
WCET-aware Register Allocation based on Integer-Linear Programming

Heiko Falk, Norman Schmitz, Florian Schmoll
Computer Science 12

Technische Universität Dortmund
D - 44221 Dortmund, Germany

{Heiko.Falk, Norman.Schmitz, Florian.Schmoll}@tu-dortmund.de

Abstract—Current compilers lack precise timing models
guiding their built-in optimizations. Hence, compilers apply
ad-hoc heuristics during optimization to improve code quality.
One of the most important optimizations is register allocation.
Many compilers heuristically decide when and where to spill
a register to memory, without having a clear understanding of
the impact of such spill code on a program’s runtime.

This paper presents an integer-linear programming (ILP)
based register allocator that uses precise worst-case execution
time (WCET) models. Using this WCET timing data, the
compiler avoids spill code generation along the critical path
defining a program’s WCET. To the best of our knowledge,
this paper is the first one to present a WCET-aware ILP-based
register allocator. Our results underline the effectiveness of the
proposed techniques. For a total of 55 realistic benchmarks,
we reduced WCETs by 20.2% on average and ACETs by 14%,
compared to a standard graph coloring allocator. Furthermore,
our ILP-based register allocator outperforms a WCET-aware
graph coloring allocator by more than a factor of two for the
considered benchmarks, while requiring less runtime.

Keywords-WCET; Register Allocation; Integer-Linear Pro-
gramming; Pipeline

I. INTRODUCTION

Embedded systems are often real-time systems whose cor-
rectness depends on both the logical results and on the time
at which the results are produced. A program’s worst-case
execution time (WCET) is used to guarantee that real-time
constraints are safely met. But besides safety, the market
demands high performance, energy efficiency and low cost.
Hence, designing such products implies solving a complex
optimization problem with multiple optimization criteria.
Compilers play an important role during real-time system
design since they are able to apply automated optimizations
improving the quality of the generated executable code.

Unfortunately, even modern optimizing compilers are
often unable to quantify the effect of an optimization since
they lack precise timing models [14]. Hence, simple ad-hoc
heuristics are applied during optimization in the hope that
they finally improve code quality. But it is well-known that
this is not always true: due to the absence of precise models,
optimizations may have a negative impact on code quality.

Funded by the European Community’s ArtistDesign Network of Ex-
cellence and by the European Community’s 7th Framework Programme
FP7/2007-2013 under grant agreement no 216008.

Among all optimizations studied in the past, register allo-
cation is considered the most important one. It intends to use
a processor’s registers most efficiently in order to minimize
slow main memory accesses. Due to the increasing speed
gap between processors and memories, accesses to physical
processor registers (PHREGs) are orders of magnitudes
faster than memory accesses. However, memory accesses
can not be totally avoided during register allocation, since
the amount of temporary variables (aka. virtual registers,
VREGs) at a certain place in a program can exceed the
number of available PHREGs. In such a situation, spill code
is inserted swapping a register out to memory and back.

Currently, register allocators usually decide heuristically
where to insert spill code. Due to a lack of precise models,
the compiler is unaware of the impact of generated spill code
on a program’s execution time. Especially in the area of real-
time system design and optimization, badly placed spill code
can have a dramatic impact on a program’s WCET.

This paper is the first one to present a WCET-
aware register allocator based on formal integer-linear
programming (ILP) models. It allows to systematically
minimize a program’s WCET which is desirable since highly
optimized code is more cost-efficient than unoptimized
code that has to be executed on faster hardware to meet its
real-time constraints. The paper’s main contributions are

• its ILP model of a function’s WCET,
• its ILP model of a processor’s pipeline in order

to carefully estimate the impact of individual spill
instructions on the WCET,

• the achieved WCET reductions by 20.2% and ACET
reductions by 14% on average for 55 benchmarks
while requiring only moderate optimization runtimes,

• the detailed comparison of the proposed ILP-based
allocator with a previously published WCET-aware
graph coloring allocator.

Section II gives a survey of related work on register
allocation and WCET optimization. The assumed target
processor is subject of Section III. Section IV presents an
ILP-based register allocator minimizing spill code, followed
by the proposed WCET-aware techniques in Section V. Sec-
tion VI describes the benchmarking results, and Section VII
summarizes this paper and gives an outlook on future work.

II. RELATED WORK

An optimal register allocator using integer-linear pro-
gramming (ILP) is presented in [10]. The ILP minimizes
spill code overhead, i. e. the total amount of generated spill
code. Since counting the number of spill instructions is a
criterion not requiring sophisticated models in a compiler,
optimal results can be produced. Nevertheless, the absence
of timing models implies that the impact of [10] on WCETs
is fully unknown. How to make this ILP WCET-aware is
subject of the present paper. Due to its importance for this
paper, it is discussed in more detail in Section IV.

Graph coloring is the standard technique for register
allocation nowadays [2], [3]. It uses an interference graph
modeling overlapping lifetimes of VREGs, and colors this
graph using C colors, assuming that the considered pro-
cessor has C PHREGs. Coloring is done such that no two
adjacent nodes representing VREGs have the same color. A
spill heuristic decides which node to place in main memory
if no more free PHREGs are available.

Recently, graph coloring was made WCET-aware by
introducing a dedicated spill heuristic [5]. It iteratively
determines that basic block with the highest execution of
spill code in the worst case and allocates all VREGs of
this most critical basic block to PHREGs first. This way,
the chance to insert highly undesired spill code into this
most critical basic block is reduced. However, this approach
still relies on a heuristic which does not consider the actual
impact of spill code on a program’s WCET.

Another standard register allocation technique is linear
scan [19]. Using a linear order of all instructions of a
program, a life time interval is computed for each VREG.
Register allocation is done by mapping each life time
interval to a PHREG and by applying a simple spill heuristic
if all PHREGs are in use. Compared to graph coloring,
linear scan is fast but produces results of inferior quality. In
addition, the code quality resulting from linear scan heavily
depends on the chosen instruction order and on the spill
heuristic. Hence, linear scan allocation is a typical example
of an optimization not guided by actual models.

Profile-feedback optimization is discussed in [18] as a
workaround for lacking formal models. Here, information
about a program’s runtime behavior is collected and sup-
plied to the compiler by applying code instrumentation plus
runtime profiling. The profile-based register allocator of the
Sun Studio compiler finally uses basic block counts from
this profile data. In contrast to such profile-based approaches,
our approach relies on timing models tightly integrated in a
compiler making profiling runs obsolete.

The compiler WCC [6], [7] is the first fully func-
tional compiler explicitly designed for WCET minimization.
WCET timing models are integrated into WCC by coupling
its backend with the static WCET analyzer aiT [1]. This
way, WCC can apply static WCET analysis while optimizing

and can use all the WCET-related data computed by aiT for
optimization. WCC serves as technical infrastructure for the
WCET-aware register allocator presented in this paper.

Compiler optimizations minimizing WCET are an emerg-
ing area of research where only few related works currently
exist. In [16], a combination of procedure cloning and
procedure positioning to improve worst-case I-cache perfor-
mance is proposed. The authors of [4], [8], [20] propose to
move parts of a program’s code and data onto a scratchpad
memory or onto a software-controlled cache. These papers
focus on exploiting memory hierarchies outside a processor
core to minimize WCETs. Exploiting the register file –
which is that part of a memory hierarchy being closest to
a processor – in a WCET-aware way was considered only
in [5] in the past.

III. THE TARGET ARCHITECTURE: INFINEON TRICORE

Throughout this paper, register allocation will be studied
for Infineon TriCore [12] processors which are frequently
used in the automotive domain. In order to concentrate
on the novel concepts of WCET-aware ILP-based register
allocation presented in the following sections, by far not all
relevant technical details of the target architecture will be
discussed here. Instead, we will only concentrate on those
details that are necessary to understand our integer-linear
programs and will omit all others for the sake of simplicity.

The TriCore’s register file contains 16 data and 16 address
registers. The data registers can be used freely, whereas some
address registers are reserved for special purposes (e. g. for
stack pointer or return address). 8 of the data and 6 of
the address registers are automatically saved and restored
to / from memory during function calls and returns so that
they usually keep local variables. All other registers are not
automatically saved and restored so that they are intended
for global variables or function parameters.

Besides the ILP model of the WCET, the second key
contribution of this paper is the ILP-based pipeline model
that is used to estimate the influence of a spill instruction
on the WCET. Thus, basic knowledge of the TriCore’s
pipelines is presented in the following. During register allo-
cation, two pipelines are considered: the I-pipeline executes
usual integer ALU instructions, whereas the LS-pipeline
performs load / store instructions and address arithmetic.
Both pipelines operate in parallel so that an I- and an LS-
instruction can be executed in the same clock cycle ideally.

However, this ideal situation is defeated in the following
cases:
• Case 1: If an I- and an LS-instruction define the same

register, a classical WAW (write-after-write) hazard
results:
ADD d0,d1,d2 # d0 = d1 + d2
LD d0,[a0] # d0 = mem[a0]
The TriCore solves this hazard by stalling the LS-
instruction for one cycle.

• Case 2: If an address register is loaded from memory,
it takes one additional stall cycle until the loaded
address register can be used. Thus, RAW (read-after-
write) hazards may occur between a load and an LS-
instruction:
LD.A a5,[a0] # a5 = mem[a0]
ADD.A a4,a5,a6 # a4 = a5 + a6

• Case 3: Another additional stall cycle needs to be
considered if a store and a load instruction access
the same memory location, due to a structural hazard
between the writeback and execute stages of the LS-
pipeline:
ST [a0],d1 # mem[a0] = d1
LD d2,[a0] # d2 = mem[a0]

Due to the complexity of the TriCore pipelines, there exist
several other cases where additional cycles have to be
considered. As already mentioned, we omit the description
of these corner cases here.

Spilling uses the stack memory that is allocated to the
TriCore’s scratchpad memory (SPM). The SPM can be
accessed without any additional wait states so that memory
loads or stores generated during register allocation only take
one cycle in the execute stage of the LS-pipeline.

IV. TRADITIONAL ILP-BASED REGISTER ALLOCATION

The original publication on ILP-based register alloca-
tion [10] proposes a 0-1 ILP working function-wise, i. e. an
ILP is generated and solved per function which maps virtual
registers (VREGs) to physical registers (PHREGs). Binary
decision variables specify to which PHREG each VREG is
assigned, and when load or store instructions implementing
spilling will be issued. In the following, ILP variables are
represented using lowercase letters, whereas constants use
uppercase letters.

Basically, the control flow graph (CFG) of each function
is traversed. Whenever an instruction i defining a VREG v
is encountered, binary decision variables xv→p

i,def are created
for all available PHREGs p. They model the situation that
v is assigned to p after the execution of i. For instructions j
using a VREG v, it has to be decided whether the mapping
of v to p continues or ends. For this purpose, binary variables
xv→p

i,cont and xv→p
i,end are introduced. A constraint ensures that

exactly one of these two kinds of variables is set to 1.
Additional variables are created for instructions i neither
using nor defining v, if v is alive during the execution of i.
Constraints finally ensure that the lifeness of v is propagated
through such “uninvolved” instructions i.

In order to obtain a valid register allocation based on
these binary decision variables, certain conditions must be
fulfilled. First, the so-called single-symbolic condition must
be met which ensures that at most one VREG can be
assigned to a single PHREG at any time. For all instructions
i defining a VREG v, for all PHREGs p, and for all other

VREGs w1, w2, . . . alive at i, it must hold that at most one
of v or w1, w2, . . . are assigned to p:

xv→p
i,def + xw1→p

i,cont + xw2→p
i,cont + . . . ≤ 1 (1)

Second, the so-called must-allocate condition ensures that
each VREG v is actually assigned to some PHREG p. For
instructions i defining v, the following simple constraint
ensures that exactly one PHREG p is used for v:∑

p

xv→p
i,def = 1 (2)

If instruction i uses VREG v, it is sufficient that v is
contained in at least one PHREG p:∑

p

(xv→p
i,cont + xv→p

i,end) ≥ 1 (3)

Up to this point, spills of registers to main memory are
not yet modeled in the ILP. The authors of [10] prove that
it is optimal to spill-store a VREG v to main memory
either immediately after an instruction i defining v, or
immediately after a basic block where control flow forks. In
order to model spill-store instructions s at these positions,
the ILP contains additional binary decision variables xv→p

s,st

which specify whether spill-store instruction s is created,
saving VREG v originally assigned to PHREG p to main
memory. Analogously, spill-load instructions s can occur
either immediately before an instruction i using v, or in front
of a basic block where control flow joins. Thus, decision
variables xv→p

s,ld model the decisions for such spill-loads
s. Additional constraints ensure that e. g. spill-loads for a
VREG v are only valid if v has been spill-stored before.
Since they are not necessary to understand the remainder of
this paper, these additional constraints are not shown here for
the sake of clarity. Instead, the interested reader is referred
to the original publication [10].

In [10], the authors propose to minimize the total spill
code overhead by formulating a corresponding ILP objec-
tive function. The authors assume that each spilling-related
decision of the ILP contributes by the same constant amount
to the objective function. For example, under the assumption
that each spill instruction has a size of 4 bytes, an objective
function like e. g.∑

v

∑
p

∑
s

(4 ∗ xv→p
s,st + 4 ∗ xv→p

s,ld) ; min. (4)

minimizes spill-related code size.

V. WCET-AWARE ILP-BASED REGISTER ALLOCATION

As stated in the previous section, the original approach for
ILP-based register allocation assumes that each individual
decision on spilling has the same and constant impact on
the ILP’s objective function. This assumption only holds for
very simple kinds of objective functions like e. g. code size.

Unfortunately, it does not hold for more complex objectives
like e. g. execution time, and in particular not for WCETs.

The reasons for that are twofold: First, not the entire
code contributes to a function F ’s WCET. Only that subset
of the code leading to F ’s worst-case behavior influences
the WCET. All other parts of the code have no influence.
Thus, spilling decisions of an ILP-based register allocator
which are related to code portions not influencing the WCET
should not have an impact on the ILP’s objective function.
Second, F ’s WCET depends on the WCETs of F ’s basic
blocks. Spill-load and spill-store instructions generated dur-
ing register allocation can have a highly variable influence
on a basic block’s WCET. This depends completely on a
processor’s hardware. Complex processor pipelines are able
to execute memory accesses in parallel to arithmetic-logical
instructions so that a single spill instruction possibly does
not lead to an increase of a basic block’s WCET in some
cases. In other cases, a spill instruction might add one or
more additional cycles to the block’s WCET.

For these reasons, the key contributions of this paper are
the consideration of only WCET-relevant code portions (cf.
Section V-A), and the modeling of pipeline-related spill costs
(cf. Section V-B) within the ILP formulation. The overall
workflow of the proposed WCET-aware ILP-based register
allocator is described in Section V-C.

A. ILP Model of the Worst-Case Execution Time

The WCET of a function F is the maximal time F ’s
execution can ever take. The CFG of F , whose nodes
represent basic blocks and whose edges tell that one basic
block can be reached from the other, reflects all possible
ways of executing F . Among all paths from F ’s start node
in the CFG to some end node, there is one longest path
w. r. t. execution time. This path is the worst-case execution
path (WCEP) and its length is equal to F ’s WCET.

A register allocator aiming at WCET minimization must
thus reduce the length of the WCEP. Assume e. g. that p1 is
F ’s current WCEP and some disjoint path p2 is the second
longest path in the CFG. If a register allocator successfully
shortens p1 by more than |p1| − |p2| time units (where |p|
stands for the length of p), p2 becomes the new WCEP after
allocation. However, if the allocator is unaware of the WCEP
change from p1 to p2, it keeps on reducing the length of p1.
This effort may be in vain since it not necessarily leads to
any further WCET reduction, because the new WCEP p2

might not be affected.
Thus, a WCET-aware register allocator must have detailed

knowledge about the WCEP and must be aware of changes
of the WCEP in the course of the allocation. In order to
capture the WCEP of a function F inside the ILP, the
costs ck per basic block bk are modeled depending on spill
decisions:

ck = Ck +
∑
s∈bk

cs,spill (5)

Constraint (5) states that the costs of bk are equal to the
WCET Ck of bk without any spill code, plus the WCET
of spill code inside bk. The WCET of bk’s spill code is
expressed as a sum over all spill instructions s in bk. For
each such spill instruction s, its individual costs cs,spill are
considered (cf. Section V-B).

For reducible CFGs, an innermost loop L of F has exactly
one basic block bL

entry being the loop’s unique entry point,
and possibly several back-edges turning it into a cyclic
graph. Not considering these back-edges turns L’s CFG into
an acyclic graph. This acyclic graph without L’s back-edges
is denoted as GL = (V,E) in the following. The WCET
wL

exit of some exit node bL
exit is equal to the costs of bL

exit :

wL
exit = cL

exit (6)

The WCET of a path leading from a non-exit node bk of
GL to bL

exit must be greater than or equal to the WCET of
any successor of bk in GL, plus the costs bk causes. Thus, if
bk has exactly one successor bsucc , the following constraint
is generated:

∀bk ∈ {V \ bL
exit |∃=1(bk, bsucc) ∈ E} : wk = wsucc + ck

(7)
If there are x > 1 successors for a node bk, x inequalities

of the following kind are created:

∀bk ∈ V \{bL
exit} : ∀(bk, bsucc) ∈ E : wk ≥ wsucc +ck (8)

Variable wL
entry models the WCET of all paths of loop L

if it is executed exactly once. To model several executions of
L, all CFG nodes v ∈ V of GL are merged to a new super-
node vL. The costs of vL are the product of L’s WCET if
executed once and L’s maximal loop iteration count:

cL = wL
entry ∗ IL

max (9)

Replacing a loop L by a super-node vL in the CFG may
turn another loop L′ of F directly surrounding L into an
innermost loop with acyclic CFG G′L. Hence, the constraints
of Equations (6), (7) and (8) can be formulated for L′. This
way, the innermost loops of F are successively collapsed in
the CFG so that ILP constraints modeling F ’s control flow
are created from the innermost to the outermost loops.

A program’s WCEP can change during optimization only
at such points in the CFG where a basic block bk has more
than one successor because only there, different paths in the
control flow start and the longest one of them being the
actual WCEP needs to be considered. Since constraint (8)
is formulated for each successor of block bk, variable wk

always reflects the WCET of any path starting from bk –
irrespective of the fact which of the successors actually lies
on the current WCEP. This way, constraint (8) realizes the
implicit consideration of WCEPs and their changes in the
ILP.

The WCET of a function F is the maximal execution
time of a path starting at F ’s entry node bF

entry . Thus, the

WCET of F is modeled by variable wF
entry . Since ILP-based

register allocation is applied function-wise (cf. Section IV),
the objective function of the proposed WCET-aware ILP for
register allocation is to minimize the WCET of a function
F . Since F ’s WCET is modeled using variable wF

entry , the
value of this decision variable simply needs to be minimized
by the ILP:

wF
entry ; min. (10)

B. ILP Model of Pipeline-Related Spill Costs

Equation (5) uses variables cs,spill to model the WCET
of a potentially inserted spill instruction s. However, the
WCET of s depends on several factors: on s itself, and on
the instructions surrounding s.

If s is inserted immediately after some I-instruction i, and
if no WAW conflict between s and i exists, s is executed
in parallel and thus costs 0 cycles. If a WAW dependence
between s and i exists, s has costs of 1 cycle (cf. case 1
in Section III). Unfortunately, inserting a spill instruction s
might also break some previously existing parallelism:
ADD d0,d1,d2 # i: d0 = d1 + d2
LD d3,[a0] # s: d3 = mem[a0]
ST [a5],d3 # j: mem[a5] = d3
Before the insertion of s in this example, i and j are executed
in parallel. Afterwards, s is executed in parallel to i so that
the costs of s are zero. However, j is no longer executed
in parallel and now costs 1 cycle which is caused by the
insertion of spill instruction s.

These effects caused by the insertion of a spill instruction
s – namely the costs of s itself, and the costs caused by s
due to lost parallelism – are called direct costs. In the ILP,
integer variables cs,direct model the direct costs of spill s.

Cases 2 and 3 in Section III consider additional costs
due to extra pipeline stalls caused by RAW and structural
hazards. These so-called stall costs of spill instruction s are
represented by ILP variables cs,stall .

Using these variables for direct and stall costs, the overall
costs of a spill instruction s are:

cs,spill = cs,direct + cs,stall (11)

The following subsections describe how to compute these
direct and stall costs in the ILP.

Direct Spill Costs
In order to determine direct spill costs for a potential spill

instruction s spill-loading or spill-storing VREG v, the cases
specified below need to be checked, in the given order. If a
case matches the situation for spill s, the constraints given
for the particular case are inserted into the ILP, and the
remaining cases are not checked any more.

1) If the instruction i immediately before s is not an I-
instruction, or if i is an I-instruction, but a definite
WAW conflict between s and i exists, s can not be
executed in parallel to i. In this case, the direct spill

costs of s are equal to 1, i. e. equal to the decision
whether spill instruction s has to be inserted or not:

cs,direct =


∨
p

xv→p
s,st if s is spill-store∨

p
xv→p

s,ld if s is spill-load (12)

2) If s is a spill-load and if the immediate predecessor
i of s is an I-instruction, the direct costs of s depend
on whether s has to be inserted, and whether a WAW
conflict between s and i possibly exists:

cs,direct =
∨
p

(xv→p
s,ld ∧ xi,p

s,WAW) (13)

The binary decision variable xi,p
s,WAW states whether

spill instruction s defines PHREG p and instruction i
also defines PHREG p. Thus, it models the presence
of a WAW conflict between s and i via p.

3) The above two cases assume that a potential spill
s is inserted immediately after some other original
instruction i. However, it can happen that several
different spill instructions s1, . . . , sn may be inserted
in a sequence after an instruction i:
ADD d0,d1,d2 # i
LD ... # s1

...
ST ... # sm

...
LD ... # sn

Whether or not spill instructions s1 to sn will be
generated depends on decision variables xv→p

sj ,st and
xv→p

sj ,ld , 1 ≤ j ≤ n, resp., as mentioned previously.
Such a sequence of possible spill instructions is called
a spill block. The costs of a spill instruction sm

somewhere in the middle of such a spill block now
additionally depend on the information whether any
of its preceding spill instructions s1, . . . , sm−1 in
the spill block will be generated. If at least one of
these preceding spill instructions will be generated, sm

can not be executed in parallel and causes one cycle
of direct costs. The generation of at least one spill
instruction preceding sm in a spill block is encoded
in the binary variable xsm,pred.
Thus, the direct costs of a spill instruction sm, 1 <
m ≤ n, somewhere inside a spill block are the
straightforward extension of Equations (12) and (13)
by this novel variable xsm,pred:

csm,direct =

{
cstoresm,direct if sm is spill-store
cloadsm,direct if sm is spill-load

(14)

cstoresm,direct = (
∨
p

xv→p
sm,st) ∧ xsm,pred (15)

cloadsm,direct = (
∨
p

xv→p
sm,ld) ∧ (

∨
p

xi,p
sm,WAW ∨ xsm,pred)

(16)
The above cases 1) – 3) model the costs of a spill in-

struction s itself. Similar to the above equations, constraints
are produced which model the relationship between a spill
instruction s and a following LS-instruction j where previ-
ously existing parallelism gets lost. Since these constraints
do not provide additional insight into our pipeline-related
spill cost model, we do not list these constraints here.

Equations (13) and (16) depend on the detection of WAW
conflicts via variables xi,p

s,WAW . In order to determine such
WAW conflicts, it has to be verified whether spill instruction
s defines the same PHREG p as instruction i. For this
purpose, it is sufficient to examine all VREGs v defined
or spill-loaded by both s and i, and to check that no two of
these VREGs are assigned to the same PHREG p:

xi,p
s,WAW =

(∨
v∈s

(xv→p
s,def ∨ xv→p

s,ld)
)
∧
(∨

v∈i

(xv→p
i,def ∨ xv→p

i,ld)
)

(17)
Furthermore, Equations (15) and (16) require information

xsm,pred whether some preceding spill instructions in a spill
block are generated. For this purpose, variable xsk,spill states
whether a spill instruction sk is generated at all:

xsk,spill =


∨
p

xv→p
sk,st if sk is spill-store∨

p
xv→p

sk,ld if sk is spill-load (18)

xsk,spill is now used for all preceding instructions in a spill
block to determine xsm,pred:

xsm,pred =
m−1∨
k=1

xsk,spill (19)

In the above equations, the operators ∨ and ∧ represent
the Boolean OR and AND of two binary decision variables,
resp. These Boolean operators can be modeled within the
ILP, but we omitted the listing of these constraints for the
sake of simplicity.

Stall Costs
The stall costs of a spill instruction sm somewhere inside

a spill block are the additional cycles sm is stalled due to
cases 2 and 3 in Section III. Thus, the stall costs csm,stall

are the sum of the cycles for these two individual cases:

csm,stall = csm,case 2 + csm,case 3 (20)

For case 2, we need to distinguish whether sm is a spill-
store or a spill-load:

csm,case 2 =

{
cstoresm,case 2 if sm is spill-store
cloadsm,case 2 if sm is spill-load

(21)

For a spill-load, it has to be checked whether sm de-
fines a PHREG p used by some following LS-instruction

j performing e. g. address arithmetic based on p. In other
words, an additional stall cycle is counted if spill-load sm

is actually generated and an RAW conflict between sm and
j exists, and if successive spill instructions sm+1, . . . , sn in
the spill block are not generated. These three conditions are
expressed in a straightforward way as follows:

cloadsm,case 2 =
(∨

p

(xv→p
sm,ld ∧ xj,p

sm,RAW)
)
∧ xsm,succ (22)

If, in contrast, sm is a spill-store, it has to be checked
whether sm uses a PHREG p which is defined by some
preceding load instruction i, and that spill instructions
s1, . . . , sm−1 of a spill block are not created:

cstoresm,case 2 =
(∨

p

(xv→p
sm,st ∧ xi,p

sm,RAW)
)
∧ xsm,pred (23)

Stall case 3 of Section III models the situation that a
store accesses the same memory location as an immediately
following load instruction. Since the ILP only considers
pipeline-related costs of spill instructions, it is sufficient
to only consider spill-stores and spill-loads here; general
stores / loads performing data accesses do not need to be
modeled here. Thus, the following situation potentially leads
to an additional stall cycle for a spill-load sm:
ST [a0],... # ss: mem[a0] = . . .
... # some spill block after ss

I # i : an arbitrary I-instruction
... # some spill block in front of sm

LD ...,[a0] # sm: . . . = mem[a0]
A spill-store ss, to which some arbitrary I-instruction i is
executed in parallel, accesses the same memory location
as a following spill-load sm. In this situation, sm costs
one additional stall cycle, if both ss and sm are actually
generated and if no other spill instructions are inserted after
ss and before sm.

Since spill-stores and -loads only access memory locations
on the stack, and since it can be assumed without loss of
generality that each VREG v obtains its unique place on the
stack if spilled, the test whether both ss and sm access the
same memory location is equivalent to the question whether
ss and sm both store and load the same VREG v. Since
this question can be answered off-line outside the ILP by
simply checking which VREG ss and sm actually spill, this
test does not need to be explicitly formulated in the ILP.
Instead, it is sufficient to model the additional stall costs for
case 3 of Section III if and only if sm and ss spill the same
VREG.

Putting all these considerations together yields the follow-
ing constraint:

csm,case 3 = xss,spill ∧xsm,spill ∧xss,succ ∧xsm,pred (24)

Similar to the direct spill costs described previously,
Equations (22) to (24) rely on the detection of RAW
conflicts xi,p

sm,RAW between two instructions sm and i, and

Figure 1. WCET-aware C Compiler WCC

on the information xsm,succ whether some successive spill
instructions in a spill block are generated. Constraints analog
to Equations (17) and (19) compute these variables.

C. Workflow of WCET-aware ILP-based Register Allocation

To turn the ILP model presented in Sections V-A and V-B
into a fully functional optimization, support by an underlying
compiler infrastructure is required. In particular, we employ
the infrastructure of our WCET-aware C compiler WCC [6]
for the Infineon TriCore TC1796 and TC1797 processors
(cf. Figure 1) to extract all the constants required by the
ILP from the code currently under optimization.

Equation (9) depends on a loop’s maximal iteration count
IL
max . In our compiler, this value can stem from user-spec-

ified flow fact annotations, or it can be generated by our
automatic loop analyzer [15]. Irrespective of the origin of
IL
max , flow fact mechanisms take care to keep the values

IL
max up to date during all loop optimizations of our compiler

such that correct values are used by our ILP for register
allocation.

Equation (5) depends on the constant Ck representing
the WCET of basic block bk without any spill code. The
determination of these constants requires massive support
by our compiler infrastructure. A static WCET analyzer
like e. g. aiT [1] provides the desired information about a
block’s WCET. Unfortunately, static WCET analysis can not
be applied to the program P serving as input for register
allocation. This is because P is not an executable program
since it uses VREGs instead of PHREGs. Static WCET
analysis relies on executable and thus register-allocated code
in order to correctly take the mutual influences between P
and the processor hardware into account.

As a consequence, VREGs need to be replaced by
PHREGs in order to be able to apply static WCET analysis
and in order to finally obtain the required constants Ck. In
other words, a register allocation mandatorily needs to be
performed prior to solving the WCET-aware ILP proposed

in Section V. This mandatory register allocation is called
pre-allocation (cf. Figure 1). For pre-allocation, any existing
kind of register allocator can be used. Due to its usually high
quality and very fast runtimes, we use a register allocator
based on graph coloring [2] for pre-allocation.

Internally, our WCET-aware ILP-based register allocator
generates a copy P ′ of the program P which is to be
register allocated. Graph coloring is applied to P ′ during
pre-allocation in a very first step.

After pre-allocation, aiT is applied to P ′ to determine
the individual WCETs per basic block bk. However, it is
likely that the pre-allocation algorithm needs to insert spill
code. Thus, there may exist basic blocks in P ′ with spill
code so that aiT provides block WCETs including this spill
code overhead. For this reason, the block WCETs computed
by aiT for program P ′ need to be analyzed and the block
WCETs for P without spill code have to be computed in a
second step.

For this purpose, the basic blocks b′k ∈ P ′ and the pos-
sibly included spill instructions are examined. Based on the
characteristics of the TriCore’s pipeline already described in
Section III, it is determined whether a spill instruction s ∈ b′k
is actually executed in parallel to some other instruction, and
whether s causes additional stall cycles. The WCET of block
b′k is reduced by the so-computed number of cycles per spill
instruction s, yielding the desired WCET Ck of the original
block bk ∈ P without any spill code. After this step, the
temporary copy P ′ of P is removed since it is no longer
used.

Based on these block WCETs and maximal loop iteration
counts, the ILP presented in Section V is generated and
solved using the ILP solver cplex in a third step.

After solving the ILP, the values for the decision variables
xv→p

i,def , xv→p
i,cont and xv→p

i,end specify to which PHREG p each
VREG v is allocated. Furthermore, variables xv→p

s,st and
xv→p

s,ld state whether spill instructions s have to be inserted.
Based on this information, the code of the program P
currently under optimization is transformed in a fourth and
final step such that it reflects exactly the allocation decisions
taken by the ILP.

VI. EVALUATION

This section presents results obtained by applying the
proposed WCET-aware ILP-based register allocator to real-
life benchmarks. Section VI-A describes the experimental
environment used to perform benchmarking. Sections VI-B
and VI-C discuss benchmarking results in terms of worst-
case and average-case execution times, respectively. Finally,
the allocator’s runtimes are subject of Section VI-D.

A. Experimental Environment

Our WCET-aware register allocator is fully integrated into
the WCC compiler (cf. Figure 1). Its key feature is the
tight integration of the static WCET analyzer aiT into the

Figure 2. Relative WCETs after WCET-aware Register Allocation

compiler’s backend. This way, WCET timing data is avail-
able at the compiler’s assembly code representation (ICD-
LLIR). Both at C and assembly level, code optimizations
are applied. One of these optimizations, applied at assembly
level, is the register allocation technique described in this
paper. The compiler features a total of 42 different opti-
mizations. For benchmarking, all of them are activated using
optimization level -O3 such that register allocation is always
applied to already highly optimized code. Furthermore, the
TC1796 processor was considered during all experiments.

Our ILP-based register allocator was applied to a total
of 55 different real-life benchmarks from the MRTC [17],
MediaBench [13], MiBench [11], UTDSP [22] benchmark
suites and from a few other sources. The benchmarks are
very different: some of them are quite small filter or sorting
routines, others are large and complex audio / video codecs.
Their basic block counts range from 4 to 422, their numbers
of virtual registers vary from 30 to 994. However, all
benchmarks have in common that register pressure is high
so that spill code needs to be generated.

In the following sections, the impact of our WCET-aware
ILP-based register allocator on both worst- and average-case
execution times will be discussed. In order to determine
these results, the assembly code generated after register
allocation is fed into aiT for a final analysis yielding WCET
results on the one hand. On the other hand, the same
assembly code is simulated using the cycle-true instruction
set simulator CoMET [21] in order to obtain average-case
execution times (ACET).

B. Worst-Case Execution Time Estimates

Figure 2 shows the impact of our WCET-aware ILP-
based register allocator on the WCET estimates (WCETest)
of our benchmarks. For the sake of readability, only a
subset of all 55 benchmarks is depicted. The figure shows
the WCETest after our WCET-aware ILP-based register
allocator as a percentage of the WCETest resulting from
WCC’s optimization level -O3 and traditional graph coloring

allocation [2] (bars “WCET-ILP”).
As can be seen, our WCET-aware ILP-based register

allocator is able to reduce the WCETest considerably. For
a few benchmarks like e. g. bsort100, only marginal
WCETest reductions by 1% – 2% were observed. For all
other benchmarks, significantly higher gains were achieved.
The largest gain in terms of WCETest was measured for
cjpeg_jpeg6b_transupp where the WCETest after
our ILP-based register allocation amounts to only 19.2% of
the original WCETest, leading to savings of 80.8%.

On average over all 55 considered benchmarks, we were
able to obtain a WCETest of 79.8% of the original worst-
case execution time estimate, corresponding to a total aver-
age WCETest reduction of 20.2%.

In addition to the above results, Figure 2 also includes
the comparison of our proposed ILP-based register al-
locator with the WCET-aware graph coloring approach
from [5] (bars “WCET-GC”). It can be seen that the
WCET-aware graph coloring sometimes is unable to im-
prove over the WCET-unaware register allocator denoted
by the 100% baseline, whereas our WCET-aware ILP-based
allocator achieves significant WCETest reductions (e. g. for
janne_complex, ndes or prime). On average over all
55 benchmarks, the WCET-aware graph coloring heuristic
achieves WCETest reductions by 9%.

This result shows that, for the used benchmark set, our
ILP-based approach achieves WCETest reductions which are
more than a factor of 2 larger than those achieved by WCET-
aware graph coloring. This result clearly demonstrates the
power of our proposed integer-linear program. Furthermore,
it underlines that it is worthwhile to spend some effort in a
careful and precise formal modeling of a program’s execu-
tion characteristics like e. g. WCET and pipeline effects.

C. Average-Case Execution Times

Figure 3 shows the impact of our register allocator on
our benchmarks’ ACETs. Once again, ACETs after WCET-
aware register allocation are depicted as a percentage of

Figure 3. Relative ACETs after WCET-aware Register Allocation

the ACETs resulting from optimization level -O3 and the
traditional WCET-unaware register allocator.

A comparison of Figures 2 and 3 shows that the measured
ACETs behave completely different than the WCETest
resulting from our WCET-aware register allocator. For some
benchmarks, our register allocator increases ACETs whereas
significant WCETest reductions were reported. One exam-
ple is the fir_256_64 benchmark, where a WCETest
reduction of 30.2% was obtained by our ILP-based reg-
ister allocator, but ACET increases by 2.2%. In general,
the WCETest reductions achieved by the proposed register
allocator are usually significantly larger than the measured
ACET changes. On average for all 55 benchmarks, our
ILP-based register allocator leads to a total average ACET
reduction of 14% which is less than the obtained average
WCETest reduction of 20.2%.

These differences between WCETest and ACET conform
to the observations in [5]. They can be explained by the fact
that our WCET-aware register allocator keeps on optimizing
along the WCEP which is usually not identical to the path
that is executed in a typical average-case scenario. Hence,
our register allocator inserts spill code at positions within the
CFG where it is uncritical for the worst-case performance,
but may impair average-case performance.

The direct comparison between our novel ILP-based reg-
ister allocator and the WCET-aware graph coloring heuris-
tic in Figure 3 shows that even w. r. t. ACET, our ILP-
based approach is better than WCET-aware graph coloring
on average. While WCET-aware graph coloring leads to
average ACET reductions of 8.3%, our ILP-based WCET-
aware allocator reduces ACETs by 14% on average over
all 55 benchmarks. However, some benchmarks like e. g.
janne_complex, lpc or ndes show that WCET-aware
graph coloring may reduce ACET stronger than the ILP-
based allocator.

This behavior can again be explained by the allocators’
focus on WCET. The graph coloring allocator of [5] applies
a relatively simple heuristic deciding which VREG to spill

into memory which does not take the actual impact of
individual spill instructions on a basic block’s WCET into
account. This way, this allocator tries to keep the WCEP free
of spill code. However, it may not always succeed in doing
so. For the three benchmarks janne_complex, lpc or
ndes, Figure 2 reveals that graph coloring does not reduce
WCETest. Thus, it can be concluded that WCET-aware
graph coloring sometimes inserts spill code at sub-optimal
positions in the benchmarks’ codes which are beneficial for
the ACET instead of the WCET by accident.

In contrast, our novel WCET-aware ILP-based register
allocator takes the impact of each individual spill instruc-
tion into account during optimization. Thus, it is able to
reduce WCETest in a much more systematic way than
graph coloring. However, it may still happen that our ILP-
based allocator reduces ACET more than WCETest (e. g. for
cjpeg_jpeg6b_transupp, janne_complex, lpc or
prime). This observation is again caused by the different
nature of worst- and average-case execution paths (ACEP).
By definition, the WCEP is longer than a path taken in
the average case. If both WCEP and ACEP share some
common basic blocks B, our ILP-based register allocator
might reduce the execution time of B by a certain amount
c of cycles. This reduction translates to a shortening of the
WCEP and thus to a reduction of the WCETest by e. g.
x%. However, the same reduction c of cycles translates to
a shortening of the ACEP by, say, y% with y > x since the
ACEP is shorter than the WCEP so that the same number
c of saved cycles shortens the ACEP by a larger percental
amount.

D. Runtimes

For the considered 55 benchmarks, the overall runtimes
on a 2.4 GHz PC – including the CPU time required by the
pre-allocation, WCET analyzer and ILP solver – are very
moderate. They range from 1 CPU second for benchmark
iir_1_1 up to a maximal runtime of 54:08 CPU minutes
for benchmark cjpeg_jpeg6b_transupp. On average

over all 55 benchmarks, our ILP-based register allocator only
takes 03:33 CPU minutes per benchmark.

In contrast, the WCET-aware graph coloring allocator
requires 04:13 CPU minutes on average per benchmark. This
higher runtime of graph coloring is caused by the fact that
it performs a costly WCET analysis after register allocation
for each individual basic block.

Thus, it can be concluded that our ILP-based allocator
provides high-quality code while requiring less runtime
compared to WCET-aware graph coloring.

VII. CONCLUSIONS

This paper is the first one to present a WCET-aware
ILP-based register allocator. It introduces a sophisticated
WCET and pipeline model integrated into an integer-linear
program. This way, the proposed register allocator can take
the impact of potentially inserted individual spill instructions
on the WCET into account in a very precise fashion. The
effectiveness of our approach is shown by average WCETest
reductions of 20.2% for 55 different real-life benchmarks. In
addition to these WCETest reductions, the proposed register
allocator reduces ACETs by 14% on average even though
ACET is not subject of our model. Compared to a previously
published work on WCET-aware register allocation, our ILP-
based approach is able to outperform WCET-aware graph
coloring by more than a factor of 2 in terms of WCETest.

In the future, we plan to improve the runtimes of our ILP-
based allocator by simplifying the ILP such that redundant
spill decisions are no longer modeled [9]. Additionally, the
quality of the resulting code in terms of WCET could be
further improved by integrating rematerialization into our
ILP formulation.

ACKNOWLEDGMENTS

The authors would like to thank AbsInt Angewandte Infor-
matik GmbH for their support concerning WCET analysis
using the aiT framework. The authors would also like to
thank Synopsys for the provision of the instruction set
simulator CoMET enabling the determination of ACETs.

REFERENCES

[1] AbsInt Angewandte Informatik GmbH, “aiT: Worst-Case
Execution Time Analyzers,” http://www.absint.com/ait, Apr.
2011.

[2] P. Briggs, “Register Allocation via Graph Coloring,” Ph.D.
dissertation, Rice University, Houston, Apr. 1992.

[3] G. J. Chaitin, M. A. Auslander et al., “Register allocation via
coloring,” Computer Languages, vol. 6, 1981.

[4] J.-F. Deverge and I. Puaut, “WCET-Directed Dynamic
Scratchpad Memory Allocation of Data,” in Proceedings of
ECRTS, Pisa, Jul. 2007.

[5] H. Falk, “WCET-aware Register Allocation based on Graph
Coloring,” in Proceedings of DAC, San Francisco, Jul. 2009.

[6] H. Falk and P. Lokuciejewski, “A compiler framework for the
reduction of worst-case execution times,” Springer Real-Time
Systems, vol. 46, no. 2, Oct. 2010.

[7] H. Falk, P. Lokuciejewski, and H. Theiling, “Design of a
WCET-Aware C Compiler,” in Proceedings of ESTIMedia,
Seoul, Oct. 2006.

[8] H. Falk, S. Plazar, and H. Theiling, “Compile Time De-
cided Instruction Cache Locking Using Worst-Case Execution
Paths,” in Proceedings of CODES+ISSS, Salzburg, Oct. 2007.

[9] C. Fu and K. D. Wilken, “A faster optimal register allocator,”
in Proceedings of MICRO, Istanbul, Nov. 2002.

[10] D. W. Goodwin and K. D. Wilken, “Optimal and Near-optimal
Global Register Allocation Using 0-1 Integer Programming,”
Software - Practice and Experience, vol. 26, no. 8, Aug. 1996.

[11] M. R. Guthaus, J. S. Ringenberg, D. J. Ernst et al., “MiBench:
A Free, Commercially Representative Embedded Benchmark
Suite,” in Proceedings of WWC, Austin, Dec. 2001.

[12] TriCore 1 Architecture Overview Handbook. Infineon Tech-
nologies AG, Document Revision V1.3.3, May 2002.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems,” in Proceedings of MICRO,
Washington DC, Dec. 1997.

[14] E. A. Lee, “Absolutely Positively On Time: What Would
It Take?” Embedded Systems Column, IEEE Computer, Jul.
2005.

[15] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, “A
Fast and Precise Static Loop Analysis based on Abstract
Interpretation, Program Slicing and Polytope Models,” in
Proceedings of CGO, Seattle, Mar. 2009.

[16] P. Lokuciejewski, H. Falk, and P. Marwedel, “WCET-driven
Cache-based Procedure Positioning Optimizations,” in Pro-
ceedings of ECRTS, Prague, Jul. 2008.

[17] Mälardalen WCET Research Group, “WCET Benchmarks,”
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html, Apr.
2011.

[18] G. Mandalika, “Building Enterprise Appli-
cations with Sun Studio Profile Feedback,”
http://developers.sun.com/solaris/articles/building.html,
Jul. 2007.

[19] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 21, no. 5, Sep. 1999.

[20] I. Puaut and C. Pais, “Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison,” in
Proceedings of DATE, Nice, Apr. 2007.

[21] Synopsys, Inc., http://www.synopsys.com, Apr. 2011.

[22] “UTDSP Benchmark Suite,”
www.eecg.toronto.edu/ corinna/DSP/infrastructure/UTDSP.html,
Apr. 2011.

