the trace in all CFG paths other than the trace.

The original tail portion is moved behind the predecessor

block on the trace to enlarge the superblock. Following this

strategy, the superblock is iteratively increased by merging

it with the predecessor blocks on the trace.

Variable curBB (line 1) represents a pointer to the basic

block that is currently considered for superblock formation

and used to traverse the trace backwards. In Figure 4 it is

marked by the bold box. The current tail portion that must

be duplicated, is enclosed by its first (beginning of curBB)

and last statement (end of lastBB).

If curBB has more than one incoming edge

(δ−(curBB)), tail duplication is performed (lines 7-

14). If the predecessor of curBB is on the trace (line 9),

then all statements (including inner loops) of the current tail

are moved behind the last statement of the trace predecessor

predBB (line 10). Otherwise, this set of statements is

copied into the other CFG paths not part of the trace (line

12). After the elimination of all side entrances, curBB
is set to the next trace predecessor block (line 16). Inner

loops are omitted (line 17-19). Finally, if the last statement

of currBB is a conditional statement, lastBB is set to

currBB (line 20-22). Doing so ensures a duplication of

entire conditional statements. Figure 4(b) shows code after

the first side entrance elimination. blockC was moved

onto the trace in the then-part of the second if-condition

and copied into the non-trace predecessor (else-part).

Moreover, lastBB was updated to the beginning of its

embedded conditional statement.

IPET-based WCEP Update

During superblock formation and its optimization, a

WCEP path switch may occur. To make sure that subsequent

optimizations do not operate on an outdated WCEP, the

(a) Original code (b) After Superblock-CSE

Figure 5. Example for Superblock-CSE

timing information must be updated. A frequent use of a

costly WCET analysis is not feasible. Thus, we update the

WCEP data after superblock optimization by solving an ILP

model based on IPET [8]. The ILP model requires WCETs

for basic blocks which we extract from the preceding run of

the timing analyzer. Since the ILP is less complex than a full

WCET analysis, the WCEP re-computation is faster but also

less precise. However, precision is not our main objective

here since the IPET-based computation is not meant to

replace a safe static WCET analysis but should be considered

as a fast heuristic which helps to indicate potential WCEP

switches. For blocks that were modified by the optimiza-

tions, estimations of their WCET are made by the optimizer.

The estimation uses the tree-based approach [10] which

computes WCETs for statements by a bottom-up run over

the syntax tree. After some iterations (defined by the user),

a full WCET analysis is performed to get precise timing

information again.

IV. WCET-AWARE SUPERBLOCK OPTIMIZATIONS

In this section, we exploit the WCET-aware superblocks

for compiler optimizations. Section IV-A briefly introduces

basic techniques from static program analysis required for

the development of the superblock-based optimizations CSE

and DCE. These two optimizations were chosen for our

case study due to their popularity and applicability. The

optimizations are discussed in Sections IV-B and IV-C, resp.

A. Static Program Analysis

Static program analysis tries to determine dynamic prop-

erties of the program without actually executing it. For our

optimizations, we need to know which statements access

which storage locations (variables).

An alias analysis determines which targets a memory

reference (i. e., pointers in the C language) may point to.

For many compiler optimizations it is not sufficient just

to know to which variables a pointer may point to, but

which variables are read or written by which expressions.

These results can be expressed by def/use sets, that represent

sets of symbols from/to which an expression may read/write

(USEmay and DEFmay). Our computation of def/use sets

integrates results of an alias analysis and is based on syntax

directed definitions [11]. The last analysis required for the

superblock-based optimizations is the livetime analysis. It

is a classical data flow analysis which determines for each



(a) Original code (b) After Superblock-DCE

Figure 6. Example for Superblock-DCE

program point if a variable is live or otherwise dead. A

variable v is called live on a CFG edge if there is a directed

path from that edge to a use of v that does not contain any

redefinition of v. A variable is live-in at a statement s if it is

live on any of the incoming edges of s. A variable v is called

live-out at a statement s if it is live on any of the outgoing

edges of s [12]. LIVE-INmay(s) and LIVE-OUTmay(s) are

the may-sets of variables v that are live-in or live-out at s.

B. Common Subexpression Elimination

The optimization common subexpression elimination re-

places recomputations of expressions by temporary variables

which hold the already computed result (called common

subexpression). Local CSE operates on the limited scope of

a single basic block. Global CSE works on entire functions

but side entrances in the control flow graph often cancel

opportunities for CSE since common subexpressions may

be overwritten in the side entrance path. Superblock-CSE

(SB-CSE) can outperform the local and global CSE since it

operates on multiple basic blocks and removes conflicting

side entrances.

Our SB-CSE is based on Ghiya’s approach [13] and

relies on def/use sets. It traverses a superblock in a top-

down manner and updates the set of available expressions

availList at each statement s. An expression e is called

available at a statement s of a superblock if e was computed

in a preceding superblock statement scomp and there is no

redefinition of any operands o ∈ e in the superblock code

between scomp and s (including s). At each expression

e ∈ s it is checked if e redefines any of the operands

of the available expressions availExp ∈ availList, i. e.,

USEmay(availExp) ∩DEFmay(e) 6= ∅. If so, availExp is

removed from availList. Otherwise, if e equals availExp,

a mapping availExp → e is registered. If inner loops are

encountered during the superblock traversal, availList must

be updated, i. e., expressions that are redefined within the

loop are removed from availList. Finally, CSE traverses

all registered mappings, creates a temporary variable t =
availExp, and replaces all redundant e1, ..., en by t. An

example from the G721 benchmark for SB-CSE is shown

in Figure 5 (trace is marked). As can be seen, the expression

state->b[cnt] can be reused in the superblock.

ICD-C
Parser

LLIR Code
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aiT WCET
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Figure 7. WCET-aware C Compiler WCC

C. Dead Code Elimination

Classical dead code elimination deletes dead

statements. A statement s is called dead if

LIVE-OUTmay(s) ∩DEFmay(s) = ∅. Results computed

by s are then not required in further program flow. In

case of the superblock-based DCE (SB-DCE) not only

superblock-dead statements are removed but they are also

moved outside the superblock (aka. variable migration).

Definition 3: A statement sSB is said to be superblock-

dead in superblock SB iff: (a) it is not dead and (b) none of

its defined variables (DEFmay(sSB )) is read in SB before

being re-defined.

A superblock-dead statement sSB

dead can be removed

from a superblock SB by copying sSB

dead into all con-

trol flow paths that exit the superblock and which con-

tain statements that require the results of sSB

dead [1]. Our

SB-DCE algorithm moves each superblock-dead statement

sSB

dead downwards in the superblock, passing all succeed-

ing statements. When a side exit is passed, our algo-

rithm copies sSB

dead into all successor blocks bsucc which

are not part of SB and for which sSB

dead is live at block

bsucc, i. e., LIVE-INmay(bsucc) ∩DEFmay(s
SB

dead) 6= ∅. The

motion of sSB

dead is stopped if the superblock end is

reached. If sSB

dead is live in the superblock end-block

bend (LIVE-OUTmay(bend) ∩DEFmay(s
SB

dead) 6= ∅), sSB

dead

is kept at the superblock end to preserve data dependencies,

otherwise sSB

dead can be completely removed. As shown

in Figure 6, the computation of i is removed from the

superblock that traverses the else-part of the outermost if-

condition.

V. EXPERIMENTAL ENVIRONMENT

Our WCET-aware superblock formation and optimizations

are integrated into the WCET-aware C compiler WCC [15]

for the Infineon TriCore TC1796 processor that is equipped

with an instruction cache. The workflow is depicted in
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Figure 7. The compiler is provided with C source files

annotated with flow facts in the form of C pragmas. Flow

facts are mandatory for a static WCET analysis and represent

information about the loop iteration counts and the recursion

depth. The parsed C code is translated into the high-level

intermediate representation ICD-C, where standard compiler

analyses and source code ACET optimizations can be ap-

plied. Next, the code selector translates the code into the

low-level intermediate representation LLIR, also equipped

with different analyses and assembly level optimizations. In

total, the compiler features 43 different ACET optimizations

which are activated at the highest optimization level O3

including a local CSE and DCE.

As already mentioned, the sophisticated WCET analyzer

aiT is tightly integrated into WCC’s back-end. It allows the

import of a worst-case timing model into the compiler to ex-

ploit it for analyses and optimizations. Via back-annotation,

WCET information is propagated to the front-end and can

be exploited for WCET-aware superblock formation and for

superblock-based optimizations. Our analyses are flow fact-

aware, i. e., flow facts are modeled within the compiler and

are automatically updated during optimization,

To demonstrate the practical use of our approach, exper-

iments on a large number of different benchmarks were

conducted. The 55 benchmarks come from the test suites

DSPstone, MediaBench, MiBench, MRTC WCET Bench-

mark Suite, and UTDSP.

For the experiments the following optimization parameters

were used: the code size restrictions allow the maximal

superblock size to be 5 times as large as the original trace,

and a maximal increase of a function and the entire program

by a factor of 3 and 2.5, resp. Moreover, the timing analyzer

aiT was run after each 4th superblock formation including

the application of the superblock optimizations to update

WCET information. For the remaining steps, the IPET-based

approach (cf. Section III-C) was used. These settings were

empirically determined and showed good performance.

VI. RESULTS

Worst-Case Execution Time

Figure 8 shows the impact of different common subex-

pression elimination strategies on the WCET estimates
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Figure 9. Relative WCET Estimates for DCE

(WCETEST ) for a subset of 15 representative benchmarks.

The average-bars on the right-hand side of the figure indicate

the results averaged for all considered 55 benchmarks. The

100% base line represents the WCET of the benchmarks

compiled with the highest optimization level (O3) and dis-

abled CSE. The first bars per benchmark (labeled with Std.

CSE) represent the results for the standard local ACET CSE.

As can be seen, the WCET improvements are marginal with

an average improvement of 3.4%. The second bars represent

the WCET for the code optimized with O3, disabled CSE,

and the WCET-aware superblock formation. An average

WCET improvement of 4.0% was achieved.

It should be noted that the superblock formation as well

as the SB-CSE and the SB-DCE exploit WCC’s capability

to quantify transformation effects. If the estimated WCET

is larger after the code modification than before, then the

modification is rolled back. This can happen because of

phenomena which are not predictable from the high-level,

such as register spill code or cache overflows. Thus, the

diagram does not show any results larger than 100%.

Best results were achieved for the CSE based on the

WCET-aware superblocks (bars labeled with SB-CSE).

WCET improvements of up to 42.1% for the dijkstra bench-

mark were observed. The average improvement for the 55

benchmarks amounts to 10.2%. This result is remarkable

since it increases the optimization potential of a traditional,

intensively studied compiler optimization by a factor of 3.

From the comparison between the second and third bars

also the conclusion can be drawn that superblock formation

often provides optimization potential which can be only fully

exploited by a tailored superblock-based optimization (cf.

e. g., benchmark statemate).

The results for the superblock DCE achieved for the 15

representative benchmarks are shown in Figure 9. Compared

to the 100% bas line, which represents the WCET for the

highly optimized code using O3 without DCE, the standard

local ACET DCE achieved on average for all 55 benchmarks

a WCET reduction of 2.0%. The superblock formation

amounts to an average WCET reduction of 4.0%. Again,

the most effective WCET reduction was achieved with the

DCE based on the WCET-aware superblocks, yielding an

average improvement of 8.8%.



Optimization Level Average ACET

O3 with Std. CSE 97.9%
O3 with SB-Formation w/o CSE 97.5%
O3 with SB-CSE 95.1%

O3 with Std. DCE 98.6%
O3 with SB-Formation w/o DCE 98.2%
O3 with SB-DCE 97.9%

Table I
ACET RESULTS FOR SB-OPTIMIZATIONS

Average-Case Execution Time

Our superblock formation is driven by WCET data. Thus,

it is interesting to explore its impact on ACET. As rows one

and four in Table I show, the reductions of the ACET for

standard local CSE and DCE applied to the 55 benchmarks

are comparable with those achieved for the WCET. More-

over, a comparison between the ACET and WCET results

for the superblock formation and the superblock-based opti-

mizations shows that higher improvements are achieved for

the WCET reduction. One reason is that the WCET-aware

optimizations focus on the WCEP which might be different

from the most frequently executed path. This emphasizes the

need for tailored WCET-aware optimizations.

Code Size

Since superblock formation is a code expanding trans-

formation, the resulting code size increase is critical. We

measured the code size for SB-CSE and SB-DCE for two

different scenarios. In a first scenario, the same code size

restrictions during trace selection were utilized as for the

previous WCET and ACET experiments. Here, an average

code size increase of 23% for the SB-CSE and 28% for the

SB-DCE was observed. In a second scenario, code expan-

sion was not limited. Code size increases of approximately

107% were measured on average for both optimizations.

Simultaneously, the WCET results slightly degraded, most

probably due to adverse instruction cache overflows or

similar cache effects. Thus, it can be inferred that a code

size restriction is mandatory for a balanced trade-off between

WCET improvements and code size increases.

Compilation Run Time

The compilation run time of our optimizations was mea-

sured on an Intel Xeon system (2.4 GHz, 8 GB RAM). In a

first scenario, we ran aiT after each 4th superblock formation

and optimization as in the previous experiments. This leads

to a compilation time increase by 540% compared to the case

with standard optimizations only. For performance-oriented

embedded systems this increase is still acceptable. To check

if no WCEP switches were missed between two runs of the

timing analyzer, aiT was run after each second superblock

formation in a second scenario. This led to a compilation

time increase by 757% and marginal WCET improvements

of less than 1%. Thus, it can be concluded that too frequent

WCEP updates by a costly WCET analysis do not pay off.

VII. CONCLUSIONS AND FUTURE WORK

It has been shown that superblocks are an effective

technique for compiler optimizations since they restructure

code such that additional optimizations are enabled. This

paper is the first one to build superblocks at source code

level for an effective WCET reduction. We propose a novel

trace selection algorithm and re-design the traditional opti-

mizations common subexpression and dead code elimination

such that they operate on WCET-aware superblocks. Our

experiments show that we significantly outperform standard

CSE and DCE and achieve average WCET reductions on

55 real-life benchmarks for our superblock-based CSE and

DCE of 10.2% and 8.8%, resp.

In the future, we intend to develop further WCET-aware

source code compiler optimizations that exploit superblocks.

Moreover, we plan the development of a WCET-aware

instruction scheduling which operates on assembly code but

reuses the source-code superblock structures.
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