
Automatic Extraction of Pipeline Parallelism for
Embedded Software Using Linear Programming¹

Daniel Cordes, Andreas Heinig, Peter Marwedel
TU Dortmund University

Dortmund, Germany

firstname.lastname@tu-dortmund.de

Arindam Mallik
Imec Belgium

Leuven, Belgium

arindam@imec.be

Abstract—The complexity and performance requirements of
embedded software are continuously increasing, making Mul-
tiprocessor System-on-Chip (MPSoC) architectures more and
more important in the domain of embedded and cyber-physical
systems. Using multiple cores in a single system reduces problems
concerning energy consumption, heat dissipation, and increases
performance. Nevertheless, these benefits do not come for free.
Porting existing, mostly sequential, applications to MPSoCs
requires extracting efficient parallelism to utilize all available
cores. Many embedded applications, like network services and
multimedia tasks for voice-, image- and video processing, are
operating on data streams and thus have a streaming-based
structure. Despite the abundance of parallelism in streaming
applications, it is a non-trivial task to split and efficiently map
sequential applications to MPSoCs. Therefore, we present an
algorithm which automatically extracts pipeline parallelism from
sequential ANSI-C applications. The presented tool employs an
integer linear programming (ILP) based approach enriched with
an adequate cost model to automatically control the granularity
of the parallelization. By applying our tool to real-life applica-
tions, it can be shown that our approach is able to speed up
applications by a factor of up to 3.9x on a four-core MPSoC
architecture, compared to a sequential execution.

Index Terms—Automatic Parallelization, Embedded Software,
Program Dependence Graph, Pipeline Parallelism, MPSoC,
Cyber-Physical Systems

I. INTRODUCTION

Recent years have shown a dramatic increase in the com-

plexity of software for embedded and cyber-physical devices,

resulting in a demand for more computational power. To

satisfy these requirements, Multiprocessor System-on-Chip

(MPSoC) architectures are gaining more and more importance

in this domain. Compared to single-core platforms, MPSoCs

can execute applications with reduced core frequencies by

distributing the computations to multiple processing units. This

results in lower energy consumption and less heat dissipation.

Unfortunately, these benefits do not come for free.

Nowadays, most embedded applications are written in

sequential C-code. Thus, to exploit the full advantages of

MPSoC platforms, applications have to be split up into several

concurrent tasks to enable parallel execution. In contrast to

instruction level parallelism, task level parallelism has shifted

the job of splitting up an application to the user. Since

1The research leading to these results has received funding from the Euro-
pean Community’s MNEMEE project as part of the Framework Programme
FP7 under grant agreement no 216224 (Informatik Centrum Dortmund).

manual parallelization tends to be very error prone and time

consuming, the designer should be relieved from the burden

of manually parallelizing an application.
By analyzing the embedded market, it is noticeable that

many embedded applications have a streaming-based structure.

This is due to the fact that a large part of embedded devices

execute applications in the domain of networking services,

voice- and image processing as well as multimedia tasks like

video decoding. All these applications have in common that

most of their parallelism is hidden in loops containing different

pipelining-based jobs. Thus, parallelization tools should be

able to find this kind of parallelization, if they are optimizing

embedded applications in this domain.
Despite the abundance of parallelism in streaming-based

applications, it is a nontrivial task to find an efficient mapping

of sequential applications to MPSoCs. Quite often, the gain

of concurrent execution is overshadowed by too expensive

communication costs between the created tasks. Thus, it is

very important to obtain precise knowledge about execution

and communication costs, which is neglected by most existing

parallelization tools. Otherwise, the parallelization could even

lead to a decrease of the application’s performance.
Based on these observations, we developed a novel, fully

automated loop parallelization methodology, which is ex-

tracting different pipeline stages from applications written

in ANSI-C to split them efficiently into separate tasks. The

algorithm is also able to split parts of these pipeline stages

into additional concurrently executed tasks to further decrease

the overall execution time. Our approach is based on integer

linear programming (ILP), so that the results are optimal with

respect to the underlying model. The ILP-based approach

is enriched with an adequate cost model, so that it can

estimate whether it is beneficial to distribute parts of the

application to different processing units or not. To highlight the

applicability for embedded and cyber-physical systems, results

for embedded real-life applications are presented, executed on

a cycle-accurate MPSoC simulator.
The main contributions of this paper are as follows:

1) To the best of our knowledge, this is the first approach

which uses integer linear programming to combine the

exploitation of pipeline parallelism with additional task

splits in (nested) loops.

2) In contrast to the high-performance computing commu-
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  for (i = 0; i < NUMAV; ++i) {
      float sample_real[SLICE];
      float sample_imag[SLICE];

int index = i * DELTA;
      for (int j = 0; j < SLICE; ++j) {
        sample_real[j] = 
            input_signal[index + j] * hamming[j];
        sample_imag[j] = zero;
      }

      fft(sample_real, sample_imag);

      for (int j = 0; j < SLICE; ++j) {
        mag[j] = mag[j] + (((sample_real[j] *   
               sample_real[j]) + (sample_imag[j] *  
               sample_imag[j])) / SLICE_2);
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(a) Sequential code
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int index = i * DELTA;
for (int j = 0; j < SLICE; ++j) {
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(b) Horizontal loop split
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(c) Horizontal and vertical loop split

Fig. 1. Pipelining based loop level parallelization example

nity, this approach focuses on applications and restric-

tions of embedded and cyber-physical systems.

3) Our approach is enriched with an adequate cost model.

This enables automatic control of the granularity of the

extracted parallelism.

The rest of this paper is organized as follows: Section II

describes the kind of parallelism extracted by our ILP-based

approach. The program dependence graph (PDG), which is

used as intermediate representation, is described in Section

III. The parallelization step itself is presented in Section IV

followed by a short overview of our tool flow in Section V.

Section VI will then present experimental results for real-life

applications. Afterwards, Section VII gives a survey of related

work, before the paper is summarized in Section VIII.

II. MOTIVATING EXAMPLE

This section describes the pipeline parallelism, which is

extracted from flat or nested loops of applications by the tool

presented in this publication. The code snippet shown in Figure

1(a-c) represents the nested main computational loop of the

spectral benchmark [1]. The application calculates the power

spectrum of an input sample of speech. This benchmark was

chosen as example, since it has a representative structure for

pipeline-based embedded applications. On the left hand side

of each figure, the application’s source code and the way the

application is split up into separate tasks is shown. The right

hand side demonstrates the time at which the iterations of the

tasks are executed.

Due to the fact that the second inner loop starting in line 14

is reading elements of the mag array, written in the previous

iteration of the outer loop, loop-carried dependencies exist

between different iterations of the outer loop. Thus, it is not

possible to split the complete outer loop into concurrently

executed tasks. Instead, pipeline parallelism is splitting the

loop into different tasks, which are executing disjunct parts,

like visualized in Figure 1(b). The benefit of such a par-

allelization is that each task can start the next iteration of

the loop, executing its assigned statements as soon as it has

communicated its result to the tasks waiting for its output. In

this way, a pipeline of calculations is created. Task T1 starts

with its first iteration at time t0, and sends its output to T2, so

that T2 can start its first iteration at time t1. The next iteration

of task T1 can than be executed in parallel. Since the FFT call,

mapped to task T2, requires two time slots in our example, the

first iteration of task T3 starts at t3. From now on, three tasks

are executed in parallel, but due to the longer execution time

of T2, T3 must always wait for its input data. These pipeline

splits are also called horizontal loop splits.
Since more parallelism may be hidden in different pipeline

stages, our approach is also able to split different iterations

of each pipeline stage into further tasks. Figure 1(c) shows

an example, where the statements of line 5-12 are mapped to

one task, which is split up into the tasks T1,1, T1,2 and T1,3.

T1,1 is now executing the iterations {1, 4, 7, ..}, while T1,2

and T1,3 are concurrently executing the iterations {2, 5, 8, ..}
and {3, 6, 9, ..}, respectively, of the statements assigned to the

task. Due to the loop-carried dependency of Task T2 to its next

iteration no further improvements can be achieved by splitting

up the iterations of this task. As can be seen in the figure, three

FFT calls can now be executed in parallel and from time t3
on, four well-balanced tasks are executing the loop in parallel.

These further pipeline splits are also called vertical loop splits.
By combining horizontal and vertical splits, our algorithm

is able to extract very efficient parallelization from loops,

even if loop-carried dependencies inhibit traditional data par-

allelization. Our ILP-based approach provides both splits at

the same time, so that it will not end up in a local optimum

which may be found if the vertical splits would rely on a

separated horizontal split. The example also shows that it is

very important to take the execution time of the tasks into

account to create a well-balanced task structure.

III. PROGRAM DEPENDENCE GRAPH

To enable automatic extraction of pipeline parallelism, an

intermediate representation containing the dependencies of

the application is required. Therefore, our approach uses a

program dependence graph (PDG) like presented in [2]. The

PDG combines control- and data-dependencies in a single

representation which makes it most suitable for the extraction

of parallelization. Our tool is able to automatically extract an

augmented PDG from an application’s source code.
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i < NUMAV

index =  i * DELTA;

fft(sample_real, 
sample_imag);

++i

i = 0

Entry

Exit

j = 0 j < SLICE

sample_imag[j] = 
zero;

sample_real[j] = input_signal[index + j] * 
hamming[j]; ++j

j = 0 j < SLICE

mag[j] = mag[j] + (((sample_real[j] * 
sample_real[j]) + (sample_imag[j] * 

sample_imag[j])) / SLICE_2);
++j

                             Edge Info:
               Edge type:      Read-after-Write
               Communication cost:  64
               Communicated data:   [i]
               Iteration count:             16
               Interleaving level:         1

                        Node Info:
                Iteration count:  16
                Execution cost:   200
             Reference to Statement

Fig. 2. Program dependence graph example

An example of such an augmented PDG is given in Figure

2. The graph represents the nested main computational loop of

the spectral benchmark from Figure 1. Obviously, the graph

contains one entry node, one exit node and several other

nodes representing statements of the application. The nodes

are connected by directed edges describing dependencies.

Solid, black arrows represent control flow dependencies, while

dashed arrows visualize data dependencies.

Formally, a program dependence graph G = (V,E) is a

directed graph with a set of nodes V, each representing a

statement of the application. The nodes are connected with

directed edges E ⊆ V × V denoting control- and data

dependencies. For more details on how to construct the PDG,

we would like to refer to [2].

In order to extract efficient parallelism from a sequential

application, the created tasks have to be balanced, so that

concurrently executed tasks will finish nearly at the same

time. For this reason, each node of our PDG is augmented

with the iteration count and execution costs of the statement

represented by the node (cf. Node Info in Figure 2). It is

also essential to have knowledge about the communication

costs which have to be taken into account if the statements

of the nodes are executed in separate tasks. Therefore, the

edge type, communication costs, the communicated data, the

iteration count as well as an interleaving level – describing

the minimal amount of loop iterations which can be executed

before the data is consumed at the target node – are annotated

at the edges (cf. Edge Info in Figure 2).

IV. PARALLELIZATION METHODOLOGY

Based on an augmented PDG, our parallelization approach

searches for pipeline parallelism in loops of applications.

1: function DOPARALLELIZATION(IR ir, int maxTasks)
2: pdg ← CONSTRUCTPDG(ir)
3: loops← COLLECTPARALLELIZABLELOOPS(pdg)
4: Sol← ∅
5: for l ∈ loops do
6: Sol← Sol ∪ PARALLELIZE(l,maxTasks)
7: end for
8: COMBINEBESTRESULTS(loops, Sol,maxTasks)
9: end function

10:

11: function PARALLELIZE(Loop l, int maxTasks)
12: LoopPDG← CONSTRUCTSUBPDG(l)
13: Solutions← {SequentialSolution}
14: i← maxTasks
15: while i > 2 do
16: result← ILPPARALLELIZER(LoopPDG, i)
17: Solutions← Solutions ∪ {result}
18: i← NUMBEROFTASKS(result)− 1
19: end while
20: return Solutions
21: end function

Fig. 3. Parallelization algorithm

A. Parallelization algorithm

The structure of our parallelization algorithm is shown

in Figure 3. The approach starts by calling the function

DOPARALLELIZATION, which expects a high-level interme-

diate representation (IR) [3] of the application and an upper

bound of concurrently executable tasks as input. By providing

this upper task bound the user is always able to adjust the

solution to his target platform. As can be seen in line 2, the

function is first creating the program dependence graph based

on the given IR. Then, the PDG is traversed searching for

loops which can be parallelized by our algorithm. Afterwards,

the function PARALLELIZE is called for each loop in line 6. As

a result, the function adds all extracted parallel solutions and

the estimated execution costs for the parallelized loop to the

set Sol. In a last step, the function COMBINEBESTRESULTS

is executed in line 8, which picks out the best combination

of parallelized loops, observing the maximum number of

concurrent tasks.

The function PARALLELIZE, starting at line 11 of Figure

3, is called for each loop. The function starts with the

construction of a sub-PDG containing only those PDG nodes

which are part of the loop. All dependencies coming from

outside of the loop are starting at the entry node of the sub-

PDG. All communication leaving the loop is redirected to

the exit node of the sub-graph, respectively. In line 13, a

set of possible solutions is created which is initialized with

the sequential version of the loop. Thus, the function which

is combining the results at the end (line 8) can always fall

back to the sequential version of the loop if it finds other

loops which are more beneficial to parallelize. Afterwards,

the function ILPPARALLELIZER is executed several times

in a loop, starting with the maximum number of possible

concurrently executed tasks downwards to only two available

tasks. Thus, the combination function also has the option to

combine, e.g., a solution with less than maxTasks from this

701



Entry

Exit

T (1,1) T (2,1)

T (1,2) T (2,2)

T (1,3) T (2,3)

T (1,4) T (2,4)

T (1,5) T (2,5)

T (1,6) T (2,6)

T (1,n) T (2,n)

... ...

(a)

Entry

Exit

T (1,1) T (2,1)

T (1,2) T (2,2)

T (1,3) T (2,3)

T (1,4) T (2,4)

T (1,5) T (2,5)

T (1,6) T (2,6)

T (1,n) T (2,n)

... ...

(b)

Entry

Exit

T (1,1) T (2,1)

T (1,2) T (2,2)

T (1,3) T (2,3)

T (1,4) T (2,4)

T (1,5) T (2,5)

T (1,6) T (2,6)

T (1,n) T (2,n)

... ...

(c)

Fig. 4. Loop dependencies for vertical splits

loop and 3 tasks from another loop if it does not exceed the

maximum number of concurrently executed tasks. The iterative

call of the ILPPARALLELIZER function is feasible since our

local ILP formulations for each loop can be solved in less

than a second for most cases. All solutions are collected in

the solution set which is then returned as the result of the

function in line 20.

B. Parallelization approach

As can be seen in line 16 of Figure 3, the algorithm is

calling an ILP-based parallelization function, taking a PDG of

a (nested) loop and an upper bound of concurrently executed

tasks to generate as input, to find an efficient node-to-task

mapping for each loop of the application.

To evaluate the performance of the found parallelization,

the ILP is virtually unrolling the loops to minimize the

most expensive execution path (critical path), starting from

the entry to the exit node of the loop’s PDG, by splitting

the loop horizontally and vertically into different tasks. The

computation of the critical path is based on an algorithm of

Sarkar [4]. An example for two tasks and the dependencies of

the spectral benchmark of Figure 1(c) is given in Figure 4(a-c).

T(x,y) in the figure describes iteration y of task x. Figure 4(a)

shows the dependencies which have to be taken into account

if task 1 is not vertically split. Thus, each iteration of Task 1

depends on its previous iteration. The dependencies shown in

Figure 4(b) represent the case in which task 1 is vertically split

once. As can be seen, iterations {1, 3, 5, ..} and {2, 4, 6, ..}
can be executed in parallel in that case. Figure 4(c) shows the

case where task 1 is split into 3 tasks so that the iterations are

grouped into {1, 4, 7, ..}, {2, 5, 8, ..}, and {3, 6, 9, ..}. Task 2

will not be split up into additional sub-tasks due to its loop-

carried data dependency.

All cases and their dependencies, shown in Figure 4(a-

c), are combined in one ILP formulation. In addition, the

solid, black arrows of the figure, describing data dependencies,

depend on the node-to-task mapping. Thus, the dependencies

between the tasks may also change if one statement is moved

from one task to another.

C. ILP Formulation

This section defines the ILP formulation for the pipeline-

based parallelization approach described above. In the follow-

ing, decision variables are written in lower case letters, sets

start with a capital letter and constants contain only capital

letters. The indices i and j are used for iterations of the loop

to be parallelized, t and u will represent indices for tasks and

n and m are used as indices for nodes of the PDG.
1) Horizontal task split constraint: One of the main results

of the parallelization step is a mapping of PDG nodes to tasks,

which is calculated by the ILP. This node-to-task mapping

corresponds to the horizontal pipeline stage splits. Therefore, a

decision variable xn,t is defined in Equation 1, which describes

this relationship.

xn,t =

{
1, if node n is mapped to task t

0, otherwise
(1)

The constraint in Equation 2 ensures that every node is

mapped to exactly one of the possible tasks.

∀n ∈ Nodes :
∑

t∈Tasks

xn,t = 1 (2)

2) Vertical task split constraint: As explained in the pre-

vious section, the ILP has the option to split tasks (pipeline

stages) vertically into several sub-tasks which are executing the

iterations of the loop in an interleaved mode. This would mean

that one sub-task may execute iterations {1, 3, 5, ..} while

another one would execute the iterations {2, 4, 6, ..} of the

statements, which are mapped to the given task. Therefore, a

decision variable splitt,s is added for each task and the number

of possible splits. E.g., split1,2 = 1 means that task 1 is split

twice, so that task 1 is composed of 3 sub-tasks. Equation 3

defines these decision variables.

splitt,s =

{
1, if task t is split s times

0, otherwise
(3)

Equation 4 ensures that exactly one task split variable is

chosen for each task. It is also possible to set the variable

splitt,0 = 1, which means that task t is not vertically split.

∀t ∈ Tasks :
∑

s∈{0..MAXTASKS}
splitt,s = 1 (4)

3) Predecessor constraint: To minimize the critical or

most expensive path from the entry to the exit node, the

ILP formulation has to be extended by path information. As

shown in Figure 4, the path costs are estimated by virtually

unrolling the iterations of the loop. Thus, we have to create

predecessor/successor variables for each iteration combination

of two tasks. Equation 5 shows the definition of decision

variable predt,i,u,j , which is added for each task t in iteration

i and task u in iteration j.

predt,i,u,j =

⎧⎪⎨
⎪⎩
1, if task t in iteration i is predecessor

of task u in iteration j

0, otherwise
(5)
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a) Task Split dependencies: As shown in Figure 4, con-

straints describing dependencies between different iterations

of a task have to be added, depending on how often the

task is split (dashed arrows). If, e.g., task t is split once,

iterations 1 and 2 can be executed independently of each other

(Figure 4(b)) – iff no data dependencies prevent the parallel

execution. In addition, if the task is not split (Figure 4(a)), the

iterations depend on each other since the task is then executed

sequentially on the same core. These task-split dependencies

are described in Equation 6, with NUMITER depicting the

number of loop iterations, which can be determined by e.g. [5].

∀t ∈ Tasks : ∀i ∈ {0, ..,NUMITER} : ∀j ∈
{0, ..,NUMITER} : (j − i ≤ MAXTASKS ∧ j > i) ⇒

predt,i,t,j ≥ splitt,j−i−1 (6)

b) Data and Control flow dependencies: Data and con-

trol flow dependencies between tasks (solid, black arrows of

Figure 4) have to be taken into account as well which is done

in Equation 7.

∀t ∈ Tasks : ∀u ∈ Tasks :

∀i ∈ {0, ..,NUMITER} : ∀j ∈ {i, ..,NUMITER} :

∀n ∈ Nodes : ∀m ∈ Nodes : n 	= m :

predt,i,u,j ≥ EDGEn,m,j−i ∗ (xn,t ∧ xm,u) (7)

The predecessor variable predt,i,u,j is created for all pos-

sible task and loop iteration combinations. This way, for all

combinations of nodes, it is checked if node n is part of task

t while node m has to be part of task u. If this is true and

a directed edge from n to m exists with an interleaving level

of j − i, denoted by EDGEn,m,j−i, task u depends on t for

the iterations i and j. If there exists an edge from, e.g., node

n to m in iteration 1 and 3, the interleaving level is 2.

The ∧ operator in Equation 7 is not part of regular ILP

formulations, but can be modeled by the following constraints.

z = (x ∧ y) ∈ {0, 1}
z ≥ x+ y − 1, z ≤ x, z ≤ y (8)

4) Execution costs of tasks constraint: The predecessor

relationship enables to describe paths with respect to depen-

dencies. Since it is very important to take execution and com-

munication costs into account to create well-balanced tasks,

we have to add the augmented cost information of the PDG

(cf. Figure 2) to the ILP formulation. W.l.o.g. we distribute the

overall execution costs of each node in equal parts over the

different iterations of the loop. This saves a couple of decision

variables, since we do not have to distinguish between different

execution costs of tasks in different iterations.

∀t ∈ Tasks :

costt ≥
∑

n∈Nodes

xn,t ∗ (COSTn/NUMITER) (9)

Equation 9 sets the lower bound of the costs for one iteration

of task t to at least the sum of costs COSTn of each node

n, which is part of task t, divided by the number of loop

iterations. The variable costt is also part of the objective

function, so that it is automatically minimized by the ILP

solver if task t is part of the critical path.
5) Path cost constraint: Based on the knowledge of the

execution costs of each task, it is now possible to describe

the accumulated costs of the possible paths. Unfortunately,

it is not known at this time, in which order the data will

be communicated between two tasks. Therefore, a worst-

case scenario is presented here which assumes that a task t
has to wait for its data until all its predecessor tasks have

communicated all data to the successor tasks, even if this data

is not consumed by t. The ILP formulation of this worst-case

scenario based path calculation is shown in Equation 10. It is

also possible to change this worst-case optimization to e.g.,

an average-case based scenario, here.

∀t ∈ Tasks : ∀u ∈ Tasks :

∀i ∈ {0, ..,NUMITER} : ∀j ∈ {i, ..,NUMITER} :

accumcostt,j ≥ costt + accumcostu,i + commcostu−
BIGCONST + BIGCONST ∗ predu,i,t,j (10)

Equation 10 ensures that the path costs accumcostt,j for

task t in iteration j are at least as large as the costs costt for

the execution of one iteration of task t itself and the path costs

of its most expensive predecessor accumcostu,i, including

all communication costs commcostu of task u. The last line

automatically fulfills the constraint if task u in iteration i is

not a predecessor of task t in iteration j by subtracting a big

constant on the right hand side of the constraint which is bigger

than all other values used within the ILP. The accumulated

costs are also included in the objective function, so that it is

automatically minimized by the ILP solver.
6) Additional constraints: There are also a couple of other

constraints which are added to the ILP which, e.g., ensure

that the maximum number of concurrently executed tasks is

not exceeded and that the created parallelization ends up in a

cycle-free graph. Due to space limitations, their explanation is

skipped here. Nevertheless, they are not part of the objective

function and are thus less important.
7) Objective function: With all decision variables and con-

straints defined, it is now possible to describe the objective

function. As mentioned before, the most expensive execution

path from the entry to the exit node of the loop’s PDG should

be minimized. Thus, we add additional constraints which

statically set the entry node to be a predecessor of all tasks.

The exit node will be a successor of all tasks, respectively.

With the help of the additional constraints, it is easy to create

the objective function, like shown in Equation 11.

minimize numtasks ∗ TASKOVERHEAD +

accumcostexit (11)

Since the creation of tasks also increases the execution time,

a constant task creation overhead, multiplied with the number

of created tasks, is added. This task creation overhead can

be defined in the platform description together with a com-

munication cost factor. By defining these platform dependent
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parameters, it is easy to adapt the cost model of the ILP to

different architectures. The value of the objective function is

equivalent to the execution time of the parallelized loop. It

is hence returned together with the node-to-task mapping as

result of the parallelization step.

V. EXPERIMENTAL ENVIRONMENT

The techniques described in this paper were developed in

the context of the MNEMEE European FP7 project [6]. All of

them are implemented and integrated into an automated tool

flow which is visualized in Figure 5(a). Here, only a subset of

the tools developed in the MNEMEE project are shown, since

we would like to focus on the benefit of the parallelization.

As can be seen, the tool flow starts with the source code

of a sequential ANSI-C application, which is first parsed

into a high-level intermediate representation, in our case an

ICD-C IR [3]. All tools are developed on top of the MACC

framework [7] which is used to facilitate the communication

between all processing steps of the tool flow. The framework

stores intermediate results, the application’s IR and a descrip-

tion of the target platform in the MACC database, so that all

tools can easily access this information.

The parallelization tool, described in this paper, is the first

one in the presented tool flow. As a result, the tool annotates

the given source code of the application to describe the

extracted parallelism. Based on these annotations, a parallel

specification is generated, complying with the input specifica-

tions of the ATOMIUM (MPA) tools [8], so that the extracted

parallelization is implemented by them. Next, the resulting

parallelized C-files are mapped to different processors of the

target MPSoC platform. The resulting application can then be

compiled and linked against a runtime library implementing

the task creation and synchronization primitives.

The internal structure of the parallelization tool is shown

in Figure 5(b) and is based on our parallelization framework

which is described in [9]. Based on the IR of the application

and the architectural information provided by the MACC

framework, the sub-tools are applied in the given order to

extract parallelism from sequential applications. The first one

is the code optimization tool, which optimizes the source

code regarding easier extraction of parallelism. Thereafter, the

dependency analysis tool extracts data dependencies between

different statements of the application. In the current version of

our tool flow, a profiling-based approach is used to extract the

data-dependencies. Nevertheless, this does not harm the cor-

rectness of our approach, since the ATOMIUM tool suite [8],

which is based on safe static analysis techniques, is used to

implement the parallelization found by this tool. The extracted

information is extended with execution times of the statements

which are extracted by the execution time estimation tool.

All gathered information are then collected and combined

with static knowledge of the program structure to extract

the program dependence graph like described in Section III.

Finally, the ILP-based parallelization tool is executed to extract

the pipeline-based parallelism.

Sequential ANSI C-
Source Code

Parallelized and 
mapped source code

Parallelization
Tool

ATOMIUM
Tools

Parallel
ANSI C-Code

Mapping tool

Augmented
ANSI C-Code

Parallel 
Specification

Overall 
Tool Flow

MACC
Database

Program Dependence 
Graph extraction

ILP-based parallelization

Code optimization

Dependency
analysis

Exec-time
estimation

Parallelization Tool

(a) (b)

Fig. 5. Implemented Tool Flow

VI. EXPERIMENTAL RESULTS

To evaluate the effectiveness and efficiency of our par-

allelization approach, we present results for 12 benchmarks

from the UTDSP suite [1], some additional embedded real-life

applications like a JPEG encoder, and an industrial application

used in INTRACOM TELECOM’s Wimax system.

As target platform, we used the cycle-accurate MPARM

simulator [10], which provides up to four separate single-core

ARM processors, connected to local and shared memories.

Due to the fact that each processor has its own memory the

evaluated platform is representative for an MPSoC. Unfortu-

nately, communication is in general much more expensive for

these kinds of systems, compared to architectures with unified

memories. Nevertheless, these facts are considered in our ILP-

based parallelization approach.

To execute the benchmarks on the target platform we com-

piled the parallelized application with the platform-specific

ARM-GCC and linked it to the RTEMS real-time operating

system [11] which was extended by cross-core thread creation

and other multi-core functionality.

The results for the parallelized benchmarks are shown in

Figure 6. The measured execution time contains the execution

time of the application without the initialization phase of

the operating system and the runtime library, because this

overhead affects both the sequential and the parallelized ver-

sion of the application and has only to be done once. Thus,

the results focus on the execution time of the application

itself. As can be seen in the figure, we measured results for

system configurations with two, three and four cores. The

presented speedups are compared to the sequential execution

times of the applications on a single core system. The amount

of extracted, concurrently executed tasks was limited to the

number of available cores. The presented results are measured

by executing the benchmarks on their original input files,

with an exception of iir 4 64 and mult 10 10. For these two

applications, the original input files are too small to achieve

a benefit of additional tasks. Therefore, we increased the size
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Fig. 6. Speedup of parallelization compared to sequential application code

of the input files by a factor of 8 for both benchmarks and

shaded their bars in Figure 6.

As can be seen, the speedup scales very well with the

given amount of processors for most applications. The highest

speedup could be achieved for the compress benchmark with

an increased performance of 1.9x, 2.9x and 3.9x compared to

the execution of the sequential application. The high speedup

results from the fact that the parallelization approach splits

up the main computational loop into separate, concurrently

executed tasks, so that nearly the whole application is executed

in parallel. The speedup of the spectral benchmark amounts

to 1.2x, 1.6x and 2.0x for a two-, three-, and four-core system

configuration, respectively. Due to its simplicity and high

amount of communication, the gain of the parallelization is

not as large as for most other considered benchmarks. The

parallelization implemented for two cores is visualized in

Figure 1(b) with the difference that task T1 and T2 are merged.

The parallelization for three and four cores is equivalent to the

one shown in Figure 1(c). Due to the limited number of cores,

T1 is only split twice for the three core-version.

In addition to the presented real-life benchmarks, we also

validated our approach with an industrially used application

which is part of INTRACOM TELECOM’s Wimax system. It

was possible to increase the performance of this application

by a factor of 1.8, 2.5, and 3.1 for the different numbers

of available cores, which emphasizes the usability of the

presented approach for industrial grade applications.

The average speedup of all 12 evaluated benchmarks is

visualized by the last group of bars in Figure 6. It was possible

to speed up the different applications on average by a factor

of 1.8, 2.4 and 2.9, respectively.

Optimization time

The time required to parallelize an application with our tool

flow strongly depends on the preprocessing steps of the tool

flow. Processing the edge detect benchmark, for example, takes

about 1:50 minutes, of which 1:29 minutes are used for the

code optimization, dependency analysis and execution time

estimation. For the parallelization step itself, 21 seconds are

sufficient to parallelize all loops of the application with our

ILP-based approach. This time contains the construction of the

program dependence graph as well as the creation and solving

times of 58 ILPs. The times were measured on a machine

equipped with two quad-core AMD Opteron Processors @

2.4 GHz, using one of the cores. This is also a proof of the

applicability of the comprehensive ILP formulations.

VII. RELATED WORK

Due to the fact that parallel architectures were invented

decades ago, many projects have focused on developing spe-

cial programming languages or models like e.g., MPI [12],

PThreads [13] and OpenMP [14] as well as semi- or fully

automatic parallelization techniques. The exploitation of in-
struction level parallelism was also extensively [15] studied.

Nevertheless, recent years have shown that software-based

parallelization is becoming more and more important, since

architectures provide multiple cores in one system. These

parallelization techniques can be grouped into at least the

categories of task-level, data-level and pipeline parallelism.

The first category is concerned with very coarse grained

parallelism, which is e.g., executing two function calls on

different cores. Hall et al. present a framework [16] which

extracts this kind of parallelism automatically. It is based on

an interprocedural analysis and was developed as part of the

SUIF compiler system [17].

Ceng et al. developed a semi-automatic parallelization as-

sistant [18]. The application is transformed into a weighted

statement control data flow graph which is subsequently pro-

cessed by a heuristically clustering algorithm, generating tasks

after several iterations of a user-feedback loop.

Our previous publication [9] was also dealing with au-

tomatic exploitation of task level parallelism. The approach

uses a hierarchical task graph as intermediate representation to

reduce the search space. Compared to the approach presented

in this paper, [9] is not able to extract parallelism from loops

with loop-carried dependencies.

Creusillet [19] presents a framework called PAR4ALL

which concentrates on the implementation of tasks. Thus, the

user or an extraction tool has to identify parallelism, first.

In addition to this very coarse-grained task level parallelism,

finer-grained data level parallelism is focusing on loops which

can execute the same operations concurrently by splitting the

amount of data to different tasks [20],[21].

The approach presented in this paper is extracting pipeline

parallelism, combined with further splits of pipeline stages.

Regarding this kind of parallelization, the work of Tournavitis

et al. [22], [23] and Raman et al. [24], are most relevant to our

work. Their approaches are also able to automatically extract

pipeline parallelism. Compared to our work, their approaches

are only able to split stateless pipeline stages into further

tasks. In addition, the approaches lack a detailed cost model so

that the parallelism is only extracted by a heuristic approach

which is merging nodes based on a fixed threshold. Our work

combines an adequate cost model with a clear, ILP-based

mathematical description for the assignment of statements to

tasks so that we can really balance the created tasks.

Liu et al. [25] present an approach which eliminates loop-

carried dependencies by retiming the execution of statements
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in a loop. Therefore, they are moving executions of statements

to earlier iterations of the loop. Thus, dependencies may

change which creates the opportunity to parallelize different

iterations of the loops. Just like the previous works, this one is

also not aware of an accurate cost model which would make it

possible to determine whether the parallelization of different

loop iterations will increase the overall program performance.
Gordon et al. [26] present a compiler framework which

combines the extraction of task-, data- and pipeline paral-

lelism for applications written in the programming language

StreamIt [27]. Since the user has to define independent actors,

connected by explicit data channels, the designer has to extract

tasks manually. The algorithms described in [26] are searching

for parallelism in the given task structure. In contrast, our

work extracts these tasks automatically based on sequential

ANSI C-code, so that it can be applied to most existing

embedded applications without first transferring it into another

programming language.
Several other approaches also try to extract parallelism

from sequential applications. E.g., Verdoolaege et al. [28]

present a technique which transforms sequential applications

into parallelized versions using process networks. Sarkar [29]

and Ottoni [30] have introduced parallelization techniques

based on program dependence graphs and extensions of them.

Polychronopoulos et al. demonstrated the usability of hierar-

chical task graphs for automatic scheduling in [31].
With respect to the usage of integer linear programming in

the parallelization domain, there is, to our best knowledge,

only the work by Kadayif [32] and our previous publication

[9]. However, Kadayif’s approach does not partition the ap-

plication, as done in this work. In fact, it is used to determine

the most beneficial version composed of different parallel

implementations.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this paper presents the first

ILP-based pipeline parallelization approach tailored to the

particular needs of embedded and cyber-physical systems. The

tool is able to automatically control the granularity of the

parallelization to find the most suitable solution with respect to

the target platform by adding detailed knowledge of execution

and communication cost to the program dependence graph.

The efficiency of the tool was demonstrated on several real-

life benchmarks from typical embedded system application

domains. The measurements, performed on a cycle accurate

simulator of an MPSoC, have shown that the tool is able to

achieve speedups of up to 3.9x on a four-core system.
In the future we would also like to extend the presented

approach to heterogeneous systems. In the current version, the

tool takes only one execution time per statement into account

while partitioning the application. If cores of different types

are added to the same system, this approach has to be adapted

to differing execution times, depending on the mapped core.
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