
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technische Universität Dortmund

Many Suspensions, Many Problems:
A Review of Self-Suspending Tasks in Real-Time Systems

Jian-Jia Chen1, Geoffrey Nelissen2, Wen-Hung Huang1, Maolin Yang4,
Björn Brandenburg5, Konstantinos Bletsas2, Cong Liu3, Pascal Richard6,

Frédéric Ridouard6, Neil Audsley7, Raj Rajkumar9, Dionisio de Niz8, Georg von der Brüggen1

1Computer Science 12 at TU Dortmund University, Germany
2CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

3University of Texas at Dallas, USA
4University of Electron. Science and Technology of China, China

5Max Planck Institute for Software Systems (MPI-SWS), Germany
6LIAS/University of Poitiers, France

7University of York, UK
8Software Engineering Institute (SEI), USA

9Carnegie Mellon University, USA

Number: 854 (2nd ver.)
March 2017

Technische Universität Dortmund — Fakultät für Informatik
Otto-Hahn-Str. 14, 44227 Dortmund

http://ls12-www.cs.tu-dortmund.de

Jian-Jia Chen1, Geoffrey Nelissen2, Wen-Hung Huang1, Maolin Yang4,
Björn Brandenburg5, Konstantinos Bletsas2, Cong Liu3, Pascal Richard6,
Frédéric Ridouard6, Neil Audsley7, Raj Rajkumar9, Dionisio de Niz8, Georg
von der Brüggen1: Many Suspensions, Many Problems: A Review of Self-Suspending
Tasks in Real-Time Systems, Technical Report, Department of Computer Science,
Dortmund University of Technology. © March 2017

http://ls12-www.cs.tu-dortmund.de

A B S T R A C T

In general computing systems, a job (process/task) may suspend itself whilst
it is waiting for some activity to complete, e.g., an accelerator to return data. In
real-time systems, such self-suspension can cause substantial performance/schedu-
lability degradation. This observation, first made in 1988, has led to the inves-
tigation of the impact of self-suspension on timing predictability, and many
relevant results have been published since. Unfortunately, as it has recently
come to light, a number of the existing results are flawed.

To provide a correct platform on which future research can be built, this
paper reviews the state of the art in the design and analysis of scheduling algo-
rithms and schedulability tests for self-suspending tasks in real-time systems.
We provide (1) a systematic description of how self-suspending tasks can be
handled in both soft and hard real-time systems; (2) an explanation of the ex-
isting misconceptions and their potential remedies; (3) an assessment of the
influence of such flawed analyses on partitioned multiprocessor fixed-priority
scheduling when tasks synchronize access to shared resources; and (4) a discus-
sion of the computational complexity of analyses for different self-suspension
task models.

A C K N O W L E D G M E N T S

This paper has been supported by DFG, as part of the Collaborative Research
Center SFB876 (http://sfb876.tu-dortmund.de/).

This work was partially supported by National Funds through FCT/MEC
(Portuguese Foundation for Science and Technology) and co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partnership, within
project UID/CEC/04234/2013 (CISTER Research Centre); also by
ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO) and
ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2)

This material is based upon work funded and supported by NSF grants OISE
1427824 and CNS 1527727, and the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development
center.
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Govern-
ment use and distribution.
Carnegie Mellon© is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.
DM-0003197

iii

iv

C O N T E N T S

1 introduction 1

1.1 Impact of Self-Suspending Behavior 2

1.2 Purpose and Organization of This Paper 3

2 examples of self-suspending task systems 5

3 real-time sporadic self-suspending task models 8

3.1 Assumptions and Terminology 10

3.1.1 Scheduling: 10

3.1.2 Analysis: 11

3.1.3 Platform: 11

4 general design and analysis strategies 13

4.1 Modeling the Interfered Task 13

4.1.1 Modeling suspension as computation 14

4.1.2 Modeling each computation segment as an independent
task 16

4.1.3 Hybrid approaches 16

4.1.4 Exact schedulability analysis 17

4.2 Modeling the Interfering Tasks 18

4.2.1 Suspension-oblivious analysis 18

4.2.2 Modeling self-suspensions with carry-in jobs 18

4.2.3 Modeling self-suspensions as release jitter 19

4.2.4 Modeling self-suspensions as blocking 20

4.2.5 A Unifying Analysis Framework 21

4.2.6 Improving the modeling of segmented self-suspending
tasks 22

4.2.7 Remarks on the Methods without Enforcement 23

4.3 Period Enforcement Mechanisms 23

4.3.1 Dynamic online period enforcement 23

4.3.2 Static period enforcement 24

4.3.3 Slack enforcement 25

4.4 Multiprocessor Scheduling for Self-Suspending Tasks 25

5 existing misconceptions in the state of the art 26

5.1 Incorrect Quantifications of Jitter (Dynamic Self-Suspension) 26

5.2 Incorrect Quantifications of Jitter (Segmented Self-Suspension) 28

5.3 Incorrect Assumptions Regarding the Critical Instant 29

5.3.1 A counterexample to the synchronous release 30

5.3.2 A counterexample to the minimum inter-release time 31

5.4 Counting Highest-Priority Self-Suspension Time to Reduce the
Interference 33

5.5 Incorrect Analysis of Segmented Fixed-Priority Scheduling with
Periodic Enforcement 35

5.6 Incorrect Conversion of Higher Priority Self-Suspending Tasks 36

6 self-suspending tasks in multiprocessor synchronization 38

6.1 Semaphores in Uniprocessor Systems 38

6.2 Semaphores in Partitioned Multiprocessor Systems 39

6.3 Incorrect Contention Bound in Interface-Based Analysis 41

v

vi contents

6.4 A Safe Response-Time Bound 42

7 soft real-time self-suspending task systems 44

7.1 Suspension-Oblivious Analysis 44

7.2 Suspension-Aware Analysis 44

8 computational complexity and approximations 46

8.1 Computational Complexity of Designing Scheduling Policies 46

8.1.1 Segmented Self-Suspending Tasks 46

8.1.2 Dynamic Self-Suspending Tasks 47

8.2 Computational Complexity of Schedulability Tests 48

8.2.1 Segmented Self-Suspending Tasks 48

8.2.2 Dynamic Self-Suspending Tasks 48

9 final discussion 50

9.1 Unresolved Issues 50

9.2 Non-Implicated Approaches 52

1I N T R O D U C T I O N

Complex cyber-physical systems (i.e., advanced embedded real-time comput-
ing systems) have timeliness requirements such that deadlines associated with
individual computations must be met (e.g., in safety-critical control systems).
Appropriate analytical techniques have been developed that enable a priori
guarantees to be established on timing behavior at run-time regarding com-
putation deadlines. The seminal work by Liu and Layland [60] considers the
scheduling of periodically triggered computations, which are usually termed
tasks. The analysis they presented enables the schedulability of a set of such tasks
to be established, i.e., whether their deadlines will be met at run-time. This ini-
tial analysis has been extended to incorporate many other task characteristics,
e.g., sporadic activations [65].

One underlying assumption of the majority of these schedulability analyses
is that a task does not voluntarily suspend its execution — once executing,
a task ceases to execute only as a result of either a preemption by a higher-
priority task, becoming blocked on a shared resource that is held by a lower-
priority task on the same processor, or completing its execution (for the current
activation of the task). This is a strong assumption that lies at the root of Liu and
Layland’s seminal analysis [60], as it implies that the processor is contributing
some useful work (i.e., the system progresses) whenever there exist incomplete
jobs in the system (i.e., if some computations have been triggered, but not yet
completed).

Allowing tasks to self-suspend, meaning that computations can cease to progress
despite being incomplete, conversely has the effect that key insights underpin-
ning the analysis of non-self-suspending tasks no longer hold. As an example,
consider the execution scenario in Figure 1. Figure 1(a) illustrates the worst-
case execution scenario for non-self-suspending tasks, i.e., where the longest
interval between the arrival time and the finishing time of an instance of a task
occurs. This worst case, termed critical instant, occurs when a job release coin-
cides with the release of all higher priority tasks and all followup jobs of the
higher-priority tasks are released as early as possible by satisfying the inter-
arrival-time constraint. However, if a higher-priority task is allowed to suspend
its execution, Figure 1(b) shows that it is possible that a lower-priority task
misses its deadline even if its deadline can be met under the critical-instant
scenario defined above. The classical critical instant theorem [60] thus does not
apply to self-suspending task systems.

Self-suspension has become increasingly important to model accurately within
schedulability analysis. For example, a task that utilizes an accelerator or exter-
nal physical device [40, 41] can be modelled as a self-suspending task, where
the resulting suspension delays range from a few microseconds (e.g., a write
operation on a flash drive [40]) to a few hundreds of milliseconds (e.g., offload-
ing computation to GPUs [41, 62]). Whilst the maximum self-suspension time
could be included as additional execution time, this would be pessimistic and
potentially under-utilize the processor at run-time. If the self-suspension time

1

2 introduction

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ2(low)

τ1(high)

(a)

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ2(low)

τ1(high)
suspend

(b)

Figure 1: Two tasks τ1 (higher priority, period 5, relative deadline 5, computation time 3)
and τ2 (lower priority, period 7, relative deadline 7, computation time 2) meet
their deadlines in (a). Conventional schdulability analysis predicts maximum
response times of 3 and 5 respectively. In (b), task τ1 suspends itself, with the
result that task τ2 misses its deadline at time 14.

is substantial, exploiting the self-suspension time effectively by executing other
tasks properly would lead to a performance increase. Therefore, the scheduling
strategies and the timing analyses should consider such features to make the
best use of the potential self-suspension time.

This paper seeks to provide the first survey of existing analyses for tasks
that may self-suspend, highlighting the deficiencies within these analyses. The
remainder of this chapter provides more background and motivation of general
self-suspension and the issues it causes for analysis, followed by a thorough
outline of the remainder of this survey paper.

1.1 impact of self-suspending behavior

When periodic or sporadic tasks may self-suspend, the scheduling problem
becomes much harder to handle.

For the ordinary periodic task model (without self-suspensions), Liu and
Layland [60] studied the earliest-deadline-first (EDF) scheduling algorithm and
fixed-priority (FP) scheduling. They showed EDF to be optimal (with respect
to the satisfaction of deadlines), and established that, among FP scheduling
algorithms, the rate-monotonic (RM) scheduling algorithm is optimal [60]. Both
EDF and RM are simple, polynomial-time algorithms.

In contrast, the introduction of suspension behavior has a negative impact on
the timing predictability and causes intractability in hard real-time systems [76].
It was shown by Ridouard et al. [76] that finding an optimal schedule (to meet
all deadlines) is NP-hard in the strong sense even when the suspending behav-
ior is known a priori.

One specific problem due to self-suspending behavior is the deferrable execu-
tion phenomenon. In the ordinary sporadic and periodic task model, the critical
instant theorem by Liu and Layland [60] provides concrete worst-case scenar-
ios for fixed-priority scheduling. That is, the critical instant of a task defines an
instant at which, considering the state of the system, an execution request for
the task will generate the worst-case response time (if the job completes before
next jobs of the task are released). However, with self-suspensions, no critical
instant theorem has yet been established. This makes it difficult to efficiently
test the schedulability. Even worse, the effective scheduling strategies for non-
self-suspending tasks may not work very well for self-suspending tasks. For

1.2 purpose and organization of this paper 3

example, it is known that EDF (RM, respectively) has a 100% (69.3%, respec-
tively) utilization bound for ordinary periodic real-time task systems, as pro-
vided by Liu and Layland [60]. However, with self suspensions, it was shown
in [76, 20] that most existing scheduling strategies, including EDF and RM, do
not provide any bounded performance guarantees.

Self-suspending tasks can be classified into two models: the dynamic self-
suspension and segmented (or multi-segment) self-suspension models. The dy-
namic self-suspension task model characterizes each task τi with predefined to-
tal worst-case execution time and total worst-case self-suspension time bounds,
such that a job of task τi can exhibit any number of self-suspensions of arbi-
trary duration as long as the sum of the suspension (respectively, execution)
intervals does not exceed the specified total worst-case self-suspension (respec-
tively, execution) time bounds. The segmented self-suspending sporadic task
model defines the execution behavior of a job of a task as a known sequence of
predefined computation segments and self-suspension intervals.

1.2 purpose and organization of this paper

Much prior work has explored the design of scheduling algorithms and schedu-
lability analyses of task systems when self-suspending tasks are present. Mo-
tivated by the proliferation of self-suspending scenarios in modern real-time
systems, the topic has received renewed attention in recent years and several
results have been re-examined. Unfortunately, we have found that large parts of
the literature on real-time scheduling with self-suspensions has been seriously
flawed by misconceptions. Several errors were discovered, including:

• Incorrect quantification of jitter for dynamic self-suspending task sys-
tems [3, 4, 43, 63]. This misconception was unfortunately carried forward
in [86, 12, 83, 42, 34, 14, 84, 46] in the analysis of worst-case response
times under partitioned multiprocessor real-time locking protocols;

• Incorrect quantification of jitter for dynamic self-suspending task sys-
tems [10];

• Incorrect assumptions on the critical instant as defined in [47].

• Incorrectly counting highest-priority self-suspension time to reduce the
interference on the lower-priority tasks [45];

• Incorrect segmented fixed-priority scheduling with period enforcement
[45, 25];

• Incorrect conversion of higher-priority self-suspending tasks into spo-
radic tasks with release jitter[66].

Due to the above misconceptions and the lack of a survey of this research area,
the authors, who have been active in this area in the past years, have jointly
worked together to review the existing results in this area. This review paper
serves to

• summarize the existing self-suspending task models (Chapter 3);

4 introduction

• provide the general methodologies to handle self-suspending task sys-
tems in hard real-time systems in Chapter 4 and soft real-time systems
(Chapter 7);

• explain the misconceptions in the literature, their consequences, and po-
tential solutions to fix those flaws (Chapter 5);

• examine the inherited flaws in multiprocessor synchronization, due to a
flawed analysis in self-suspending task models (Chapter 6);

• provide the summary of the computational complexity classes of differ-
ent self-suspending task models and systems (Chapter 8).

Further, some results in the literature are listed in Section 9.1 with open issues
that require further detailed examination to confirm their correctness.

During the preparation of this review paper, several reports [19, 16, 57, 9]
have been filed to discuss the flaws, limits, and proofs of individual papers and
results. In the interest of brevity, these reports are summarized here only at a
high level, as including them in full detail is beyond the scope of this already
long paper. The purpose of this review is thus not to present the individual
discussions, evaluations and comparisons of the results in the literature. Rather,
our focus is to provide a systematic picture of this research area, common
misconceptions, and the state of the art of self-suspending task scheduling.
Although it is unfortunate that many of the early results in this area were
flawed, we hope that this review will serve as a solid foundation for future
research on self-suspensions in real-time systems.

2E X A M P L E S O F S E L F - S U S P E N D I N G TA S K S Y S T E M S

Self-suspensions arise in real-time systems for a range of reasons. To moti-
vate the need for suspension-aware analysis, we initially review four common
causes.

Example 1: I/O- or Memory-Intensive Tasks. An I/O-intensive task may
have to use DMA (Direct Memory Access) to transfer a large amount of data
to or from peripheral devices. This can take from a few microseconds up to
milliseconds. In such cases, a job of a task executes for a certain amount of
time, then initiates an I/O activity, and suspends itself. When the I/O activity
completes, the job can be moved back to the ready queue to be (re)-eligible for
execution.

This also applies to systems with scratchpad memories, where the scratch-
pad memory allocated to a task is dynamically updated during its execution.
In such a case, a job of a task executes for a certain amount of time, then ini-
tiates a scratchpad memory update to push its content from the scratchpad
memory to the main memory and to pull some content from the main mem-
ory to the scratchpad memory, often using DMA. During the DMA transfers
to update the scratchpad memory, the job suspends itself. Such memory access
latency can become much more dynamic and larger when we consider multi-
core platforms with shared memory, due to bus contention and competition for
memory resources.

Example 2: Multiprocessor Synchronization. Under a suspension-based
locking protocol, tasks that are denied access to a shared resource (i.e., that
block on a lock) are suspended. Interestingly, on uniprocessors, the resulting
suspensions can be accounted for more efficiently than general self-suspensions
by considering the blocking time due to the lower-priority job(s) that hold(s)
the required shared resource(s). More detailed discussions about the reason
why uniprocessor synchronization does not have to be considered to be self-
suspension can be found in Section 6.1. In multiprocessor systems, self-suspensions
can arise (for instance) under partitioned scheduling (in which each task is
assigned statically on a dedicated processor) when the tasks have to synchro-
nize their access to shared resources (e.g., shared I/O devices, communication
buffers, or scheduler locks) with suspension-based locks (e.g., binary semaphores).

We use a binary semaphore shared by two tasks assigned on two different
processors as an example. Suppose each of these two tasks has a critical section
protected by the semaphore. If one of them, say task τ1, is using the semaphore
on the first processor and another task, say τ2, executing on the second proces-
sor intends to enter its critical section, then task τ2 has to wait until the critical
section of task τ1 finishes on the first processor. During the execution of task
τ1’s critical section, task τ2 suspends itself.

In this paper, we will specifically examine the existing results for multipro-
cessor synchronization protocols in Chapter 6.

Example 3: Hardware Acceleration by Using Co-Processors and Compu-
tation Offloading. In many embedded systems, selected portions of pro-

5

6 examples of self-suspending task systems

t

CPU

HW 1

HW 2

HW 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

τ1 arrives τ2 arrives τ3 arrives

τ1 τ2
τ3 τ1 τ2

τ3 τ3

τ1

τ2

τ3

(a) Using several FPGAs in parallel (with self-suspensions).

t

CPU

HW 1

HW 2

HW 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

τ1 τ1 τ2 τ2
τ3 τ3

τ1

τ2

τ3

(b) Serialized FPGA use (busy waiting).

Figure 2: An example of using FPGA for acceleration.

grams are preferably (or even necessarily) executed on dedicated hardware
co-processors to satisfy performance requirements. Such co-processors include
for instance application-specific integrated circuits (ASICs), digital signal pro-
cessors (DSPs), field-programmable gate arrays (FPGAs), graphics processing
units (GPUs), etc. There are two typical strategies for utilizing hardware co-
processors. One is busy-waiting, in which the software task does not give up
its privilege on the processor and has to wait by spinning on the processor until
the co-processor finishes the requested work (see Figure 2(b) for an example).
Another is to suspend the software task. This strategy frees the processor so
that it can be used by other ready tasks. Therefore, even in single-CPU systems
more than one task may be simultaneously executed in computation: one task
executing on the processor and others on each of the available co-processors.
This arrangement is called limited parallelism [4], which improves the perfor-
mance by effectively utilizing the processor and the co-processors, as shown in
Figure 2(a).

Since modern embedded systems are designed to execute complicated ap-
plications, the limited resources, such as the battery capacity, the memory
size, and the processor speed, may not satisfy the required computation de-
mand. Offloading heavy computation to some powerful computing servers has
been shown as an attractive solution, including optimizations for system perfor-
mance and energy saving. Computation offloading with real-time constraints
has been specifically studied in two categories. In the first category, computa-
tion offloading always takes place at the end of a job and the post-processing
time to process the result from the computing server is negligible. Such offload-
ing scenarios do not incur self-suspending behavior [69, 80]. In the second cate-
gory, non-negligible computation time after computation offloading is needed.
For example, the computation offloading model studied in [62] defines three

examples of self-suspending task systems 7

0.5

3

4

7

2

t

Proc. 2

Proc. 1

0 1 2 3 4 5 6 7 8 9 10 11 12

.5

3 4

7

2

suspension

suspension suspension

Figure 3: An example of partitioned DAG schedule.

segments of a task: (1) the first segment is the local computation time to encrypt,
extract, or compress the data, (2) the second segment is the worst-case waiting
time to receive the result from the computing server, and (3) the third segment
is either the local compensation if the result from the computing server is not
received in time or the post processing if the result from the computing server
is received in time.

Example 4: Partitioned Scheduling for DAG-Structured Tasks. To fully
utilize the power of multiprocessor systems, a task may be parallelized such
that it can be executed simultaneously on several processors to perform inde-
pendent computation in parallel. We can use a directed acyclic graph (DAG) to
model the dependency of the subtasks in a sporadic task. Each vertex in the
DAG represents a subtask. For example, the DAG structure used in Figure 3

shows that there are five subtasks of this DAG task, in which the numbers
within the vertices are the corresponding execution times. Suppose that we de-
sign a partitioned schedule to assign the subtasks with execution times 3, 4, and
2 on the first processor and the subtasks with execution times 0.5, and 7 on the
second processor to balance the workload on these two processors. As shown
in the schedule in Figure 3, both processors experience some idle time due to
the precedence constraints of the DAG task. Such idle time intervals can also
be considered to be suspensions [30].

3 R E A L - T I M E S P O R A D I C S E L F - S U S P E N D I N G TA S K M O D E L S

We now recall the definition of the classic sporadic task model (without self-
suspensions) [60, 65] and then introduce the main models of self-suspensions.

The sporadic task model characterizes a task τi as a three-tuple (Ci, Ti,Di).
Each sporadic task τi can release an infinite number of jobs (also called task
instances) under the given minimum inter-arrival time (also called period) con-
straint Ti. Each job released by a sporadic task τi has a relative deadline Di.
That is, if a job of task τi arrives at time t, it must (in hard real-time systems),
or should (in soft real-time systems) be finished before its absolute deadline at
time t+Di, and the next instance of the task must arrive no earlier than time
t+ Ti. The worst-case execution time of task τi is Ci. That is, the execution time of
a job of task τi is at most Ci. The utilization of task τi is defined as Ui = Ci/Ti.

Throughout this paper, we will use T to denote the task set and use n to
denote the number of tasks in T.

If the relative deadline of each task in T is equal to its deadline, then the
tasks in T are said to have implicit deadlines. If the relative deadline of each task
in T is no larger than its period, then the tasks in T have constrained deadlines.
Otherwise, the tasks in T have arbitrary deadlines. In this paper, unless explicitly
noted otherwise (for instance in some parts of Chapter 7), we consider only
constrained- and implicit-deadline task systems.

Two main models of self-suspending tasks exist: the dynamic self-suspension
and segmented (or multi-segment) self-suspension models. A third model, using
a directed acyclic graph (DAG) representation of the task control flow, can be
reduced to an instance of the former two models, for analysis purposes [8].

dynamic self-suspension model : The dynamic self-suspension sporadic
task model characterizes a task τi as a four-tuple (Ci,Si, Ti,Di). Similar to the
sporadic task model, Ti denotes the minimum inter-arrival time (or period) of
τi, Di denotes the relative deadline of τi and Ci is an upper bound on the
total execution time of each job of τi. The new parameter Si denotes an upper
bound on the total suspension time of each job of τi.

The dynamic self-suspension model is convenient when it is not possible to
know a priori the number and/or the location of self-suspension intervals for a
task, e.g., when these may vary for different jobs of the same task.

For example, in the general case, a task may have several possible control
flows, where the actual execution path depends on the values of the program
and/or system variables at run-time. Each of those paths may have a different
number of self-suspension intervals. Additionally, during the execution of a
job of a task, one control flow may have a self-suspension interval at the begin-
ning of the job and another one may self-suspend shortly before its completion.
Under such circumstances, it is convenient to be able to collapse all these possi-
bilities by modelling the task according to the dynamic self-suspension model
using just two parameters: the worst-case execution time of the task in consid-

8

real-time sporadic self-suspending task models 9

eration and an upper bound for the time spent in self-suspension by any job of
the task.

segmented self-suspension model : The segmented self-suspension spo-
radic task model extends the four-tuple of the dynamic model by further char-
acterizing the computation segments and suspension intervals using an array
(C1

i,S
1

i,C
2

i,S
2

i, . . . , S
mi−1

i ,Cmii). Each job of τi is assumed to be composed of
mi computation segments separated by mi − 1 suspension intervals. The exe-
cution time of the `th computation segment is upper bounded by C`i, and the
length of the kth suspension interval is upper bounded by S`i. For a segmented
sporadic task τi, we have Ci =

∑mi
`=1

C`i and Si =
∑mi−1

`=1
S`i.

The segmented self-suspension model is a natural choice when the code
structure of a task exhibits a certain linearity, i.e., there is a deterministic num-
ber of self-suspension intervals interleaved with portions of processor-based
code with single-entry single-exit control-flow semantics. Such tasks can always
be modeled according to the dynamic self-suspension model, but this would
discard the information about the constraints in the location of self-suspensions
intervals of a job, i.e., in the control flow. The segmented self-suspension model
preserves this information, which can be potentially used to derive tighter
bounds on worst-case response times or exploited for designing better sche-
duling strategies.

dag-based self-suspension model : In the DAG-based self-suspension
model[8], each node represents either a self-suspension interval or a computa-
tion segment with single-entry-single-exit control flow semantics. Each possible
path from the source node to the sink node represents a different program ex-
ecution path. Note that a linear graph is already an instance of the segmented
self-suspension model. An arbitrary task graph can be reduced with some infor-
mation loss (pessimism) to an instance of the dynamic self-suspension model.

A simple and safe method is to use

Ci = max
∀ϕ

(∑
`∈ϕ

C`i

)
and Si = max

∀ϕ

(∑
`∈ϕ

S`i

)
,

where ϕ denotes a control flow (path), i.e., a set of nodes traversed during
the execution of a job [4, 8]. However, it is unnecessarily pessimistic, since the
maximum execution time and maximum self-suspension time may be observed
in different node paths. A more efficient conversion would use

Si =max
∀ϕ

(∑
`∈ϕ

C`i +
∑
`∈ϕ

S`i

)
−Ci

where Ci is still computed as explained above. We will explain the underlying
intuition (partial modeling of self-suspension as computation, which is a safe
transformation) in Section 4.1.1 (see also [4, 9]).

remarks on self-suspension models : Note that all of the above mod-
els can additionally be augmented with lower bounds for segment execution
times and suspension lengths; when absent, these are implicitly assumed to be
zero.

10 real-time sporadic self-suspending task models

From the system designer’s perspective, the dynamic self-suspension model
provides an easy way to specify self-suspending systems without considering
the control flow surrounding I/O accesses, computation offloading, or synchro-
nization. However, from an analysis perspective, such a dynamic model may
lead to quite pessimistic results in terms of schedulability since the occurrence
of suspensions within a job is unspecified. By contrast, if the suspension pat-
terns are well-defined and characterized with known suspension intervals, the
segmented self-suspension task model is more appropriate. Note that it is pos-
sible to employ both the dynamic self-suspension model and the segmented
self-suspension model simultaneously in one task set. Further note that the
DAG self-suspension model is a representational model without its own sche-
duling analysis. For analysis purposes, it is converted to an instance of either
the dynamic or the segmented self-suspension model, which may then serve as
input to existing analysis techniques.

3.1 assumptions and terminology

3.1.1 Scheduling:

Implicitly, we will assume that the system schedules jobs in a preemptive manner,
unless specified otherwise. We will mainly focus on uniprocessor systems; how-
ever some results for multiprocessor systems will be discussed in Section 4.4
and Chapter 7. We assume that the cost of preemption has been subsumed
into the worst-case execution time of each task. In uniprocessor systems, i.e.,
in Chapter 4 and Chapter 5 (except Section 4.4), we will consider both earliest-
deadline-first (EDF) and fixed-priority (FP) scheduling as well as some of their
variants.

Under EDF, a task may change its priority at run-time; the highest priority
being given to the job (in the ready queue) with the earliest absolute deadline.
Variants of EDF scheduling for self-suspending tasks have been explored in
[20, 62, 23, 38, 81].

For fixed-priority scheduling, in general, a task is assigned a unique prior-
ity level, and all the jobs generated by the task have the same priority level.
Examples are rate-monotonic (RM) scheduling [60], i.e., a task with a shorter
period has a higher-priority level, and deadline-monotonic (DM) scheduling,
i.e., a task with a shorter relative deadline has a higher-priority level. In this pa-
per, if we consider fixed-priority scheduling, we will also implicitly assume that
task τi has higher priority than task τj if i < j. Such task-level fixed-priority
scheduling strategies for the self-suspension task models have been explored
in [73, 43, 63, 70, 3, 4, 10, 47, 45, 58, 39, 36, 38, 21]. Moreover, in some results
in the literature, e.g., [45, 25], each computation segment in the segmented self-
suspending task model has its own unique priority level. Such a scheduling
policy is referred to as segmented fixed-priority scheduling.

For hard real-time tasks, each job should be finished before its absolute dead-
line. For soft real-time tasks, deadline misses are allowed. We will mainly focus
on hard real-time tasks. Soft real-time tasks will be briefly considered in Chap-
ter 7.

3.1 assumptions and terminology 11

3.1.2 Analysis:

The response time of a job is defined as the difference between its finishing time
and its arrival time. The worst-case response time (WCRT) of a real-time task τk
in a task set T is defined as an upper bound on the response times of all the
jobs of task τk ∈ T for any legal sequence of jobs of T. A sequence of jobs of the
task system T is a legal sequence if any two consecutive jobs of task τi ∈ T are
separated by at least Ti and the self-suspension and computation behavior are
upper bounded by the defined parameters. The goal of response time analysis
is to analyze the worst-case response time of a certain task τk in the task set T
or all the tasks in T.

A task set T is said to be schedulable by a scheduling algorithm A if the worst-
case response time of each task τk in T is no more than its relative deadline
Dk. A schedulability test for a scheduling algorithm A is a test checking whether
a task set T is schedulable with A. There are two usual types of schedulability
tests:

• Utilization-based schedulability tests. Examples of such tests are the uti-
lization bounds by Liu and Layland [60] and the hyperbolic bound by
Bini et al. [7].

• Time-demand analysis (TDA) or response time analysis (RTA) [48]. Sev-
eral exact tests exist for periodic and sporadic tasks without suspension
(e.g., [60, 78, 31, 32, 87]).

We consider both types of analyses in this paper.
To solve the computational complexity issues of many scheduling problems

in real-time systems, approximation algorithms based on resource augmentation
with respect to speedup factors have attracted much attention. If an algorithm
A has a speedup factor ρ, then any task set that is schedulable (under the op-
timal scheduling policy) at the original platform speed is also schedulable by
algorithm A when all the processors have speed ρ times the original platform
speed.

3.1.3 Platform:

Most of this paper focuses on single processor systems. However, the multi-
processor case is discussed in Section 4.4 and Chapter 7. When addressing the
scheduling of tasks on multiprocessor, we distinguish between two major cat-
egories of multiprocessor real-time schedulers: (i) partitioned scheduling and
(ii) global scheduling.

Under partitioned scheduling, tasks are statically partitioned among proces-
sors, i.e., each task is bound to execute on a specific processor and never mi-
grates to another processor. An often used multiprocessor partitioned schedu-
ling algorithm is partitioned EDF (P-EDF), which applies EDF on each proces-
sor individually. Partitioned fixed-priority (P-FP) scheduling is another widespread
choice in practice due to the wide support in industrial standards such as AU-
TOSAR, and in many RTOSs like VxWorks, RTEMS, ThreadX, etc. Under P-FP
scheduling, each task has a fixed-priority level and is statically assigned to a
specific processor, and each processor is scheduled independently as a unipro-
cessor. In contrast to partitioned scheduling, under global scheduling, jobs that

12 real-time sporadic self-suspending task models

are ready to be executed are dynamically dispatched to available processors,
i.e., jobs are allowed to migrate from one processor to another at any time. For
example, global EDF (G-EDF) is a global scheduling algorithm under which
jobs are EDF-scheduled using a single ready queue.

4G E N E R A L D E S I G N A N D A N A LY S I S S T R AT E G I E S

Self-suspending task systems have been widely studied in the literature and
several solutions have been proposed over the years for analyzing their schedu-
lability and building effective suspension-aware scheduling algorithms. In this
chapter, we provide an overview of the different strategies commonly adopted
in the state-of-the-art approaches to analyze and solve the self-suspending task
scheduling problem. Although such strategies are correct in essence, many pub-
lished results based on those generic analysis frameworks have been corrupted
by a set of misconceptions which led to incorrect solutions. In an attempt to
stop the propagation of erroneous results, a detailed description of the vari-
ous misunderstandings of the self-suspending task model, together with the
demonstration of counterintuitive results, is provided in Chapter 5.

As to be discussed in details in Chapter 8, performing the timing analysis
of a set of self-suspending tasks has been proven to be intractable in the gen-
eral case. For that reason, most work adopts some common strategies to sim-
plify the worst-case response time analysis of self-suspending tasks. Instead of
reviewing and summarizing individual research results in the literature, e.g.,
[73, 43, 63, 70, 3, 4, 10, 47, 45, 58, 39, 36, 38], we will present the high-level anal-
yses and modeling strategies commonly adopted across those works . Specifi-
cally, we will present those strategies in Section 4.1 and Section 4.2 by decou-
pling the modeling of the task under analysis (i.e., τ2 in the above example)
and the task interfering with the analyzed task, respectively. Table 1 provides
a summary to show how the methods explained in Section 4.1 and Section 4.2
are linked to the existing results in the literature. Moreover, Section 4.3 presents
release enforcement mechanisms to reduce the impact due to self-suspension.

We will implicitly assume uniprocessor systems in Sections 4.1, 4.2, and 4.3.
Furthermore, in most cases, we will use fixed-priority scheduling to explain the
strategies. Therefore, we implicitly consider the timing analysis for a task τk,
in which hp(k) is the set of higher-priority tasks, if fixed-priority scheduling is
considered.

Section 4.4 will shortly discuss how to handle self-suspending tasks in mul-
tiprocessor systems.

4.1 modeling the interfered task

Two main strategies have been proposed in the literature to simplify the mod-
eling of a self-suspending task τk during its schedulability test or worst-case
response time analysis:

• the suspension-oblivious approach, which models the suspension inter-
vals of τk as if they were usual execution time (Section 4.1.1);

• the split approach, which computes the worst-case response time of each
computation segment of τk as if they were independent tasks (Section 4.1.2).

13

14 general design and analysis strategies

papers/meth-
ods

year
suspension and

scheduling model
interfered task (τk) interferring tasks (hp(k) under FP)

Ming [63] 1994 dynamic, FP suspension-oblivious, Sec. 4.1.1 as release jitter, Sec. 4.2.3

Kim et al. [43] 1995 dynamic, FP suspension-oblivious, Sec. 4.1.1 as release jitter, Sec. 4.2.3

Palencia and
Harbour [70]

1998 segmented, FP split (see footnote 1), Sec. 4.1.2 segmented structures with dynamic offsets, Sec. 4.2.6

Liu [61, Pages
164-165]

2000 dynamic, FP suspension-oblivious, Sec. 4.1.1 as blocking, Sec. 4.2.4

Devi [23, Sec.
4.5]

2003 dynamic, EDF suspension-oblivious, Sec. 4.1.1 as blocking, Sec. 4.2.4

Audsley and
Bletsas [3, 4]

2004 dynamic, FP suspension-oblivious, Sec. 4.1.1 as release jitter, Sec. 4.2.3

Bletsas and
Audsley [10]

2005 segmented, FP suspension-oblivious, Sec. 4.1.1 segmented structures with fixed offsets, Sec. 4.2.6

Bletsas [8,
Chapter 5.4]

2007

dynamic or
segmented, FP

hybrid, Sec. 4.1.3 segmented structures with fixed offsets, Sec. 4.2.6

Lakshmanan
and

Rajkumar [47]
2010 segmented, FP

revised critical instant,
Sec. 4.1.4

(only ordinary sporadic tasks)

Liu and
Anderson [56]

2013

multiprocessor,
global FP and EDF

suspension-oblivious, Sec. 4.1.1 carry-in jobs in multiprocessor scheduling, Sec. 4.4

Liu et al. [59] 2014

dynamic, FP
(harmonic)

suspension-oblivious, Sec. 4.1.1 no additional impact due to self-suspension

Liu and
Chen [58]

2014 dynamic, FP suspension-oblivious, Sec. 4.1.1 as carry-in, Sec. 4.2.2

Huang and
Chen [36]

2015 segmented, FP hybrid, Sec. 4.1.1- 4.1.3 segmented structures with dynamic offsets, Sec. 4.2.6

Huang et
al. [39]

2015 dynamic, FP suspension-oblivious, Sec. 4.1.1 as carry-in, Sec. 4.2.2

Nelissen et
al. [66]

2015 segmented, FP
based on a revised critical

instant, Sec. 4.1.4
suspension by modeling proper release jitter (Sec. 4.2.3) and

enumerating the worst-case interferences

Chen et al. [21] 2016 dynamic, FP suspension-oblivious, Sec. 4.1.1
a unifying framework based on more precise release jitter,

Sec. 4.2.5

interfered task (τk)

suspension-
oblivious

split hybrid critical instant

(Sec. 4.1.1) (Sec. 4.1.2) (Sec. 4.1.3) (Sec. 4.1.4)

suspension-
oblivious

(Sec. 4.2.1)

used as base-lines
in many papers

- -
[47, Sec. III], [66, Sec. IV]

(footnote 2)

in
te

rf
er

ri
ng

ta
sk

s carry-in jobs
(Sec. 4.2.2)

[58], [39] [36] -

release jitter
(Sec. 4.2.3, Sec. 4.2.5)

[63], [43], [3] [4] [10], [8, Chapter 5.4] [21],[66, Sec. VI]

suspension as
blocking (Sec. 4.2.4)

[61, Pages 164-165],
[23, Sec. 4.5]

- - -

segmented struc-
tures

(Sec. 4.2.6)
- [70] (footnote 1)

[10], [8, Chapter
5.4], [36]

-

Table 1: Summary of existing methods without any enforcement mechanisms for han-
dling self-suspending tasks in scheduling policies and schedulability analyses.

Strategies combining both approaches have also been investigated and are dis-
cussed in Section 4.1.3. To the best of the authors’ knowledge, to date, no
tractable solution has been found to compute the exact worst-case interference
suffered by a segmented self-suspending task.

4.1.1 Modeling suspension as computation

This strategy is often referred to as the suspension-oblivious approach in the liter-
ature, but sometimes also called “joint” [8]. It assumes that the self-suspending
task τk continues executing on the processor when it self-suspends. Its sus-
pension intervals are thus considered as being preemptible. From an analysis
perspective, it is equivalent to replacing the self-suspending task τk by an or-

4.1 modeling the interfered task 15

dinary sporadic (non-self-suspending) task τ ′k with worst-case execution time
equal to Ck + Sk and the same relative deadline/period as those of task τk, i.e.,
a three-tuple (Ck + Sk, Tk,Dk).

Converting the suspension time of task τk into computation time can be-
come very pessimistic for segmented self-suspending tasks. This is especially
true when (i) its total self-suspension time Sk is much larger than its worst-
case execution time Ck and/or (ii) the lengths of τk’s suspension intervals are
larger than the periods of (some of) the interfering tasks.

Example 1 Consider the task set in Table 2 under FP scheduling. Task τ3 would be
transformed into a non-self-suspending task τ ′

3
= (7, 15, 15). Task τ ′

3
is obviously not

schedulable since the total utilization of τ1, τ2 and τ ′
3

is given by 2

5
+ 2

10
+ 7

15
= 16

15
> 1.

Yet, the self-suspending task τ3 is schedulable as it will be shown in Section 4.1.2.

Nevertheless, for some cases, this modeling strategy is an exact solution to
compute the WCRT of dynamic self-suspending tasks under fixed-priority sche-
duling. If the computation segments and suspension intervals of τk interleave
such that τk self-suspends only between the arrival of higher-priority jobs (i.e.,
a computation segment of τk is started whenever a higher-priority job is re-
leased), then the resulting schedule would be similar if τk was indeed exe-
cuting on the processor during its self-suspensions. Therefore, when there is
no knowledge about how many times, when, and for how long τk may self-
suspend in each self-suspension interval, modeling the self-suspension time of
τk as execution time provides the exact worst-case response time for τk under
FP scheduling.

For example, Theorem 3 in [39] provides the following necessary condition
for any fixed-priority scheduling:

If there exists a feasible fixed-priority preemptive scheduling algorithm, then, for
each task τk, there exists t with 0 < t 6 Dk such that

Ck + Sk +
∑

τi∈hp(k)

⌈
t

Ti

⌉
Ci 6 t, (1)

where hp(τk) is the set of the tasks with higher-priority levels than task τk.
Eq. (1) is an exact analysis if Dk 6 Tk and all the tasks in hp(k) are ordi-

nary sporadic real-time tasks without any suspensions. By Eq. (1), it is nec-
essary to model the suspension time of the task under analysis as computa-
tion time if we consider dynamic self-suspending tasks under fixed-priority
scheduling. Such a modeling strategy to consider suspension as computation
for the task under analysis is widely used in all the existing analyses for
the dynamic self-suspension task model under fixed-priority scheduling, e.g.,
[58, 39, 63, 43, 4, 3, 61] (see Table 1, in which some multiprocessor cases from
[56, 59] are also covered). However, such a modeling strategy is not always ex-
act for the dynamic self-suspension task model if other scheduling strategies
(instead of fixed-priority scheduling) are applied.

16 general design and analysis strategies

(C1

i,S
2

i,C
2

i) Di Ti

τ1 (2, 0, 0) 5 5

τ2 (2, 0, 0) 10 10

τ3 (1, 5, 1) 15 15

Table 2: A segmented self-suspending task set, used in Examples 1 and 2, to compare
the suspension-oblivious and split approaches.

4.1.2 Modeling each computation segment as an independent task

An alternative is to individually compute the WCRT of each of the computation
segments of task τk [8, 70, 36].1 The WCRT of τk is then upper-bounded by the
sum of the segments’ worst-case response times added to Sk, the maximum
length of the overall self-suspension intervals.

Let Rjk denote the worst-case response time of the computation segment Cjk.
The schedulability test for task τk succeeds if

∑mk
j=1

R
j
k +

∑mk−1

j=1
S
j
k 6 Dk.

Example 2 Consider the task set presented in Table 2. The usual RTA for fixed-priority
sporadic real-time tasks without self-suspension [60] tells us that the WCRT of a task
τk is upper bounded by the smallest positive solution of Rk, satisfying the condition
that

Rk = Ck +
∑

τi∈hp(k)

⌈
Rk
Ti

⌉
Ci, (2)

where hp(k) is the set of the tasks with higher-priorities than τk.
Therefore, the WCRT of C1

3
and C2

3
are both 5. Hence, we know that the WCRT of

task τ3 is at most R1

3
+ R2

3
+ S3 = 5 + 5 + 5 = 15.

The above test can be fairly pessimistic, especially when Sk is short.

Example 3 Consider the same task set presented in Example 2 by decreasing S3 from 5

to 1. This analysis still considers that both computation segments suffer from the worst-
case interference from the two higher-priority tasks. It then returns R1

3
+ R2

3
+ S3 =

5 + 5 + 1 = 11 as the (upper bound on the) worst-case response time of τ3. Yet the
suspension-oblivious approach discussed in Section 4.1.1 shows that the worst-case
response time of τ3 is at most 9.

This strategy is not widely used alone, but can be used as part of hybrid
approaches, explained as follows.

4.1.3 Hybrid approaches

Both methods discussed in Sections 4.1.1 and 4.1.2 have their pros and cons.
The joint (i.e., suspension-oblivious) approach has the advantage of respecting
the minimum inter-arrival times (or periods) of the higher-priority tasks during
the schedulability analysis of τk. However, it has the disadvantage of assuming

1 It was not explicitly explained in [70] how to model the task under analysis. Our interpretation
was based on the conditions in Eq.(36) and Eq.(37) in [70].

4.1 modeling the interfered task 17

that the task under analysis can be delayed by preemptions during suspension
intervals since they are treated as computation intervals. This renders the ana-
lytical pessimism as it accounts for non-existing interference. The split approach
does not assume preemptible suspension intervals but considers a worst-case
response time for each computation segment independently. Yet, the respective
release patterns of interfering tasks leading to the worst-case response time of
each computation segment may not be compatible with each other.

As shown with the above examples, the joint and split approaches are not
comparable in the sense that none of them dominates the other. Yet, since both
provide an upper bound on the worst-case response time of τk, one can simply
take the minimum response time value obtained with any of them. However,
as proposed in [8, Chapter 5.4] and [36], it is also possible to combine their
respective advantages and hence reduce the overall pessimism of the analysis.
The technique proposed in [8], for tasks of the segmented model, consists in di-
viding the self-suspending task τk (that is under analysis) into several blocks
of consecutive computation segments. The suspension intervals between com-
putation segments pertaining to the same block are modeled as execution time
like in the “joint” approach. The suspension intervals situated between blocks
are “split”. The worst-case response time is then computed for each block inde-
pendently and τk’s WCRT is upper-bounded by the sum of the block’s WCRTs
added to the length of the split suspension intervals. This provides a tighter
bound on the WCRT, especially if we consider all possible block sequence de-
compositions of τk, which has exponential-time complexity.

4.1.4 Exact schedulability analysis

As already mentioned in Section 4.1.1, under fixed-priority scheduling, the
suspension-oblivious approach is an exact analysis for dynamic self-suspending
tasks assuming that there is only one self-suspending task τk and all the inter-
fering tasks do not self-suspend. There is no work providing an exact schedu-
lability analysis for any other cases under the dynamic self-suspending task
model.

The problem of the schedulability analysis of segmented self-suspending
tasks has been treated in [47, 66], again assuming only one self-suspending task
τk. The proposed solutions are based on the notion of the critical instant.2 That
is, they aim to find an instant at which, considering the state of the system,
an execution request for τk will generate the largest response time. Unfortu-
nately, the analysis in [47] has been proven to be flawed in [66]. Further details
are provided in Section 5.3. It has been recently shown by Chen [15] that the
schedulability analysis for FP scheduling (even with only one segmented self-
suspending task as the lowest-priority task) is coNP-hard in the strong sense
when there are at least two self-suspension intervals in task τk.

2 In [66, Secs. IV-V] and [47, Sec. III], the higher-priority tasks are assumed to be ordinary sporadic
real-time tasks without any self-suspension.

18 general design and analysis strategies

4.2 modeling the interfering tasks

After presenting how to model the interfered self-suspending task, i.e., task τk,
we will summarize the existing analyses for modeling the interfering tasks. For
analyzing the interfering tasks in the dynamic self-suspending task model, we
classify the existing approaches into

• suspension-oblivious analysis in Section 4.2.1,

• interference analysis based on carry-in jobs in Section 4.2.2,

• interference analysis based on release jitter in Section 4.2.3,

• modeling self-suspensions as blocking in Section 4.2.4, and

• unifying interference analysis based on more precise jitter in Section 4.2.5.

Since the dynamic self-suspending task model is more general than the seg-
mented self-suspending task model, any schedulability analysis and schedu-
ling algorithms that can be used for the dynamic self-suspending task model
can also be applied to the segmented self-suspending task model. However, ig-
noring the known segmented suspension structures can also be too pessimistic,
as explained in Chapter 3. We will explain in Section 4.2.6 how to account
for the workload from the interfering tasks more precisely by exploiting the
segmented self-suspension structure.

4.2.1 Suspension-oblivious analysis

Similarly to the task under analysis, the simplest modeling strategy for the
interfering tasks is the suspension-oblivious approach, which converts all the
suspension times of those tasks into computation times. Each task τi is thus
modeled by a non-self-suspending task τ ′i = (C ′i,Di, Ti) with a WCET C ′i =

Ci + Si. After that conversion, the interfering tasks therefore become a set of
ordinary non-self-suspending sporadic real-time tasks. Although the simplest,
it is also the most pessimistic approach. It indeed considers that the suspension
intervals of each interfering task τi are causing interference on the task τk
under analysis. Yet, suspension intervals truly model durations during which
τi stops executing on the processor and hence cannot prevent the execution of
τk or any other lower-priority job.

4.2.2 Modeling self-suspensions with carry-in jobs

If all the higher-priority jobs/tasks are ordinary sporadic jobs/tasks without
any self-suspensions, then the maximum number of interfering jobs that can
be released by an interfering (ordinary) sporadic task τi in a window of length

t, is upper bounded by
⌈
t
Ti

⌉
in fixed-priority scheduling and by

⌊
t
Ti

⌋
in EDF

scheduling. The interfering workload is then given by
∑
∀τi∈hp(k)

⌈
t
Ti

⌉
Ci for

fixed priority scheduling and by
∑
∀τi∈τ\τk

⌊
t
Ti

⌋
Ci for EDF scheduling. This

assumes that each interfering job asks for the processor as soon as it is released,
thereby preventing the task τk under analysis from executing.

4.2 modeling the interfering tasks 19

Ci Si Di Ti

τ1 1 0 2 2

τ2 5 5 20 20

τ3 1 0 50 ∞
Table 3: A dynamic self-suspending task set used in Examples 4 and 5 for illustrating

the methods by modelling suspensions as release jitter and blocking.

With self-suspending tasks however, the computation segment of an interfering
job may not require an immediate access to the processor as it can be delayed
by its suspension intervals. Hence, a job of task τi released before the release
of a job of task τk may have all its execution time Ci delayed by its suspension
intervals to entirely interfere with τk. This is clearly visible on the example
schedule of Figure 1(b), when τ2 is the task under analysis. Such a job of τi
(e.g., second job of task τ1 in Figure 1(b)), which is released before the job of τk
under analysis, but interfering with the execution of τk, is called a carry-in job.

In the worst case, each interfering task τi releases one carry-in job (assuming
that they all respect their deadlines and that Di 6 Ti). This extra-workload,
which can be up to Ci, has been integrated in the schedulability test for self-
suspending tasks in [39, 58] (see Table 1) by greedily adding one interfering job
to the interfering workload released by each task τi.

4.2.3 Modeling self-suspensions as release jitter

A more accurate way to model the phenomena described above is to use the
concept of release jitter, e.g., in [66, 9, 39, 73, 3, 4, 43]. It basically considers that
the computation segments of each task τi are not released in a purely periodic
manner but are instead subject to release jitter. Hence the first interfering job of
τi may have its computation segment pushed as far as possible from the actual
release of the job due to its suspension behavior, while all the jobs released
afterward may directly start with their computation segments and never self-
suspend (see task τ1 in Figure 1 for a simple example or task τ2 in Figure 4

in Chapter 5 for a more complicated example). Let Ji denote that jitter on τi’s
computation segment release. It was proven in [66, 9] that Ji is upper-bounded
by Ri − Ci where Ri is the WCRT of τi. If an optimal priority assignment
must be computed for a fixed-priority task set using Audsley’s optimal priority
assignment algorithm [2], one can pessimistically assume that Ji is equal to
Di − Ci [39, 73] as long as all the interfering tasks, i.e., ∀τi ∈ hp(k) in fixed-
priority scheduling, are schedulable, i.e., Ri 6 Di.

By adopting the suspension-oblivious modeling in Section 4.1.1 for task τk in
a fixed-priority task set under the dynamic self-suspension model, the WCRT
of τk is upper bounded by the least non-negative value Rk 6 Dk such that

Rk = Ck + Sk +
∑

∀τi∈hp(k)

⌈
t+ Ji
Ti

⌉
Ci

Example 4 Consider the fixed-priority task set presented in Table 3. In this case, τ1

is the highest-priority task and does not self-suspend. Therefore, its WCRT is R1 = C1

20 general design and analysis strategies

and J1 = R1 −C1 = 0. However, the jitter J2 is upper bounded by D2 −C2 = 15. The
WCRT of task τ3 is thus upper bounded by the minimum t larger than 0 such that

t = C3 +

2∑
i=1

⌈
t+ Ji
Ti

⌉
Ci = 1 +

⌈
t

2

⌉
1 +

⌈
t+ 15

20

⌉
5.

The above equality holds when t = 22. Therefore, the WCRT of task τ3 is upper bounded
by 22.

Note that several solutions proposed in the literature [3, 4, 43] for modeling
the self-suspending behavior of the interfering tasks as release jitter, are flawed.
Those analyses usually assume that Ji can be upper-bounded by the total self-
suspension time Si of τi. This is usually wrong. A detailed discussion on this
matter is provided in Section 5.1.

Moreover, we should also note that such a treatment is only valid for an-
alyzing the worst-case response time for task τ ′k under the assumption that
Sk is converted into computation, i.e., C ′k = Ck + Sk. If the analysis considers
self-suspending behavior of task τk, such a combination in the analysis can be
incorrect. For example, in Section VI of [66], the higher-priority segmented self-
suspending tasks are converted into ordinary sporadic tasks with jitters but the
suspension time of the task under analysis is not converted into computation.
We will discuss this misconception in Section 5.6.

4.2.4 Modeling self-suspensions as blocking

In her book [61, Pages 164-165], Jane W.S. Liu proposed an approach to quan-
tify the interference of higher-priority tasks by setting up the “blocking time"
induced by the self-suspensions of the interfering tasks on the task τk under
analysis. This solution, limited to fixed-priority scheduling policies, considers
that a job of task τk can suffer an extra delay on its completion due to the
self-suspending behavior of each task involved in its response time. This delay,
denoted by Bk, is upper bounded by

Bk = Sk +
∑

∀τi∈hp(k)
bi

where (i) Sk accounts for the contribution of the suspension intervals of the
task τk under analysis in a similar manner to what has already been discussed
in Section 4.1.1, and (ii) bi = min(Ci,Si) accounts for the contribution of each
higher-priority task τi in hp(k). This equivalent “blocking time” Bk can then
be used to perform a utilization-based schedulability test. For instance, using
the linear-time utilization test by Liu and Layland [60] and assuming that the
tasks are indexed by the rate monotonic (RM) policy, the condition

∀k = 1, 2, . . . ,n,
Ck +Bk
Tk

+
∑

∀τi∈hp(k)
Ui 6 k(2

1

k − 1)

is a sufficient schedulability test for implicit-deadline task systems.

4.2 modeling the interfering tasks 21

Ci Si Di Ti

τ1 4 5 10 10

τ2 6 1 19 19

τ3 4 0 50 50

~x condition of Eq. (3) upper bound of R3

Case 1: (0, 0) 4 +
⌈
t+0+5

10

⌉
4 +

⌈
t+0+9

19

⌉
6 6 t 42

Case 2: (0, 1) 4 +
⌈
t+1+5

10

⌉
4 +

⌈
t+1+0

19

⌉
6 6 t 32

Case 3: (1, 0) 4 +
⌈
t+5+0

10

⌉
4 +

⌈
t+0+9

19

⌉
6 6 t 42

Case 4:(1, 1) 4 +
⌈
t+6+0

10

⌉
4 +

⌈
t+1+0

19

⌉
6 6 t 32

Table 4: A dynamic self-suspending task set used in Example 6, originally presented in
[21]. Detailed procedure for deriving the upper bound of R3, with R1 −C1 = 5

and R2 −C2 = 9.

This blocking time can also be integrated in the WCRT analysis for fixed-
priority scheduling. The WCRT of τk is then given by the least non-negative
value Rk 6 Dk such that

Rk = Bk +Ck +
∑

∀τi∈hp(k)

⌈
Rk
Ti

⌉
Ci

Note that even though [61] discusses the intuition behind this modeling strat-
egy, it does not provide any actual proof of its correctness. However, the cor-
rectness of that approach has been proven in [19, 21].

Example 5 Consider the task set presented in Table 3 to illustrate the above analysis.
In this case, b1 = 0 and b2 = 5. Therefore, B3 = 5. So, the worst-case response time of
task τ3 is upper bounded by the minimum t larger than 0 such that

t = B3 +C3 +

2∑
i=1

⌈
t

Ti

⌉
Ci = 6 +

⌈
t

2

⌉
1 +

⌈
t

20

⌉
5.

This equality holds when t = 32. Therefore, the WCRT of task τ3 is upper bounded by
32.

Devi (in Theorem 8 in [23, Section 4.5]) extended the above analysis to EDF
scheduling. However, there is no proof to support the correctness at this mo-
ment.

4.2.5 A Unifying Analysis Framework

Suppose that all tasks τi for 1 6 i 6 k − 1 are schedulable under the given
fixed-priority scheduling, (i.e., Ri 6 Di 6 Ti). In [21], a unifying framework

22 general design and analysis strategies

that dominates the other existing schedulability tests and response time analy-
ses for task τk in a dynamic self-suspending task system under fixed-priority
scheduling was proposed. The analysis in [21] is valid for any arbitrary vector
assignment ~x = (x1, x2, . . . , xk−1), in which xi is either 0 or 1. The framework
quantifies the release jitter of task τi in the following manner:

• If xi is 1 for task τi, then the release jitter of task τi is
∑k−1

j=i (Sj × xj).

• If xi is 0 for task τi, then the release jitter of task τi is (
∑k−1

j=i (Sj × xj)) +
Ri −Ci.

For any given vector assignment ~x, the worst-case response time Rk of τk is
upper bounded by the least non-negative t 6 Dk 6 Tk such that

Ck + Sk +

k−1∑
i=1

⌈
t+ (

∑k−1

j=i (Sj × xj)) + (1 − xi)(Ri −Ci)

Ti

⌉
Ci 6 t. (3)

Example 6 Consider the task set presented in Table 4. By using the same analysis as in
Example 4, R1 = 9 and R2 = 15 since 7+

⌈
15+5

10

⌉
4 = 15. There are four possible vector

assignments ~x for testing the schedulability of task τ3. The corresponding procedure to
use these four vector assignments can be found in Table 4. Case 1 is the same as the
analysis in Section 4.2.3 when J1 = R1 −C1 and J2 = R2 −C2. Among the above four
cases, the tests in Cases 2 and 4 are the tightest.

The reason for the correctness of the release jitter in Eq. (3) is based on a care-
ful revision of the critical instant theorem to include the self-suspension time
into the window of interest. The dominance over the other existing (correct)
schedulability tests and response time analyses was also demonstrated in [21].
To obtain the tightest worst-case response time of task τk, we should consider
all the 2

k−1 possible combinations of ~x, implying exponential time complexity.
The complexity can also be reduced by using a linear approximation of the test
in Eq. (3) to derive a good vector assignment in linear time.

4.2.6 Improving the modeling of segmented self-suspending tasks

In the segmented self-suspending task model, we can simply ignore the segmenta-
tion structure of computation segments and suspension intervals and directly
apply all the strategies for dynamic self-suspending task models. However, the
analysis can become too pessimistic. This is due to the fact that the segmented
suspensions are not completely dynamic.

Characterizing the worst-case suspending patterns of the higher-priority tasks
to quantify the interference under the segmented self-suspending task model
is not easy. Modelling the interference by a job of a self-suspending task τi
as multiple per-segment “chunks", spaced apart in time by the respective self-
suspension intervals in-between, is potentially more accurate than modelling
it as a contiguous computation segment of Ci units. However, the worst-case
release offset of τi in hp(k), relative to the task τk under analysis, to maximize
the interference needs to be identified.

To deal with this, in [10] the computation segments and self-suspension in-
tervals of each interfering task are reordered to create a pattern that dominates

4.3 period enforcement mechanisms 23

all such possible task release offsets. The computational segments of the inter-
fering task are modelled as distinct tasks arriving at an offset to each other and
sharing a period and arrival jitter. However, we will explain in Section 5.2 why
the quantification of the interference in [10] is incorrect.

Another possibility is to characterize the worst-case interference in the carry-
in job of a higher-priority task τi by analyzing its self-suspending pattern, as
presented in [36]. This approach does examine the different possible task re-
lease offsets and can also be used for response time analysis compatible with
Audsley’s optimal priority algorithm [2]. Palencia and González Harbour [70]
provided another technique for modelling the interference of segmented inter-
fering tasks, albeit in the context of multiprocessors.

4.2.7 Remarks on the Methods without Enforcement

The strategies presented from Section 4.1.1 to Section 4.2.6 can be combined to-
gether (with care), as shown in Table 1. These strategies are correct in essence,
but the detailed quantifications and combinations should be done carefully
to ensure the correctness of the resulting analyses. We will present the corre-
sponding misconceptions due to incorrect quantifications or combinations in
Chapter 5.

4.3 period enforcement mechanisms

Self-suspension can cause substantial schedulability degradation, because the
resulting non-determinism in the schedule can give rise to unfavourable execu-
tion patterns. To alleviate the potential impact, one possibility is to guarantee
periodic behavior by enforcing the release time of the computation segments.
There exist different categories of such enforcement mechanisms.

4.3.1 Dynamic online period enforcement

Rajkumar [73] proposed a period enforcer algorithm to handle the impact of
uncertain releases (such as self-suspensions). In a nutshell, the period enforcer
algorithm artificially increases the length of certain suspensions dynamically, at
run-time, whenever a task’s activation pattern carries the risk of inducing undue
interference in lower-priority tasks. Quoting [73], the period enforcer algorithm

“forces tasks to behave like ideal periodic tasks from the scheduling point of view with
no associated scheduling penalties”.

The period enforcer has been revisited by Chen and Brandenburg in [16],
with the following three observations:

1. period enforcement can be a cause of deadline misses for self-suspending
task sets that are otherwise schedulable;

2. with the state-of-the-art techniques, the schedulability analysis of the pe-
riod enforcer algorithm requires a task set transformation which is sub-
ject to exponential time complexity; and

24 general design and analysis strategies

3. the period enforcer algorithm is incompatible with all existing analyses of
suspension-based locking protocols, and can in fact cause ever-increasing
suspension times until a deadline is missed.

4.3.2 Static period enforcement

As an alternative to the online period enforcement, one may instead achieve
periodicity in the activation of computation segments and prevent the most
unfavorable execution patterns from arising, by constraining each computation
segment to be released at a respective fixed offset from its job’s arrival. These
constant offsets are computed and specified offline.

Suppose that the offset for the j-th computation segment of task τi is φji.
This means that the j-th computation segment of task τi is released only at
time ri +φ

j
i, where ri is the arrival time of a job of task τi. That is, even if the

preceding self-suspension completes before ri +φ
j
i, the computation segment

under consideration is never executed earlier. With this static enforcement, each
computation segment can be represented by a sporadic task with a minimum
inter-arrival time Ti, a WCET Cji, and a relative deadline φj+1

i −φji − S
j
i (with

φ
mi+1

i set to Di). Suppose that the offset for each computation segment is
specified. This can be observed as a reduction to the generalized multiframe
(GMF) task model introduced in [6]. A GMF task Gi consisting of mi frames
is characterized by the 3-tuple (~Ci, ~Di, ~Ti), where ~Ci, ~Di, and ~Ti are mi-ary
vectors (C0

i,C
1

i, ...,Cmi−1

i) of execution requirements, (D0

i,D
1

i, ...,Dmi−1

i) of rel-
ative deadlines, (T0

i , T1

i , ..., Tmi−1

i) of minimum inter-arrival times, respectively.
In fact, from the analysis perspective, a self-suspending task τi under the offset
enforcement is equivalent to a GMF task Gi, by considering the computation
segments as the frames with different separation times [38, 25].

Such approaches have been presented in [45, 20, 38, 25]. The method in [20]
is a simple and greedy solution for implicit-deadline self-suspending task sys-
tems with at most one self-suspension interval per task. It assigns the offset
φ2

i always to Ti+S
1

i
2

and the relative deadline of the first computation segment

of task τi to Ti−S
1

i
2

. This is the first method in the literature with speedup fac-
tor guarantees by using the revised relative deadline for earliest-deadline-first
scheduling. This has been recently improved in [81] based on a simple strategy,
called Shortest Execution Interval First Deadline Assignment (SEIFDA). That is,
the tasks are assigned relative deadlines according to a greedy order from the
smallest Ti − Si to the largest Ti − Si. Moreover, approaches based on Mixed
Integer Linear Programming (MILP) were also proposed in [71, 81]. For more
than one self-suspension interval per task, Huang and Chen [38] showed that
assigning the relative deadline of each of the computation segments of a task
equally also leads to a bounded speedup factor.

The methods in [45, 25] assign each computation segment a fixed-priority
level and an offset. Unfortunately, in [45, 25], the schedulability tests are not
correct, and the mixed-integer linear programming formulation proposed in
[45] is unsafe for worst-case response time guarantees. A detailed discussion
on this matter is provided in Section 5.5.

4.4 multiprocessor scheduling for self-suspending tasks 25

4.3.3 Slack enforcement

The slack enforcement in [47] intends to create periodic execution enforcement
for self-suspending tasks so that a self-suspending task behaves like an ideal
periodic task. However, as to be discussed in Section 9.1, the presented methods
in [47] require more rigorous proofs to support their correctness as the proof
of the key lemma of the slack enforcement mechanism in [47] is incomplete.

4.4 multiprocessor scheduling for self-suspending tasks

The schedulability analysis of distributed systems is inherently similar to the
schedulability analysis of multiprocessor systems following a partitioned sche-
duling scheme. Each task is mapped on one processor and can never migrate to
another processor. In [70], Palencia and González Harbour extended the worst-
case response time analysis for distributed systems, and hence multiprocessor
systems, to segmented self-suspending tasks. They model the effect of the self-
suspension time as release jitter.

The first suspension-aware worst-case response time analysis for dynamic
self-suspending sporadic tasks assuming a global scheduling scheme was pre-
sented in [56]. The given M processors are assumed to be identical and the jobs
can migrate during their execution. The analysis in [56] is mainly based on the
existing results in the literature for global fixed-priority and earliest deadline
first scheduling for sporadic task systems without self-suspensions. The general
concept in [56] is to quantify the interference from the higher-priority tasks by
following similar approaches in [5, 33] for task systems without self-suspension.
The task that is under analysis greedily uses suspension as computation, as ex-
plained in Section 4.1.1.

Unfortunately, the schedulability test provided in [56] for global fixed-priority
scheduling suffers from two errors, which were later fixed in [57]. Since these
two errors are unrelated to any misconception due to self-suspension, we have
decided to present them here and not to include them in Chapter 5. First, the
workload bound proposed in Lemma 1 (in [56]) is unsafe. It has been acknowl-
edged and corrected in [57]. Secondly, it is optimistic to claim that there are at
most M− 1 carry-in jobs in the general case. This flaw has been inherited from
an error in previous work [33], which was pointed out and further corrected in
[79, 35]. Therefore, by adopting the analysis from [35], which is consistent with
the analysis in [56], the problem can easily be fixed. The reader is referred to
[57] for further details.

The authors of [26] explored global earliest-deadline-first (global EDF) sche-
duling for dynamic self-suspending tasks. They presented an approach to selec-
tively convert the self-suspension time of a few tasks into computation and per-
formed the schedulability tests purely based on the utilization of the computa-
tion after conversion. In [18], the authors studied global rate-monotonic schedu-
ling in multiprocessor systems, including dynamic self-suspending tasks. The
proposed utilization-based schedulability analysis can easily be extended to
handle constrained-deadline task systems and any given fixed-priority assign-
ment.

5 E X I S T I N G M I S C O N C E P T I O N S I N T H E S TAT E O F T H E A RT

This chapter explains several misconceptions in some existing results by pre-
senting concrete examples to demonstrate their overstatements. These exam-
ples are constructed case by case. Therefore, each misconception will be ex-
plained by using one specific example.

5.1 incorrect quantifications of jitter (dynamic self-suspension)

We first explain the misconceptions in the literature that quantify the jitter too
optimistically for dynamic self-suspending task systems under fixed-priority
scheduling. To calculate the worst-case response time of the task τk under anal-
ysis, there have been several results in the literature, i.e., [3, 4, 43, 63], which
propose to calculate the worst-case response time Rk of task τk by finding the
minimum Rk with

Rk = Ck + Sk +
∑

τi∈hp(k)

⌈
Rk + Si
Ti

⌉
Ci, (4)

where the term hp(k) is the set of the tasks with higher-priority levels than task
τk. This analysis basically assumes that a safe estimate for Rk can be computed
if every higher-priority task τi is modelled as an ordinary sporadic task with
worst-case execution time Ci and release jitter Si. Intuitively, it represents the
potential internal jitter within an activation of τi, i.e., when its execution time
Ci is considered by disregarding any time intervals when τi is preempted.
However, it is not the real jitter in the general case, because the execution of τi
can be pushed further, as shown in the following example.

Consider the dynamic self-suspending task set presented in Table 5. The
analysis in Eq. (4) would yield R3 = 12, as illustrated in Figure 4(a). However,
the schedule of Figure 4(b), which is perfectly legal, disproves the claim that
R3 = 12, because τ3 in that case has a response time of 22− 5ε time units, where
ε is an arbitrarily small quantity.

Consequences: Since the results in [3, 4, 43, 63] are fully based on the analysis
in Eq. (4), the above unsafe example disproves the correctness of their analyses.
The source of error comes from a wrong interpretation by Ming [63] in 1994

with respect to a paper by Audsley et al. [1].1 Audsley et al. [1] explained that
deferrable executions may result in arrival jitter and the jitter terms should be
accounted while analyzing the worst-case response time. However, Ming [63]
interpreted that the jitter is the self-suspension time, which was not originally
provided in [1]. Therefore, there was no proof of the correctness of the methods
used in [63]. The concept was adopted by Kim et al. [43] in 1995.

This misconception spread further when it was propagated by Lakshmanan
et al. [46] in their derivation of worst-case response time bounds for partitioned
multiprocessor real-time locking protocols, which in turn was reused in several

1 The technical report of [1] is referred to in [63]. Here we refer to the journal version.

26

5.1 incorrect quantifications of jitter (dynamic self-suspension) 27

τi Ci Si Ti

τ1 1 0 2

τ2 5 5 20

τ3 1 0 ∞
Table 5: A set of dynamic self-suspending tasks for demonstrating the counterexample

used for the incorrect quantification of jitter in Section 5.1.

t-6 -4 -2 0 2 4 6 8 10 12 14 16

τ3

12

τ2

τ1

(a) An illustrative schedule based on Eq. (4)

t
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ3

22 − 5ε

τ2

ε 5ε

τ1

(b) Another case with larger response time than that from the schedule based on Eq. (4)

Figure 4: A counterexample for the response time analysis based on Eq. (4) by using the
task set in Table 5.

later works [86, 12, 83, 42, 34, 14, 84]. We explain the consequences and how to
correct the later analyses in Chapter 6.

Moreover this counterexample also invalidates the comparison in [75], which
compares the schedulability tests from [43] and [61, Page 164-165], since the
result derived from [43] is unsafe.

Independently, the authors of the results in [3, 4] used the same methods
in 2004 from different perspectives. A technical report that explains in greater
detail how to correct this issue has been filed [9].

Solutions: It is explained and proved in [39, 9] that the worst-case response
time of task τk is bounded by the minimum Rk with

Rk = Ck + Sk +
∑

τi∈hp(k)

⌈
Rk +Di −Ci

Ti

⌉
Ci, (5)

for constrained-deadline task systems under the assumption that every higher-
priority task τi in hp(k) can meet their relative deadline constraint. It is also

safe to use
⌈
Rk+Ri−Ci

Ti

⌉
instead of

⌈
Rk+Di−Ci

Ti

⌉
in the above equation if Ri 6

Di 6 Ti.

28 existing misconceptions in the state of the art

5.2 incorrect quantifications of jitter (segmented self-suspension)

We now explain a misconception in the literature regarding an optimistic quan-
tification of the jitter of segmented self-suspending task systems under fixed-
priority scheduling. The analysis in [10] adopts two steps:

1. The computation segments and the self-suspension intervals (including
a “notional” self-suspension corresponding to the interval between the
completion of the task and its next arrival) are reordered such that the
computation segments appear with decreasing execution time and the
suspension intervals appear with increasing self-suspension time.

2. Each computation segment is modelled as a sporadic task with a fixed
offset corresponding to the above rearrangement and a fixed jitter term
to represent all computation segments of a given task. As reported in
[10], this jitter term corresponds to the maximum internal jitter, within
the activation of the task, of any computation segment, due to variability
in the length of preceding computation segments and self-suspension
intervals.

The first step can be explained by using the following example of an implicit-
deadline segmented self-suspending task with (C1

i,S
1

i,C
2

i,S
2

i,C
3

i) = (1, 5, 4, 3, 2)

and Ti = 40. It first artificially creates a notional gap S3

i = 40 − (1 + 5 + 4 + 3 +

2) = 25. After reordering, the task parameters become (C1

i,S
1

i,C
2

i,S
2

i,C
3

i,S
3

i) =

(4, 3, 2, 5, 1, 25). The purpose of this reordering step is to avoid having to con-
sider different release offsets for each interfering task (corresponding to its
computational segments). The second step, which was designed to capture the
effects of the variation in the length of computation segments or self-suspension
intervals, would have no effect if there is no variation between the worst-case
and the actual-case execution/suspension times.

Instead of going into the detailed mathematical formulations, we will demon-
strate the misconception in the above steps with the following example in Ta-
ble 6, which has only one self-suspending task τ3 and there is no variation
between the worst-case and the actual-case execution/suspension times. In this
specific example, neither step 1 nor step 2 has any effect. The analysis in [10]
can be imagined as replacing the self-suspending task τ3 with a sporadic task
without any jitter or self-suspension, with C3 = 2 and D3 = T3 = 15. Therefore,
the analysis in [10] concludes that the worst-case response time of task τ4 is at

most 15 since C4 +
∑

3

i=1

⌈
15

Ti

⌉
Ci = 3 + 6 + 4 + 2 = 15.

However, the perfectly legal schedule in Figure 5 disproves this. In that sched-
ule, τ1, τ2, and τ3 arrive at t = 0 and a job of τ4 arrives at t = 40 and has a
response time of 18 time units.

Consequences: This example shows that the analysis in [10] is flawed. The
authors in [10] already filed a technical report [9].

Solutions: When attempting to fix the error in the jitter quantification, there
is no simple way to exploit the additional information provided by the seg-
mented self-suspending task model. However, quantifying the jitter of a self-
suspending task τi with Di −Ci (or Ri −Ci) as in Section 5.1 remains safe for
constrained-deadline task systems since the dynamic self-suspension pattern is
more general than a segmented self-suspension pattern.

5.3 incorrect assumptions regarding the critical instant 29

τi (C1

i,S
1

i,C
2

i) Di Ti

τ1 (2, 0, 0) 5 5

τ2 (2, 0, 0) 10 10

τ3 (1, 5, 1) 15 15

τ4 (3, 0, 0) ? ∞
Table 6: A set of segmented self-suspending tasks for demonstrating the misconception

of the incorrect quantification of jitter in Section 5.2.

t
0 5 10 15 20 25 30 35 40 45 50 55 60

τ4

18

τ3

τ2

τ1

Figure 5: A schedule for demonstrating the misconception of the analysis in [10] by
using the task set in Table 6.

5.3 incorrect assumptions regarding the critical instant

Over the years, it has been well accepted that the characterization of the critical
instant for self-suspending tasks is a complex problem. The complexity of ver-
ifying the existence of a feasible schedule for segmented self-suspending tasks
has been proven to be NP-hard in the strong sense [76]. For segmented self-
suspending tasks with constrained deadlines under fixed-priority scheduling,
the complexity of verifying the schedulability of a task set has been left open
until a recent proof of its coNP-hardness in the strong sense by Chen [15] and
Mohaqeqi et al. [64] in 2016 (see Chapter 8).

Before that, Lakshmanan and Rajkumar [47] proposed a worst-case response
time analysis for a one-segmented self-suspending task τk (with one self-suspension
interval) with pseudo-polynomial time complexity assuming that

• the scheduling algorithm is fixed-priority;

• τk is the lowest-priority task; and

• all the higher-priority tasks are sporadic and non-self-suspending.

The analysis, presented in [47], is based on the notion of a critical instant, i.e.,
an instant at which, considering the state of the system, an execution request
for τk will generate the largest response time. This critical instant was defined
as follows:

• every task releases a job simultaneously with τk;

• the jobs of higher-priority tasks that are eligible to be released during the
self-suspension interval of τk are delayed to be aligned with the release
of the subsequent computation segment of τk; and

30 existing misconceptions in the state of the art

(a) Release jobs synchronously. (b) Do not release jobs synchronously.

t
0 2 4 6 8 10

τ3

9

τ2

τ1

t
0 2 4 6 8 10

τ3

10

τ2

τ1

Figure 6: A counterexample to demonstrate the misconception of the synchronous re-
lease of all tasks in Section 5.3 based on the task set in Table 7.

• all the remaining jobs of the higher-priority tasks are released with their
minimum inter-arrival time.

This definition of the critical instant is similar to the definition of the critical
instant of a non-self-suspending task. Specifically, it is based on the two in-
tuitions that τk suffers the worst-case interference when (i) all higher-priority
tasks release their first jobs simultaneously with τk and (ii) they all release as
many jobs as possible in each computation segment of τk. Although intuitively
appealing, we provide examples showing that both statements are wrong. The
examples provided below first appeared in [66].

5.3.1 A counterexample to the synchronous release

Consider three implicit deadline tasks with the parameters presented in Ta-
ble 7. Let us assume that the priorities of the tasks are assigned using the
rate monotonic policy (i.e., the smaller the period, the higher the priority). We
are interested in computing the worst-case response time of τ3. Following the
definition of the critical instant presented in [47], all three tasks must release
a job synchronously at time 0. Using the standard response-time analysis for
non-self-suspending tasks, we get that the worst-case response time of the first
computation segment of τ3 is equal to R1

3
= 3. Because the second job of τ1

would be released in the self-suspension interval of τ3 if τ1 was strictly respect-
ing its minimum inter-arrival time, the release of the second job of τ1 is delayed
so as to coincide with the release of the second computation segment of τ3 (see
Figure 6(a)). Considering the fact that the second job of τ2 cannot be released
before time instant 50 and hence does not interfere with the execution of τ3,
the response time of the second computation segment of τ3 is thus equal to
R2

3
= 4. In total, the worst-case response time of τ3 when all tasks release a job

synchronously is equal to

R3 = R1

3
+ S1

3
+ R2

3
= 3 + 2 + 4 = 9.

Now, consider a job release pattern as shown in Figure 6(b). Task τ2 does
not release a job synchronously with task τ3 but with its second computation
segment instead. The response time of the first computation segment of τ3

is thus reduced to R1

3
= 2. However, both τ1 and τ2 can now release a job syn-

chronously with the second computation segment of τ3, for which the response

5.3 incorrect assumptions regarding the critical instant 31

(C1

i,S
1

i,C
2

i) Di = Ti

τ1 (1, 0, 0) 4

τ2 (1, 0, 0) 50

τ3 (1, 2, 3) 100

Table 7: A set of segmented self-suspending tasks for demonstrating the misconception
of the synchronous release of all tasks in Section 5.3.

(C1

i,S
2

i,C
2

i) Di = Ti

τ1 (4, 0, 0) 8

τ2 (1, 0, 0) 10

τ3 (1, 0, 0) 17

τ4 (265, 2, 6) 1000

Table 8: A set of segmented self-suspending tasks used to demonstrated that it is a
misconception to believe that releasing interfering jobs as early and often as
possible yields a worst-case scenario, as discussed in Section 5.3.

time is now equal to R2

3
= 6 (see Figure 6(b)). Thus, the total response time of

τ3 in a scenario where not all higher-priority tasks release a job synchronously
with τ3 is equal to

R3 = R1

3
+ S1

3
+ R2

3
= 2 + 2 + 6 = 10.

Consequence: The synchronous release of all tasks does not necessarily gen-
erate the maximum interference for the self-suspending task τk and is thus not
always a critical instant for τk. It was however proven in [66] that in the critical
instant of a self-suspending task τk, every higher-priority task releases a job
synchronously with the arrival of at least one computation segment of τk, but
not all higher-priority tasks must release a job synchronously with the same
computation segment.

5.3.2 A counterexample to the minimum inter-release time

Consider a task set of 4 tasks τ1, τ2, τ3, τ4 in which τ1, τ2 and τ3 are non-self-
suspending sporadic tasks and τ4 is a self-suspending task with the lowest
priority. The tasks have the parameters provided in Table 8. The worst-case re-
sponse time of τ4 is obtained when τ1 releases a job synchronously with the
second computation segment of τ4 while τ2 and τ3 must release a job syn-
chronously with the first computation segment of τ4.

Consider two scenarios with respect to the job release pattern. Scenario 1

is a result of the proposed critical instant, in which the jobs of the higher-
priority non-self-suspending tasks are released as early and often as possible
in each computation segment of τ4. We show that the WCRT of τ4 is higher in
Scenario 2. In Scenario 2, one less job of task τ1 is released in (and therefore
interferes with) the first computation segment of the self-suspending task.

Scenario 1 is depicted in Fig. 7(a), and Scenario 2 in Fig. 7(b). The first 765

time units are omitted in both figures. In both scenarios, the schedules of the

32 existing misconceptions in the state of the art

t
765 770 775 780 785 790 795 800

τ4

τ3

Delay

τ2

τ1

(a) Scenario 1. Jobs are released as early and often as possible to interfere with each computation
segment of task τk.

t
765 770 775 780 785 790 795 800

τ4

τ3

τ2

τ1

Delay

(b) Scenario 2. Jobs are not released as early and often as possible.

Figure 7: An example based on the task set in Table 8 showing that releasing higher-
priority jobs as early and often as possible to interfere with each computation
segment of task τk may not always cause the maximum interference on a self-
suspending task.

jobs are identical in this initial time window. The first jobs of τ1, τ2, and τ3

are released synchronously with the arrival of the first computation segment
of τ4 at time 0. The subsequent jobs of these three tasks are released as early
and often as possible respecting the minimum inter-arrival times of the respec-
tive tasks. That is, they are released periodically with periods T1, T2 and T3,
respectively. With this release pattern, it is easy to compute that the 97

th job
of τ1 is released at time 768, the 78

th job of τ2 at time 770 and the 46
th job

of τ3 at time 765. As a consequence, at time 765, τ4 has finished executing
259 time units of its first execution segment out of 265 in both scenarios, i.e.,
765 − 96 × 4 − 77 × 1 − 45 × 1 = 259. From time 765 onward, we separately
consider Scenarios 1 and 2.
Scenario 1. Continuing the release of jobs of the non-self-suspending tasks as
early and often as possible without violating their minimum inter-arrival times,
the first computation segment of τ4 finishes its execution at time 782 as shown
in Fig. 7(a). After completion of its first computation segment, τ4 self-suspends
for two time units until time 784. As τ3 would have released a job within the
self-suspension interval, we delay the release of that job from time 782 to 784

in order to maximize the interference exerted by τ3 on the second computation
segment of τ4 as shown in Fig. 7(a). Note that, in order to respect its minimum
inter-arrival time, τ2 has an offset of 6 time units with the arrival of the second
computation segment of τ4. Upon following the rest of the schedule, it can
easily be seen that the job of τ4 finishes its execution at time 800.

5.4 counting highest-priority self-suspension time to reduce the interference 33

Scenario 2. As shown in Fig. 7(b), the release of a job of task τ1 is skipped
at time 776 in comparison to Scenario 1. As a result, the execution of the first
computation segment of τ4 is completed at time 777, thereby causing one job
of τ2 that was released at time 780 in Scenario 1, to not be released during the
execution of the first computation segment of τ4. The response time of the first
computation segment of τ4 is thus reduced by C1 +C2 = 5 time units in com-
parison to Scenario 1 (see Fig. 7(a)). Note that this deviation from Scenario 1

does not affect the fact that τ1 still releases a job synchronously with the second
computation segment of τ4. The next job of τ3 however, is not released in the
suspension interval anymore but 3 time units after the arrival of τ4’s second
computation segment. Moreover, the offset of τ2 with respect to the start of the
second computation segment is reduced by C1 +C2 = 5 time units. This causes
an extra job of τ2 to be released in the second computation segment of τ4, initi-
ating a cascade effect: an extra job of τ1 is released in the second computation
segment at time 795, which in turn causes the release of an extra job of τ3, itself
causing the arrival of one more job of τ2. Consequently, the response time of
the second computation segment increases by C2 +C1 +C3 +C2 = 7 time units.
Overall, the response time of τ4 increases by 7− 5 = 2 time units in comparison
to Scenario 1. This is reflected in Figure 7(b) as the job of τ4 finishes its execu-
tion at time 802.

Consequence: This counterexample proves that the response time of a self-
suspending task τk can be larger when the tasks in hp(k) do not release jobs as
early and often as possible to interfere with each computation segment of task
τk.

Solution: The problem of defining the critical instant remains open even for
the special case where only the lowest-priority task is self-suspending. Nelissen
et al. propose a limited solution in [66] based on an exhaustive search with
exponential time complexity.

5.4 counting highest-priority self-suspension time to reduce

the interference

We now present a misconception which exploits the self-suspension time of the
highest-priority task to reduce its interference to the lower-priority sporadic
tasks. We consider fixed-priority preemptive scheduling for n self-suspending
sporadic real-time tasks on a single processor, in which τ1 is the highest-priority
task and τn is the lowest-priority task. Let us consider the simplest setting of
such a case:

• there is only one self-suspending task with the highest priority, i.e., τ1,

• the self-suspension time is fixed, i.e., early return of self-suspension has
to be controlled by the scheduler, and

• the actual execution time of the self-suspending task is always equal to
its worst-case execution time.

Denote this task set as Γ1s (as also used in [45]). Since τ1 is the highest-priority
task, its execution behavior is static under the above assumptions. The miscon-
ception here is to identify the critical instant (Theorem 2 in [45]) as follows:

34 existing misconceptions in the state of the art

(C1

i,S
1

i,C
2

i) Di = Ti

τ1 (ε, 1, 1) 4 + 10ε

τ2 (2 + 2ε, 0, 0) 6

τ3 (2 + 2ε, 0, 0) 6

Table 9: A set of segmented self-suspending tasks for demonstrating the misconcep-
tion to reduce the interference by exploiting the highest-priority self-suspension
time in Section 5.4, where 0 < ε 6 0.1.

(a) Release jobs synchronously. (b) Do not release jobs synchronously.

t
0 2 4 6 8 10

τ3

5 + 6ε

τ2

τ1

t
0 2 4 6 8 10

τ3

miss
6 + 5ε

τ2

τ1

Figure 8: A counterexample presented in Section 5.4 for demonstrating the misconcep-
tion on the synchronous release used in Theorem 2 in [45], based on the task
set in Table 9.

“a critical instant occurs when all the tasks are released at the same time if
C1 + S1 < Ci 6 T1 −C1 − S1 for i ∈ {i|i ∈ Z+ and 1 < i 6 n} is satisfied.” This
observation leads to a wrong implication that causes the self-suspension time
(if it is long enough) to reduce the computation demand of τi for interfering
with lower-priority tasks.

Counterexample to Theorem 2 in [45]: Let ε be a positive and very small number,
i.e., 0 < ε 6 0.1. Consider the three tasks listed in Table 9. By the setting,
2 + ε = C1 + S1 < Ci = 2 + 2ε 6 T1 −C1 − S1 = 2 + 9ε for i = 2, 3. The above
claim states that the worst case is to release all the three tasks together at time
0 (as shown in Figure 8(a)). The analysis shows that the response time of task
τ3 is at most 5 + 6ε. However, if we release task τ1 at time 0 and release task
τ2 and task τ3 at time 1 + ε (as shown in Figure 8(b)), the response time of the
first job of task τ3 is 6 + 5ε.

This misconception also leads to a wrong statement in Theorem 3 in [45]:

Theorem 3 in [45]: For a taskset Γ1s with implicit deadlines, Γ1s is
schedulable if the total utilization of the taskset is less than or equal
to n((2+ 2γ)

1

n − 1) − γ, where n is the number of tasks in Γ1s, and
γ is the ratio of S1 to T1 and lies in the range of 0 to 2

1

n−1 − 1.

Counterexample of Theorem 3 in [45]: Suppose that the self-suspending task τ1

has two computation segments, with C1

1
= C1 − ε, C2

1
= ε, and S1 = S1

1
> 0

with very small 0 < ε � C1

1
. For such an example, it is obvious that this

self-suspending highest-priority task is like an ordinary sporadic task, i.e., self-
suspension does not matter. In this counterexample, the utilization bound is
still Liu and Layland bound n(2

1

n − 1) [60], regardless of the ratio of S1/T1.

5.5 incorrect analysis of segmented fixed-priority scheduling with periodic enforcement 35

The source of the error of Theorem 3 in [45] is due to its Theorem 2 and
the footnote 4 in [45], which claims that the case in Figure 7 in [45] is the
worst case. This statement is incorrect and can be disproved with the above
counterexample.

Consequences: Theorems 2 and 3 in [45] are flawed.
Solutions: The three assumptions, i.e., one highest-priority segmented self-

suspending task, controlled suspension behavior and controlled execution time
in [45] actually imply that the self-suspending behavior of task τ1 can be mod-
eled as several sporadic tasks with the same minimum inter-arrival time. That
is, if the j-th computation segment of task τ1 starts its execution at time t, the
earliest time for this computation segment to be executed again in the next job
of task τ1 is at least t+ T1. Therefore, a constrained-deadline task τk can be fea-
sibly scheduled by the fixed-priority scheduling strategy if C1 + S1 6 D1 and
for 2 6 k 6 n

∃0 < t 6 Dk, Ck +

k−1∑
i=1

⌈
t

Ti

⌉
Ci 6 t. (6)

A version of [45] correcting the problems mentioned in this section can be
found in [44].

5.5 incorrect analysis of segmented fixed-priority scheduling

with periodic enforcement

We now introduce misconceptions that may happen due to periodic enforce-
ment if it is not carefully adopted for segmented self-suspending task systems.
As mentioned in Section 4.3.2, we can set a constant offset to constrain the
release time of a computation segment. If this offset is given, each computa-
tion segment behaves like a standard sporadic (or periodic) task. Therefore, the
schedulability test for sporadic task systems can be directly applied. Since the
offsets of two computation segments of a task may be different, one may want
to assign each computation segment a fixed-priority level. However, this has to
be carefully handled.

Consider the example listed in Table 10. Suppose that the offset of the com-
putation segment C1

2
is 0 and the offset of the computation segment C2

2
is 10.

This setting creates three sporadic tasks. Suppose that the segmented fixed pri-
ority assignment assigns C1

2
the highest priority and C2

2
the lowest priority. It

should be clear that the worst-case response time of C1

2
is 5 and the worst-case

response time of C1 is 15. We focus on the WCRT analysis of C2

2
.

Since the two computation segments of task τ2 should not have any over-
lap, one may think that during the analysis of the worst-case response time
of C2

2
, we do not have to consider the computation segment C1

2
. The worst-

case response time of C2

2
(after its constant offset 10) for this case is 26 since⌈

26

30

⌉
C1 +C

2

2
= 26. Since 26 + 10 < 40, one may conclude that this enforcement

results in a feasible schedule. This analysis is adopted in Section IV in [45] and
Section 3 in [25].

Unfortunately, this analysis is incorrect. Figure 9 provides a concrete sched-
ule, in which the response time of C2

2
is larger than 30, which leads to a deadline

miss.

36 existing misconceptions in the state of the art

(C1

i,S
1

i,C
2

i) Di = Ti

τ1 (10, 0, 0) 30

τ2 (5, 5, 16) 40

Table 10: A set of segmented self-suspending tasks for demonstrating the misconception
in the literature when analyzing the schedulability of task τk under segmented
fixed-priority scheduling with periodic enforcement in Section 5.5.

t

τ2

τ1

0 5 10 15 20 25 30 35 40

offset miss
C1

2
C2

2

Figure 9: A schedule to release the two tasks in Table 10 simultaneously. Task τ2 in this
schedule has longer worst-case response time than the incorrect schedulability
analysis used in [45, 25].

Consequences: The priority assignment algorithms in [45, 25] use the above
unsafe schedulability test to verify the priority assignments. Therefore, their
results are flawed due to the unsafe schedulability test.

Solutions: This requires us to revisit the schedulability test of a given seg-
mented fixed-priority assignment. As discussed in Section 4.3.2, this can be
observed as a reduction to the generalized multiframe (GMF) task model intro-
duced by Baruah et al. [6]. However, most of the existing fixed-priority sche-
duling results for the GMF task model assume a unique priority level per task.
To the best of our knowledge, the only results that can be applied for a unique
level per computation segment are the utilization-based analysis in [17, 37].

A simple fix can be achieved by classifying the interfering higher-priority
computation segments into two types: carry-in and non-carry-in computation
segments, presented in [44]. When analyzing the response time of a compu-
tation segment, the approach in [44] pessimistically accounts for one higher-
priority carry-in computation segment per task, due to the assumption that the
task systems are with constrained deadlines and as the higher-priority compu-
tation segments have to meet their deadlines.

5.6 incorrect conversion of higher priority self-suspending tasks

We now explain a misconception that treats the higher-priority self-suspending
tasks by introducing safe release jitters and analyzes the response time of task
τk by accounting for the self-suspending behavior explicitly. Consider the ex-
ample listed in Table 11. Task τ1 obviously meets its deadline. Task τ2 can be
validated to meet its deadline by using the split approach, i.e., 8 + 12 + 8 = 28.
The jitter of task τ2 is hence at most 28 − 2× 3 = 22.

Since the jitter of task τ2 is small, i.e.,
⌈
t+22

T3

⌉
= 1 for any 0 6 t 6 39, we can

conclude that there is only one active job of task τ2 in time interval (a,a+ 39],
in which a job of task τ3 arrives at time a. Theorem 2 in [66] exploited the above

5.6 incorrect conversion of higher priority self-suspending tasks 37

(C1

i,S
1

i,C
2

i) Di Ti

τ1 (5, 0, 0) 10 10

τ2 (3, 12, 3) 28 1000

τ3 (3, 4, 3) 35 1000

Table 11: A set of segmented self-suspending tasks for demonstrating the misconcep-
tion which analyzes the schedulability of task τk by combining the release
jitter approach for the higher-priority interferring tasks and the explicit self-
suspension behavior for the interfered task τk, presented in Section 5.6.

t

τ3

τ2

τ1

0 5 10 15 20 25 30 35 40

miss

C1

2
C2

2

Figure 10: A schedule that releases the three tasks in Table 11 simultaneously. It shows
that the self-suspension behavior of task τ2 matters, as explained in Sec-
tion 5.6.

property and converted task τ2 to an ordinary sporadic task, denoted as task
τ ′

2
here, with jitter equal to 22 and worst-case execution time equal to 3+ 3 = 6.

By the above discussion, in our setting in Table 11, there is only one job of task
τ ′

2
that can interfere with a job of task τ3.
Due to this conversion, the interfering job of task τ ′

2
hits either the first or the

second computation segment of task τ3. In both cases, that computation seg-
ment of task τ3 can be finished within 19 time units, i.e., 3 + 6 +

⌈
19

10

⌉
× 5 = 19.

The other segment of task τ3 that is not interfered by the job of task τ ′
2

can be
finished within 3 + 5 = 8 time units. Therefore, the above analysis concludes
that the worst-case response time of task τ3 is 19 + S1

3
+ 8 = 31. However, the

perfectly legal schedule in Figure 10 disproves this. In that schedule, the re-
sponse time of task τ3 is 36.

Consequences: The analysis in Section VI of [66], that accounts for the self-
suspending behavior of τ3 explicitly and analyzes the interference from the
higher-priority self-suspending tasks by converting each of them into an ordi-
nary sporadic task (without self-suspension) with a safe release jitter, is flawed
as shown in the example.

Solutions: Each computation segment of a higher-priority task should be
treated as an individual sporadic task with jitter. This means that the treatment
in Section VI of [66] remains valid if each computation segment of a higher-
priority task τi is converted into an ordinary sporadic task with proper jitter. In
our example here, the segmented self-suspending task τ2 should be converted
into two ordinary sporadic tasks with proper jitter. This error and appropriate
solutions were published in [67].

6 S E L F - S U S P E N D I N G TA S K S I N M U LT I P R O C E S S O R
S Y N C H R O N I Z AT I O N

In this chapter, we consider the analysis of self-suspensions that arise due
to accesses to explicitly synchronized shared resources (e.g., shared I/O de-
vices, message buffers, or other shared data structures) that are protected with
suspension-based locks (e.g., binary semaphores) in multiprocessor systems
under P-FP scheduling. The self-suspension time of a task due to lock con-
tention is usually called its remote blocking time in the literature. This has been
used specifically in Chapter 2 to motivate the importance of analyzing self-
suspension. As semaphores induce self-suspensions, some of the misconcep-
tions surrounding the analysis of self-suspensions on uniprocessors unfortu-
nately also spread to the analysis of real-time locking protocols on partitioned
multiprocessors.

In particular, the analysis technique introduced by Lakshmanan et al. [46]
adopted the unsafe analysis presented in Section 5.1. This technique was later
reused in several other works [86, 12, 83, 42, 34, 14, 84]. We show a concrete
counterexample in Section 6.2 to demonstrate that their schedulability analy-
sis is unsafe. Fortunately, as we will discuss in Section 6.4, there are straight-
forward solutions based on the corrected response-time bounds discussed in
Section 5.1.

We begin with a review of existing analysis strategies for semaphore-induced
suspensions on uniprocessors and partitioned multiprocessors.

6.1 semaphores in uniprocessor systems

Under a suspension-based locking protocol, tasks that are denied access to
a shared resource (i.e., that block on a lock) are suspended. Interestingly, on
uniprocessors, the resulting suspensions are not considered to be self -suspensions
and can be accounted for more efficiently than general self-suspensions.

For example, consider semaphore-induced suspensions as they arise under
the classic priority ceiling protocol (PCP) [77]. Audsley et al. [1] established that
(in the absence of release jitter and assuming constrained deadlines) the re-
sponse time of task τk under the PCP is given by the least positive Rk 6 Dk
that satisfies the following equation:

Rk = Ck +Bk +
∑

τi∈hp(k)

⌈
Rk
Ti

⌉
Ci, (7)

where Bk denotes the maximum duration of priority inversion [77] due to block-
ing, that is, the maximum amount of time that a pending job of τk remains
suspended while a lower-priority job holds the lock. Notably, Dutertre [27]
later confirmed the correctness of this claim with a formal, machine-checked
proof using the PVS proof assistant.

When comparing Eq. (5) for general self-suspensions with Eq. (7) for self-
suspensions due to semaphores, it is apparent that Eq. (7) is considerably less

38

6.2 semaphores in partitioned multiprocessor systems 39

pessimistic since the ceiling term does not include Ri or Di for τi ∈ hp(k).
Intuitively, this difference is due to the fact that tasks incur blocking due to
semaphores only if a local lower-priority task holds the resource, i.e., when the
local processor is busy. In contrast, general self-suspensions may overlap with
idle intervals.

6.2 semaphores in partitioned multiprocessor systems

When suspension-based protocols, such as the multiprocessor priority ceiling pro-
tocol (MPCP) [72], are applied under partitioned scheduling, resources are clas-
sified according to how they are shared: if a resource is shared by two or more
tasks assigned to different processors, then it is called a global resource, other-
wise it is called a local resource.

Similarly, a job is said to incur remote blocking if it is waiting to acquire a
global resource that is held by a job on another processor, and it is said to incur
local blocking if it is prevented from being scheduled by a lower-priority task on
its local processor that is holding a resource (either global or local).

Regardless of whether a task incurs local or remote blocking, a waiting task
always suspends until the contested resource becomes available. The resulting
task suspension, however, is analyzed differently depending on whether a local
or a remote task is currently holding the lock.

From the perspective of the local schedule on each processor, remote blocking
is caused by external events (i.e., resource contention due to tasks on the other
processors) and pushes the execution of higher-priority tasks to a later point
in time regardless of the schedule on the local processor (i.e., even if the local
processor is idle). Remote blocking thus may cause additional interference on
lower-priority tasks and must be analyzed as a self-suspension.

In contrast, local blocking takes place only if a local lower-priority task holds
the resource (i.e., if the local processor is busy), just as it is the case with unipro-
cessor synchronization protocols like the PCP [77]. Consequently, local blocking
is accounted for similarly to blocking under the PCP in the uniprocessor case
(i.e., as in Eq. (7)), and not as a general self-suspension (Eq. (5)). Since local
blocking can be handled similarly to the uniprocessor case, we focus on remote
blocking in the remainder of this chapter.

As previously discussed in Section 4.1.1, a safe, but pessimistic strategy is
to simply model remote blocking as computation, which is called suspension-
oblivious analysis [13]. By overestimating the processor demand of self-suspending,
higher-priority tasks, the additional delay due to deferred execution is implicitly
accounted for as part of regular interference analysis. Block et al. [11] first used
this strategy in the context of partitioned and global earliest deadline first (EDF)
scheduling; Lakshmanan et al. [46] also adopted this approach in their analy-
sis of “virtual spinning,” where tasks suspend when blocked on a lock, but at
most one task per processor may compete for a global lock at any time. How-
ever, while suspension-oblivious analysis is conceptually straightforward, it is
also subject to structural pessimism, and it has been shown that, in pathologi-
cal cases, any analysis that inflates task execution times to account for blocking
can overestimate response times by a factor linear in both the number of tasks
and the ratio of the longest period to the shortest period [82].

40 self-suspending tasks in multiprocessor synchronization

τk Ck Tk (= Dk) sk C′k,1 Processor

τ1 2 6 0 − 1

τ2 4 + 6ε 13 1 5ε 1

τ3 ε 14 0 − 1

τ4 7 14 1 4 − 4ε 2

Table 12: A set of real-time sporadic tasks for demonstrating the counterexample for the
misconception used in Eq. (8).

A less pessimistic alternative is to explicitly bound the effects of deferred ex-
ecution due to remote blocking, which is called suspension-aware analysis [13].
Inspired by Ming’s (flawed) analysis of self-suspensions [63], Lakshmanan et
al. [46] proposed such a response-time analysis technique that explicitly ac-
counts for remote blocking. Lakshmanan et al.’s bound [46] was subsequently
reused by several authors in

• [86] (Equation 9), [34] (Equation 5), and [84] (Section 2.5) in the context
of the MPCP, and

• [83] (Equation 6), [12] (Equation 1), [14] (Equations 3, 12, and 16), and [42]
(Equation 6) in the context of other suspension-based locking protocols.

To state Lakshmanan et al.’s claimed bound, some additional notation is re-
quired. Let Brk denote an upper bound on the maximum remote blocking that
a job of τk incurs, let C∗k = Ck + B

r
k, and let lp(k) denote the tasks with lower

priority than τk. Furthermore, let P(τk) denote the tasks that are assigned to
the same processor as τk, let sk denote the maximum number of critical sec-
tions of τk, and let C′l,j denote an upper bound on the execution time of the jth

critical section of τl.
Assuming constrained-deadline task systems, Lakshmanan et al. [46] claimed

that the response time of task τk is bounded by the least non-negative Rk 6 Dk
that satisfies the equation

Rk = C∗k+
∑

τi∈hp(k)∩P(τk)

⌈
Rk +B

r
i

Ti

⌉
×Ci+(sk+1)×

∑
τl∈lp(k)∩P(τk)

max
16j6sl

C′l,j.

(8)

In Eq. (8), the additional interference on τk due to the lock-induced deferred
execution of higher-priority tasks is supposed to be captured by the term “+Bri”

in the interference bound
⌈
Rk+B

r
i

Ti

⌉
· Ci, similarly to the misconception dis-

cussed in Section 5.1. For completeness, we show with a counterexample that
Eq. (8) yields an unsafe bound in certain corner cases.

In the following example, we show the existence of a schedule in which a task
that is considered schedulable according to Eq. (8) misses a deadline. Consider
four implicit-deadline sporadic tasks τ1, τ2, τ3, τ4 with parameters as listed in
Table 12, indexed in decreasing order of priority, that are scheduled on two
processors using P-FP scheduling. Tasks τ1, τ2 and τ3 are assigned to processor
1, while task τ4 is assigned to processor 2.

6.3 incorrect contention bound in interface-based analysis 41

t
0 2 4 6 8 10 12 14 16 18 20 22

Processor 1

Processor 2

τ4

τ3

miss

τ2

τ1

Figure 11: A schedule where τ3 misses a deadline for the task set in Table 12, where task
τ3 is schedulable according to the incorrect response time analysis in Eq. (8).

Each job of τ2 has one critical section (s2 = 1) of length at most 5ε (i.e.,
C′

2,1 = 5ε), where 0 < ε 6 1/3, in which it accesses a global shared resource `1.
Each job of τ4 has one critical section (s4 = 1) of length at most 4 − 4ε (i.e.,

C′
4,1 = 4 − 4ε), in which it also accesses `1.
Consider the response time of τ3. Since τ3 does not access any global resource

and because it is the lowest-priority task on processor 1, it does not incur any
global or local blocking, i.e., Br

3
= 0 and (s3 +1)×

∑
τl∈lp(3)∩P(τ3)

max16j6sl C
′
l,j =

0. With regard to the remote blocking incurred by each higher-priority task, we
have Br

1
= 0 because τ1 does not request any global resource. Further, each

time when a job of τ2 requests `1, it may be delayed by τ4 for a duration
of at most 4 − 4ε. Thus the maximum remote blocking of τ2 is bounded by
Br

2
= C′

4,1 = 4 − 4ε.1 Therefore, according to Eq. (8), the response time of τ3 is
claimed by Lakshmanan et al.’s analysis [46] to be bounded by

R3 = ε+

⌈
8 + 7ε+ 0

6

⌉
· 2 +

⌈
8 + 7ε+ 4 − 4ε

13

⌉
· (4 + 6ε) = 8 + 7ε.

However, there exists a schedule, shown in Fig. 11, in which a job of task τ3

arrives at time 6 and misses its absolute deadline at time 20. This shows that
Eq. (8) does not always yield a sound response-time bound.

The misconception here is to account for remote blocking (i.e., Bri), which is
a form of self-suspension, as if it is equivalent to release jitter. However, it is
not, as already explained in Section 5.1.

6.3 incorrect contention bound in interface-based analysis

A related problem affects an interface-based analysis proposed by Nemati et
al. [68]. Targeting open real-time systems with globally shared resources (i.e.,
systems where the final task set composition is not known at analysis time, but
tasks may share global resources nonetheless), the goal of the interface-based
analysis is to extract a concise abstraction of the constraints that need to be

1 In general, the upper bound on blocking of course depends on the specific locking protocol in use,
but in this example, by construction, the stated bound holds under any reasonable locking protocol.
Recent surveys of multiprocessor semaphore protocols may be found in [12, 85].

42 self-suspending tasks in multiprocessor synchronization

satisfied to guarantee the schedulability of all tasks. In particular, the analysis
seeks to determine the maximum tolerable blocking time, denoted mtbtk, that a
task τk can tolerate without missing its deadline.

Recall from classic uniprocessor time-demand analysis [48] that, in the absence
of jitter or self-suspensions, a task τk is considered schedulable if

∃t ∈ (0,Dk] : rbfFP(k, t) 6 t, (9)

where rbfFP(k, t) is the request bound function of τk, which is given by

rbfFP(k, t) = Ck +Bk +
∑

τi∈hp(k)

⌈
t

Ti

⌉
·Ci. (10)

Starting from Eq. (9), Nemati et al. [68] first replaced rbfFP(k, t) with its defi-
nition, and then substituted Bk with mtbtk. Solving for mtbtk yields:

mtbtk = max
0<t6Dk

t−
Ck + ∑

τi∈hp(k)

⌈
t

Ti

⌉
·Ci

 . (11)

However, based on the example in Section 6.2, we can immediately infer
that Eqs. (9) and (10), which ignore the effects of deferred execution due to
remote blocking, are unsound in the presence of global locks. Consider τ3 in
the previous example (with parameters as listed in Table 12). According to
Eq. (11), we have mtbt3 > 12 − (ε+ d12/6e · 2 + d12/13e · (4 + 6ε)) = 4 − 7ε (for
t = 12), which implies that τ3 can tolerate a maximum blocking time of at least
4 − 7ε time units without missing its deadline. However, this is not true since
τ3 can miss its deadline even without incurring any blocking, as shown in Fig.
11.

6.4 a safe response-time bound

In Eq. (8), the effects of deferred execution are accounted for similarly to release
jitter. However, it is not sufficient to count the duration of remote blocking as
release jitter, as already explained in Section 5.1.

A straightforward remedy is to replace Bri in the ceiling term (i.e., the second
term in Eq. (8)) with a larger but safe value such as Di or Ri −Ci if Ri 6 Ti (as
discussed in Section 5.1): assuming constrained deadlines, the response time
of task τk is bounded by the least non-negative Rk 6 Dk that satisfies the
equation

Rk = C∗k+
∑

τi∈hp(k)∩P(τk)

⌈
Rk + Ri −Ci

Ti

⌉
×Ci+(sk+1)×

∑
τl∈lp(k)∩P(τk)

max
16j6sl

C′l,j.

(12)

Similarly, the term
∑
τi∈hp(k)dt/Tie · Ci in Eqs. (10) and (11) should be re-

placed with
∑
τi∈hp(k)d(t+Di)/Tie ·Ci or

∑
τi∈hp(k)d(t+ Ri −Ci)/Tie ·Ci to

properly account for the deferred execution of higher-priority tasks.
Finally, the already mentioned papers [86, 12, 83, 42, 34, 14, 84] that based

their analysis on Eq. (8) can be fixed by simply using Eq. (12) instead, because

6.4 a safe response-time bound 43

they merely reused the unsafe suspension-aware response-time bound intro-
duced in [46] without further modifications. The actual, novel contributions in
[86, 12, 83, 42, 34, 14, 84] remain unaffected by this correction.

7 S O F T R E A L - T I M E S E L F - S U S P E N D I N G TA S K S Y S T E M S

For a hard real-time task, its deadline must be met; while for a soft real-time
task, missing some deadlines can be tolerated. We have discussed the self-
suspending tasks in hard real-time systems in the previous chapters. In this
chapter, we will review the existing results for scheduling soft real-time sys-
tems when the tasks can suspend themselves. So far, no concern has been raised
regarding the correctness of the results discussed in this chapter.

We assume a well-studied soft real-time notion, in which a soft real-time task
is schedulable if its tardiness can be provably bounded (e.g., several recent disserta-
tions have focused on this topic [49, 24]). Such bounds would be expected to
be reasonably small. A task’s tardiness is defined as its maximum job tardi-
ness, which is 0 if the job finishes before its absolute deadline or is the job’s
completion time minus the job’s absolute deadline otherwise. The schedulabil-
ity analysis techniques on soft real-time self-suspending task systems can be
categorized into two categories: suspension-oblivious analysis and suspension-
aware analysis.

7.1 suspension-oblivious analysis

The suspension-oblivious analysis simply treats the suspensions as computa-
tion, as also explained in Section 4.1.1 and Section 4.2.1. According to [22, 50],
an ordinary sporadic task system (i.e. no self-suspensions) has bounded tardi-
ness for all the n sporadic tasks if

∑n
i=1

(Ci + Si)/Ti 6 M, where M is the
number of processors in the system. This can be very pessimistic since the total
utilization can easily exceed M.

7.2 suspension-aware analysis

Several recent work has been conducted to reduce the utilization loss by fo-
cusing on deriving suspension-aware analysis. These works on conducting
suspension-aware analysis techniques for soft real-time suspending task sys-
tems on multiprocessors are mainly done by Liu and Anderson [55, 52, 51, 53,
54]. The main idea behind these techniques is that treating all suspensions as
computation is pessimistic. Instead, smartly treating a selective minimum set
of suspensions as computation can significantly reduce the pessimism in the
schedulability analysis. This is also the main reason why these techniques can
significantly improve the suspension-oblivious approach in most cases.

In 2009, Liu and Anderson derived the first suspension-aware schedulabil-
ity test for soft real-time systems [55]. They showed that in preemptive spo-
radic systems bounded tardiness can be ensured under global EDF scheduling
and global first-in-first-out (FIFO) scheduling. Their analysis uses a parame-
ter ξi ranging over [0, 1] to represent the suspension ratio of task τi, defined

44

7.2 suspension-aware analysis 45

as ξi = Si/(Si +Ci). The maximum suspension ratio of the task set is maxτi ξi.
Specifically it is shown in [55] that tardiness in such a system is bounded if

Ussum +UcL < (1 − ξmax) ·M, (13)

where Ussum is the total utilization of all self-suspending tasks, c is the num-
ber of computational tasks (which do not self-suspend), M is the number of
processors, and UcL is the sum of the min(M− 1, c) largest computational task
utilizations. If ξmax is large, significant utilization loss may occur when using
Eq. (13). Unfortunately, it is unavoidable that many self-suspending task sys-
tems will have large ξmax values. For example, consider an implicit-deadline
soft real-time task system with three tasks scheduled on two processors: τ1 has
C1 = 5,S1 = 5, and a T1 = 10, τ2 has C2 = 2,S2 = 0, and T2 = 8, and τ3 has

C3 = 2,S3 = 2, and T3 = 8. For this system, Ussum = U1 +U3 =
5

10

+
2

8

= 0.75,

UcL = U2 =
2

8

= 0.25, ξmax = ξ1 =
5

5 + 5

= 0.5. Although the total utilization of

this task system is only half of the overall processor capacity, it is classified not
schedulable using the prior analysis since it violates the utilization constraint
in (13), i.e., since Ussum +UcL = 1 = (1 − ξmax) ·M.

In a follow-up work [51], by observing that the utilization loss seen in (13) is
mainly caused by a large value of ξmax, Liu and Anderson presented a tech-
nique that can effectively decrease the value of this parameter to improve the
analysis. This approach is often able to decrease ξmax at the cost of at most a
slight increase in the left side of (13). In [52], Liu and Anderson showed that any
task system with self-suspensions, pipelines, and non-preemptive sections can
be transformed for analysis purposes into a system with only self-suspensions
[52]. The transformation process treats delays caused by pipeline-based prece-
dence constraints and non-preemptivity as self-suspension delays. In [53, 54],
Liu and Anderson derived the first soft real-time schedulability test for sus-
pending task systems that analytically dominates the suspension-oblivious ap-
proach.

8 C O M P U TAT I O N A L C O M P L E X I T Y A N D A P P R O X I M AT I O N S

This chapter reviews the difficulty of designing scheduling algorithms and
schedulability analyses of self-suspending task systems. Table 13 summarizes
the computational complexity classes of the corresponding problems, in which
the complexity problems are reviewed according to the considered task mod-
els (i.e., segmented or dynamic self-suspending models) and the scheduling
strategies (i.e., fixed- or dynamic-priority scheduling).

8.1 computational complexity of designing scheduling policies

We first present the computational complexity of designing scheduling policies
for both self-suspending task models considered in this report.

8.1.1 Segmented Self-Suspending Tasks

Verifying the existence of a feasible schedule for segmented self-suspending
task systems is proved to be NP-hard in the strong sense in [76] for implicit-
deadline tasks with at most one self-suspension per task. For this model, it is
also shown that EDF and RM do not have any speedup factor bound in [76]
and [20], respectively. For the generalization of the segmented self-suspension
model to multi-threaded tasks (i.e., every task is defined by a Directed Acyclic
Graph (DAG) with edges labelled by suspension delays), the feasibility prob-
lem is also known to be NP-hard in the strong sense [74] even if all sub-jobs
have unit execution times. Up to now, there is no known theoretical lower
bound with respect to the speedup factors for this scheduling problem.

The only results with speedup factor analysis for fixed-priority scheduling
and dynamic-priority scheduling can be found in [20, 38, 81]. The analysis
with a speedup factor of 3 in [20, 81] can be used for systems with at most
one self-suspension interval per task under dynamic-priority scheduling. The
analysis with a bounded speedup factor in [38] can be used for fixed-priority
and dynamic-priority systems with any number of self-suspension intervals
per task. The scheduling policy used in [38] is suspension laxity-monotonic (SLM)
scheduling, which assigns the highest priority to the task with the least suspen-
sion laxity, defined asDi−Si. However, the speedup factor of SLM depends on
the number of self-suspension intervals, and grows quadratically with respect
to it.

The above analysis also implies that the priority assignment in dynamic-
priority and fixed-priority scheduling should be carefully designed. Traditional
approaches like RM or EDF do not work very well. SLM may work well for a
few self-suspension intervals, but how to perform the optimal priority assign-
ment is an open problem. Such difficulty comes from scheduling anomalies
that may occur at run-time. An example is provided in [76] to show that re-
ducing execution times or self-suspension delays can result in deadline misses
under EDF (i.e., EDF is no longer sustainable). This latter result can be easily ex-

46

8.1 computational complexity of designing scheduling policies 47

Task Model Feasibility Schedulability

Fixed-Priority Dynamic-Priority

Scheduling Scheduling

Segmented NP-hard in Constrained Implicit

Self-Suspension the strong Deadlines Deadlines

Models sense [74, 76] coNP-hard coNP-hard coNP-hard

in the strong in the strong in the strong

sense [64, 15] sense [15] sense [15]

Dynamic
unknown

coNP-hard
unknownSelf-Suspension unknown in the strong

Models sense [15]

Table 13: The computational complexity classes of scheduling and schedulability analy-
sis for self-suspending tasks

tended to fixed-priority scheduling policies (i.e., RM and DM). Lastly, in [75], it
is proved that no deterministic online scheduler can be optimal if the real-time
tasks are allowed to suspend themselves.

8.1.2 Dynamic Self-Suspending Tasks

The computational complexity of verifying the existence of a feasible schedule
for dynamic self-suspending task systems is unknown. The proof in [76] cannot
be applied to this case. It is proved in [39] that the speedup factor for RM, DM,
and suspension laxity monotonic (SLM) scheduling is ∞. Here, we repeat the
example in [39]. Consider the following implicit-deadline task set with one
self-suspending task and one sporadic task:

• C1 = 1 − 2ε, S1 = 0, T1 = 1

• C2 = ε, S2 = T − 1 − ε, T2 = T

where T is any natural number larger than 1 and ε can be arbitrary small. It is
clear that this task set is schedulable if we assign the highest priority to task τ2.
Under either RM, DM, and SLM scheduling, task τ1 has higher priority than
task τ2. It was proved in [39] that this example has a speedup factor ∞ when ε
approaches 0.

There is no upper bound of this problem in the most general case. The anal-
ysis in [39] for a speedup factor 2 uses a trick to compare the speedup factor
with respect to the optimal fixed-priority schedule instead of the optimal schedule.
The priority assignment used in [39] is based on the optimal-priority algorithm
(OPA) from Audsley [1] with an OPA-compatible schedulability analysis. How-
ever, since the schedulability test used in [39] is not exact, the priority assign-
ment is also not the optimal solution. Finding the optimal priority assignment
for fixed-priority scheduling is still an open problem.

For dynamic self-suspending task systems, as shown in [15], the speedup fac-
tor for any FP preemptive scheduling, compared to the optimal schedules, is

48 computational complexity and approximations

not bounded by a constant if the suspension time cannot be reduced by speed-
ing up. Such a statement of unbounded speedup factors was proved in [15] for
earliest-deadline-first (EDF), least-laxity-first (LLF), and earliest-deadline-zero-
laxity (EDZL) scheduling algorithms. How to design good schedulers with a
constant speedup factor remains as an open problem.

8.2 computational complexity of schedulability tests

We now present the computational complexity of schedulability tests for both
self-suspending task models considered in this report.

8.2.1 Segmented Self-Suspending Tasks

preemptive fixed-priority scheduling : In this case, the computational
complexity of schedulability tests is coNP-hard in the strong sense even when
the lowest priority task has at least two self-suspension intervals and the higher-
priority sporadic tasks do not suspend themselves [15, 64]. The computational
complexity analysis holds for both implicit-deadline and constrained-deadline
task systems, when the priority assignment is given. Moreover, validating whether
there exists a feasible priority assignment is coNP-hard in the strong sense for
constrained-deadline segmented self-suspending task systems.

preemptive dynamic-priority scheduling : In this case, if the task
systems have constrained deadlines, i.e.,Di 6 Ti, the computational complexity
of this problem is at least coNP-hard in the strong sense, since a special case
of this problem is coNP-complete in the strong sense [29]. It has been proved
in [29] that verifying uniprocessor feasibility of ordinary sporadic tasks with
constrained deadlines is strongly coNP-complete. Therefore, when we consider
constrained-deadline self-suspending task systems, the complexity class is at
least coNP-hard in the strong sense.

It is also not difficult to see that the implicit-deadline case is also at least
coNP-hard. A special case of the segmented self-suspending task system is
to allow each task τi to have exactly one self-suspension interval with a fixed
length Si and one computation segment with WCET Ci. Therefore, the relative
deadline of the computation segment of task τi (after it is released to be sched-
uled) is Di = Ti − Si. For such a special case, it is easy to see that the optimal
scheduling policy is EDF. It has been proved in [29] that verifying uniproces-
sor feasibility of ordinary sporadic tasks with constrained deadlines is strongly
coNP-complete. By the above discussions, any ordinary constrained-deadline
sporadic task system can be converted to a corresponding implicit-deadline
segmented self-suspending task system, and their exact schedulability tests
for EDF scheduling are identical. Since a special case of the problem is coNP-
complete in the strong sense, the problem is coNP-hard in the strong sense.

8.2.2 Dynamic Self-Suspending Tasks

preemptive fixed-priority scheduling : In this case, the complexity
class is at least as hard as that in the ordinary sporadic task systems under

8.2 computational complexity of schedulability tests 49

fixed-priority scheduling. It is shown in [28] that the response time analysis is
at least weakly NP-hard and the complexity class of the schedulability test is
unknown. The computational complexity due to the additional dynamic self-
suspending behavior is in general unknown up to now. The only exception is
the special case mentioned in Section 4.1.4 when there is only one dynamic self-
suspending sporadic task assigned to the lowest priority and the higher-priority
tasks are ordinary sporadic tasks. That is, the computational complexity of
this special case remains the same as that of non-self-suspending sporadic task
systems. Whether the problem (with dynamic self-suspension) is NP-hard in
the weak or strong sense is an open problem.

preemptive dynamic-priority scheduling : If the task systems have
constrained deadlines, i.e., Di 6 Ti, the computational complexity class of this
problem is at least coNP-hard in the strong sense, since the computational com-
plexity for testing the schedulability of an ordinary sporadic task system under
the optimal dynamic-priority scheduling strategy, i.e., EDF, is coNP-complete
in the strong sense [29]. For implicit-deadline self-suspending task systems, the
schedulability test problem is not well-defined, since there is no clear schedu-
ling policy that can be applied and tested. Even for the well-known dynamic-
priority scheduling strategies like EDF, LLF, EDZL, and their variances as men-
tioned at the end of Section 8.1, the computational complexity of schedulabil-
ity tests and how to perform exact schedulability tests are both unknown for
implicit-deadline self-suspending task systems.

9 F I N A L D I S C U S S I O N

Self-suspensions are becoming an increasingly prominent characteristic in real-
time systems, for example due to (i) I/O-intensive tasks, (ii) multi-processor
synchronization and scheduling, and (iii) computation offloading with copro-
cessors such as GPUs. This paper has reviewed the literature in the light of
recent developments in the analysis of self-suspending tasks, explained the
general methodologies, summarized the computational complexity classes, and
detailed a number of misconceptions in the literature concerning this topic. We
have given concrete examples to demonstrate the effect of these misconcep-
tions, listed some flawed statements in the literature, and presented potential
solutions. For completeness, all the misconceptions, open issues, closed issues,
and inherited flaws discussed in this paper are listed in Table 14.

This review extensively references errata and reports as follows: the proof
[19] of the correctness of the analysis by Jane W.S. Liu in her book [61, Page
164-165]; the re-examination and the limitations [16] of the period enforcer algo-
rithm proposed in [73]; the erratum report [9] of the misconceptions in [3, 4, 10];
and the erratum [44] of the misconceptions in [45]. For brevity, these errata and
reports are only summarized in this review. We encourage interested readers
to refer to these reports and errata for more detailed explanations.

9.1 unresolved issues

We have carefully re-examined the results related to self-suspending real-time
tasks in the literature in the past 25 years. However, there are also some results
in the literature that may require further elaboration, including:

• Devi (in Theorem 8 in [23, Section 4.5]) extended the analysis proposed
by Jane W.S. Liu in her book [61, Page 164-165] to EDF scheduling. This
method quantifies the additional interference due to self-suspensions
from the higher-priority jobs by setting up the blocking time induced
by self-suspensions. However, there is no formal proof in [23]. The proof
made by Chen et al. in [19, 21] for fixed-priority scheduling cannot be
directly extended to EDF scheduling. The correctness of Theorem 8 in
[23, Section 4.5] should be supported with a rigorous proof, since self-
suspension behavior has induced several non-trivial phenomena.

• For segmented self-suspending task systems with at most one self-suspension
interval, Lakshmanan and Rajkumar proposed two slack enforcement
mechanisms in [47] to shape the demand of a self-suspending task so
that the task behaves like an ideal ordinary periodic task. From the sche-
duling point of view, this means that there is no scheduling penalty when
analyzing the interferences of the higher-priority tasks. However, the sus-
pension time of the task under analysis has to be converted into computa-
tion. The correctness of the dynamic slack enforcement in [47] is heavily

50

9.1 unresolved issues 51

Type of
Arguments

Affected papers and statements Potential Solutions
(flaw/issue)

status

Conceptual Flaws

[3, 4]: Wrong quantification of jitter
See Section 5.1 or
the erratum filed
by the authors [9]

solved

[63]: Wrong quantification of jitter See Section 5.1 solved

[10]: Wrong quantification of jitter
See Section 5.2 or

[9]
solved

[47]: Critical instant theorem in Section III
and the response time analysis are incorrect

See Section 5.3 or
[66]

solved

[45]: Incorrect accounting for the
highest-priority interference in Theorems 2

and 3

See Section 5.4 solved

[45, 25]: Wrong schedulability test for
segmented fixed-priority scheduling with
periodic enforcement (Section IV in [45],
Section 3 in [25])

See Section 5.5 solved

[66]: Incorrect combination of techniques in
Section VI by converting a higher priority
self-suspending task in a single
non-self-suspending task with jitter

See Section 5.6 solved

Inherited Flaws

[43, 86, 12, 83, 42, 34, 14, 84, 46]: Adopting
wrong quantifications of jitters (refer to
Section 6 in this paper)

See Section 6.4 solved

[56]: Inherited flaw from [33] and unsafe
Lemma 1 to quantify the workload

See the erratum
[57] filed by the

authors
solved

Closed Issues
[61, Page 164-165]: schedulability test
without any proof

See [19] for a proof solved

[73]: period enforcer can be used for
deferrable task systems. It may result in
deadline misses for self-suspending tasks
and is not compatible with existing
multiprocessor synchronization analyses

See [16] for the
explanations.

solved

Open Issues
[23]: Proof of Theorem 8 for considering
suspension as blocking in EDF is incomplete

? unresolved

[47]: Proofs for slack enforcement in
Sections IV and V are incomplete

? unresolved

Table 14: List of flaws/incompleteness and their solutions in the literature. All the refer-
ences to Section X in the column “Potential Solutions” are listed for this paper.

based on the statement of Lemma 4 in [47]. However, the proof is not
rigorous for the following reasons:

– Firstly, the proof argues: “Let the duration R under consideration start
from time s and finish at time s+ R. Observe that if s does not coincide
with the start of the Level-i busy period at s, then s can be shifted to the
left to coincide with the start of the Level-i busy period. Doing so will
not decrease the Level-i interference over R.” This argument has to be
expanded to also handle cases in which a task suspends before the
Level− i busy period. This results in the possibility that a higher-
priority task τj starts with the second computation segment in the

52 final discussion

Level-i busy period. Therefore, the first and the third paragraphs in
the proof of Lemma 4 [47] require more rigorous reasoning.

– Secondly, the proof argues: “The only property introduced by dynamic
slack enforcement is that under worst-case interference from higher-priority
tasks there is no slack available to Jpj between fpj and ρpj + Rj. [. . .] The
second segment of τj is never delayed under this transformation, and is
released sporadically. ” In fact, the slack enforcement may make the
second computation segment arrive earlier than its worst case. For
example, we can greedily start with the worst-case interference of
task τj in the first iteration, and do not release the higher-priority
tasks of task τj after the arrival of the second job of task τj. This
can immediately create some release jitter of the second computa-
tion segment C2

j .

For similar reasons, the static slack enforcement algorithm in [47] also
requires a more rigorous proof.

9.2 non-implicated approaches

We would like to conclude this review on a positive note regarding the avail-
able results on the design and analyses of hard real-time systems involving
self-suspending tasks. At the time of writing, no concerns have been raised
regarding the correctness of the following results.1

• For segmented self-suspending task systems:

1. Rajkumar’s period enforcer [73] if a self-suspending task can only
suspend at most once and only before any computation starts;

2. the result by Palencia and González Harbour [70] using the arrival
jitter of a higher-priority task properly with an offset (also for mul-
tiprocessor partitioned scheduling);

3. the proof of NP-hardness in the strong sense to find a feasible sched-
ule and negative results with respect to the speedup factors, pro-
vided by Ridouard, Richard, and Cottet [76];

4. the result by Nelissen et al. [66] by enumerating the worst-case in-
terference from higher-priority sporadic tasks with an exhaustive
search;

5. the result by Chen and Liu [20], Huang and Chen [38], Peng and
Fisher [71], and von der Brüggen et al. [81] using the release-time
enforcement as described in Section 4.3.2;2

6. the result by Huang and Chen [36] exploring the priority assign-
ment problem and analyzing the carry-in computation segments
together;

7. the proof of coNP-hardness by Chen [15] and Mohaqeqi et al. [64]
based on a reduction from the 3-Partition problem when there are
at least two suspension intervals.

1 This list is not exhaustive as not all self-suspension results that were published after 2015 have
been carefully examined by the authors.

2 Chen and Liu found a typo in Theorem 3 in [20] and filed a corresponding erratum in their web-
sites.

9.2 non-implicated approaches 53

• For dynamic self-suspending task systems on uniprocessor platforms:

1. the analysis provided in [61, Pages 164-165] by Liu as proved by
Chen et al. [19, 21];

2. the utilization-based analysis by Liu and Chen [58] under rate-monotonic
scheduling;

3. the priority assignment and the schedulability analysis with a speedup
factor 2, with respect to optimal fixed-priority scheduling, by Huang
et al. [39];

4. the response-time analysis framework by Chen et al. [21], as de-
scribed in Section 4.2.5;

5. the negative results regarding existing scheduling algorithms with
respect to speedup factors by Chen [15].

• For dynamic self-suspending task systems on identical multiprocessors:

1. the schedulability test for global EDF scheduling by Liu and Ander-
son [56];

2. the schedulability test by Liu et al. [59] for harmonic task systems
with strictly periodic job arrivals;

3. the utilization-based schedulability analysis by Chen, Huang, and
Liu [18] considering carry-in jobs as bursty behavior.

To the best of our knowledge, the solutions and fixes listed in Table 14 for the
affected papers and statements appear to be correct.

C H A N G E L O G

In addition to some rewordings, the following significant changes have been
made after the first version, published in May 2016:

1. Eq. (4) is revised with
⌈
Rk+Si
Ti

⌉
since the first version used

⌈
Rk+Sk
Ti

⌉
with

a typo.

2. Eq. (8) is revised with sk + 1 instead of sk since the notation used in this
report is different from the original source in [46].

3. The misconception in Section 5.5 is listed as a solved issue due to the
errata [44], published in August 2016.

4. Section 4.2.5 is added due to a recent result in [21], published in July
2016

5. Section 5.6 is added due to a recent errata [67], published in February
2017.

6. Chapter 8 is updated due to the latest result in [15, 64].

7. Papers published in 2016 are added and discussed.

(All the indexes are based on the latest version, i.e., 2nd ver.)

54

B I B L I O G R A P H Y

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Ap-
plying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[2] N. C. Audsley. Optimal priority assignment and feasibility of static prior-
ity tasks with arbitrary start times. Technical Report YCS-164, Department
of Computer Science, University of York, 1991.

[3] N. C. Audsley and K. Bletsas. Fixed priority timing analysis of real-time
systems with limited parallelism. In 16th Euromicro Conference on Real-Time
Systems (ECRTS), pages 231–238, 2004.

[4] N. C. Audsley and K. Bletsas. Realistic analysis of limited parallel soft-
ware / hardware implementations. In 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 388–395, 2004.

[5] S. Baruah. Techniques for multiprocessor global schedulability analysis.
In Proceedings of the 28th IEEE International Real-Time Systems Symposium,
pages 119–128, 2007.

[6] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe
tasks. Real-Time Systems, 17(1):5–22, 1999.

[7] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic analysis: the
hyperbolic bound. Computers, IEEE Transactions on, 52(7):933–942, 2003.

[8] K. Bletsas. Worst-case and Best-case Timing Analysis for Real-time Embedded
Systems with Limited Parallelism. PhD thesis, Dept of Computer Science,
University of York, UK, 2007.

[9] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen. Errata for
three papers (2004-05) on fixed-priority scheduling with self-suspensions.
Technical Report CISTER-TR-150713, CISTER, July 2015.

[10] K. Bletsas and N. C. Audsley. Extended analysis with reduced pessimism
for systems with limited parallelism. In 11th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA),
pages 525–531, 2005.

[11] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-
time locking protocol for multiprocessors. In RTCSA, pages 47–56, 2007.

[12] B. Brandenburg. Improved analysis and evaluation of real-time semaphore
protocols for P-FP scheduling. In RTAS, pages 141–152, 2013.

[13] B. Brandenburg and J. Anderson. Optimality results for multiprocessor
real-time locking. In Proceedings of the 31st Real-Time Systems Symposium,
pages 49–60, 2010.

55

56 Bibliography

[14] A. Carminati, R. de Oliveira, and L. Friedrich. Exploring the design space
of multiprocessor synchronization protocols for real-time systems. Journal
of Systems Architecture, 60(3):258–270, 2014.

[15] J.-J. Chen. Computational complexity and speedup factors analyses for
self-suspending tasks. In Real-Time Systems Symposium (RTSS), 2016.

[16] J.-J. Chen and B. Brandenburg. A note on the period enforcer algo-
rithm for self-suspending tasks. Computing Research Repository(CoRR),
abs/1606.04386, 2016. http://arxiv.org/abs/1606.04386.

[17] J.-J. Chen, W.-H. Huang, and C. Liu. k2Q: A quadratic-form response
time and schedulability analysis framework for utilization-based analysis.
Computing Research Repository(CoRR), abs/1505.03883, 2015. http://arxiv.
org/abs/1505.03883.

[18] J.-J. Chen, W.-H. Huang, and C. Liu. k2U: A general framework from
k-point effective schedulability analysis to utilization-based tests. In Real-
Time Systems Symposium (RTSS), pages 107–118, 2015.

[19] J.-J. Chen, W.-H. Huang, and G. Nelissen. A note on modeling self-
suspending time as blocking time in real-time systems. Computing Research
Repository(CoRR), 2016. http://arxiv.org/abs/1602.07750.

[20] J.-J. Chen and C. Liu. Fixed-relative-deadline scheduling of hard
real-time tasks with self-suspensions. In Proceedings of the IEEE
35th IEEE Real-Time Systems Symposium (RTSS), pages 149–160, 2014.
A typo in the schedulability test in Theorem 3 was identified
on 13, May, 2015. http://ls12-www.cs.tu-dortmund.de/daes/media/

documents/publications/downloads/2014-chen-FRD-erratum.pdf.

[21] J.-J. Chen, G. Nelissen, and W.-H. Huang. A unifying response time analy-
sis framework for dynamic self-suspending tasks. In Euromicro Conference
on Real-Time Systems (ECRTS), pages 327 – 338, 2016.

[22] U. Devi and J. Anderson. Tardiness bounds under global EDF schedu-
ling on a multiprocessor. In Proceedings of the 26th IEEE Real-Time Systems
Symposium, pages 330-341, 2005.

[23] U. C. Devi. An improved schedulability test for uniprocessor periodic task
systems. In 15th Euromicro Conference on Real-Time Systems (ECRTS), pages
23–32, 2003.

[24] U. C. Devi. Soft real-time scheduling on multiprocessors. PhD thesis, Univer-
sity of North Carolina at Chapel Hill, 2006.

[25] S. Ding, H. Tomiyama, and H. Takada. Effective scheduling algorithms
for I/O blocking with a multi-frame task model. IEICE Transactions, 92-
D(7):1412–1420, 2009.

[26] Z. Dong and C. Liu. Closing the loop for the selective conversion approach:
A utilization-based test for hard real-time suspending task systems. In
Real-Time Systems Symposium (RTSS), pages 339–350, 2016.

http://arxiv.org/abs/1505.03883
http://arxiv.org/abs/1505.03883
http://arxiv.org/abs/1602.07750
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2014-chen-FRD-erratum.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2014-chen-FRD-erratum.pdf

Bibliography 57

[27] B. Dutertre. The priority ceiling protocol: formalization and analysis using
PVS. In Proc. of the 21st IEEE Conference on Real-Time Systems Symposium
(RTSS), pages 151–160, 1999.

[28] F. Eisenbrand and T. Rothvoß. Static-priority real-time scheduling: Re-
sponse time computation is np-hard. In Proceedings of the 29th IEEE Real-
Time Systems Symposium, RTSS, pages 397–406, 2008.

[29] P. Ekberg and W. Yi. Uniprocessor feasibility of sporadic tasks with con-
strained deadlines is strongly coNP-Complete. In 27th Euromicro Confer-
ence on Real-Time Systems, ECRTS, pages 281–286, 2015.

[30] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho. Response time analysis
of sporadic dag tasks under partitioned scheduling. In 11th IEEE Sympo-
sium on Industrial Embedded Systems (SIES), pages 1–10, 2016.

[31] J. Goossens and R. Devillers. The non-optimality of the monotonic prior-
ity assignments for hard real-time offset free systems. Real-Time Systems,
13(2):107–126, 1997.

[32] J. Goossens and R. Devillers. Feasibility intervals for the deadline driven
scheduler with arbitrary deadlines. In Sixth International Conference on Real-
Time Computing Systems and Applications (RTCSA), pages 54–61, 1999.

[33] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for fixed
priority multiprocessor scheduling. In IEEE Real-Time Systems Symposium,
pages 387–397, 2009.

[34] G. Han, H. Zeng, M. di Natale, X. Liu, and W. Dou. Experimental eval-
uation and selection of data consistency mechanisms for hard real-time
applications on multicore platforms. IEEE Transactions on Industrial Infor-
matics, 10(2):903–918, 2014.

[35] W.-H. Huang and J.-J. Chen. Response time bounds for sporadic arbitrary-
deadline tasks under global fixed-priority scheduling on multiprocessors.
In RTNS, pages 215–224, 2015.

[36] W.-H. Huang and J.-J. Chen. Schedulability and priority assignment for
multi-segment self-suspending real-time tasks under fixed-priority sche-
duling. Technical report, Technical University of Dortmund, 2015. http:

//ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/

downloads/2015-technical-report-multi-seg-Kevin.pdf.

[37] W.-H. Huang and J.-J. Chen. Techniques for schedulability analysis in
mode change systems under fixed-priority scheduling. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 176–186,
2015.

[38] W.-H. Huang and J.-J. Chen. Self-suspension real-time tasks under fixed-
relative-deadline fixed-priority scheduling. In Design, Automation, and Test
in Europe (DATE), pages 1078–1083, 2016.

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2015-technical-report-multi-seg-Kevin.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2015-technical-report-multi-seg-Kevin.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2015-technical-report-multi-seg-Kevin.pdf

58 Bibliography

[39] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority assignment
of real-time tasks with dynamic suspending behavior under fixed-priority
scheduling. In Design Automation Conference (DAC), pages 154:1–154:6,
2015.

[40] W. Kang, S. Son, J. Stankovic, and M. Amirijoo. I/O-Aware Deadline Miss
Ratio Management in Real-Time Embedded Databases. In Proc. of the 28th
IEEE Real-Time Systems Symp., pages 277–287, 2007.

[41] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajku-
mar. RGEM: A Responsive GPGPU Execution Model for Runtime Engines.
In 2011 IEEE 32nd Real-Time Systems Symposium, pages 57–66, 2011.

[42] H. Kim, S. Wang, and R. Rajkumar. vMPCP: a synchronization framework
for multi-core virtual machines. In RTSS, pages 86–95, 2014.

[43] I. Kim, K. Choi, S. Park, D. Kim, and M. Hong. Real-time scheduling of
tasks that contain the external blocking intervals. In RTCSA, pages 54–59,
1995.

[44] J. Kim, B. Andersson, D. de Niz, J.-J. Chen, W.-H. Huang, and
G. Nelissen. Segment-fixed priority scheduling for self-suspending
real-time tasks. Technical Report CMU/SEI-2016-TR-002, CMU/SEI,
2016. http://resources.sei.cmu.edu/asset_files/TechnicalReport/

2016_005_001_466102.pdf.

[45] J. Kim, B. Andersson, D. de Niz, and R. Rajkumar. Segment-fixed priority
scheduling for self-suspending real-time tasks. In Proceedings of the IEEE
34th Real-Time Systems Symposium, (RTSS), pages 246–257, 2013.

[46] K. Lakshmanan, D. De Niz, and R. Rajkumar. Coordinated task schedu-
ling, allocation and synchronization on multiprocessors. In RTSS, pages
469–478, 2009.

[47] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-time
tasks with rate-monotonic priorities. In Proceedings of the 16th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages
3–12, 2010.

[48] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
exact characterization and average case behavior. In RTSS, pages 166–171,
1989.

[49] H. Leontyev. Compositional analysis techniques for multiprocessor soft real-time
scheduling. PhD thesis, University of North Carolina at Chapel Hill, 2010.

[50] H. Leontyev and J. Anderson. Tardiness bounds for FIFO scheduling on
multiprocessors. In Proceedings of the 19th Euromicro Conference on Real-Time
Systems, pages 71–80, pages 71-80, 2007.

[51] C. Liu and J. Anderson. Improving the schedulability of sporadic self-
suspending soft real-time multiprocessor task systems. In Proceedings of
the 16th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 14-23, 2010.

http://resources.sei.cmu.edu/asset_files/TechnicalReport/2016_005_001_466102.pdf
http://resources.sei.cmu.edu/asset_files/TechnicalReport/2016_005_001_466102.pdf

Bibliography 59

[52] C. Liu and J. Anderson. Scheduling suspendable, pipelined tasks with
non-preemptive sections in soft real-time multiprocessor systems. In Pro-
ceedings of the 16th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 23-32, 2010.

[53] C. Liu and J. Anderson. A new technique for analyzing soft real-time
self-suspending task systems. In ACM SIGBED Review, pages 29-32, 2012.

[54] C. Liu and J. Anderson. An O(m) analysis technique for supporting real-
time self-suspending task systems. In Proceedings of the 33th IEEE Real-Time
Systems Symposium (RTSS), pages 373-382, 2012.

[55] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft real-
time multiprocessor systems. In Proceedings of the 30th Real-Time Systems
Symposium, pages 425-436, 2009.

[56] C. Liu and J. H. Anderson. Suspension-aware analysis for hard real-time
multiprocessor scheduling. In 25th Euromicro Conference on Real-Time Sys-
tems, ECRTS, pages 271–281, 2013.

[57] C. Liu and J. H. Anderson. Erratum to “suspension-aware analysis for
hard real-time multiprocessor scheduling”, 2015. https://cs.unc.edu/

~anderson/papers/ecrts13e_erratum.pdf.

[58] C. Liu and J.-J. Chen. Bursty-interference analysis techniques for analyzing
complex real-time task models. In Real-Time Systems Symposium (RTSS),
pages 173–183, 2014.

[59] C. Liu, J.-J. Chen, L. He, and Y. Gu. Analysis techniques for supporting
harmonic real-time tasks with suspensions. In 26th Euromicro Conference
on Real-Time Systems, ECRTS 2014, Madrid, Spain, July 8-11, 2014, pages
201–210, 2014.

[60] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61,
jan 1973.

[61] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 2000.

[62] W. Liu, J.-J. Chen, A. Toma, T.-W. Kuo, and Q. Deng. Computation Of-
floading by Using Timing Unreliable Components in Real-Time Systems.
In Proceedings of the The 51st Annual Design Automation Conference on Design
Automation Conference - DAC '14, pages 39:1–39:6, 2014.

[63] L. Ming. Scheduling of the inter-dependent messages in real-time commu-
nication. In Proc. of the First International Workshop on Real-Time Computing
Systems and Applications, 1994.

[64] M. Mohaqeqi, P. Ekberg, and W. Yi. On fixed-priority schedulability analy-
sis of sporadic tasks with self-suspension. In Proceedings of the 24th Interna-
tional Conference on Real-Time Networks and Systems, RTNS, pages 109–118,
2016.

https://cs.unc.edu/~anderson/papers/ecrts13e_erratum.pdf
https://cs.unc.edu/~anderson/papers/ecrts13e_erratum.pdf

60 Bibliography

[65] A. K. Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. Technical report, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1983.

[66] G. Nelissen, J. Fonseca, G. Raravi, and V. Nelis. Timing Analysis of Fixed
Priority Self-Suspending Sporadic Tasks. In Euromicro Conference on Real-
Time Systems (ECRTS), pages 80–89, 2015.

[67] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Errata: Timing analysis
of fixed priority self-suspending sporadic tasks. Technical Report CISTER-
TR-170205, CISTER, ISEP, INESC-TEC, 2017.

[68] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time
systems on multi-cores with shared resources. In ECRTS, pages 251–261,
2011.

[69] Y. Nimmagadda, K. Kumar, Y.-H. Lu, and C. G. Lee. Real-time moving ob-
ject recognition and tracking using computation offloading. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
2449–2455. IEEE, 2010.

[70] J. C. Palencia and M. G. Harbour. Schedulability analysis for tasks with
static and dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS), pages 26–37, 1998.

[71] B. Peng and N. Fisher. Parameter adaptation for generalized multiframe
tasks and applications to self-suspending tasks. In International Confer-
ence on Real-Time Computing Systems and Applications (RTCSA), pages 49–58,
2016.

[72] R. Rajkumar. Real-time synchronization protocols for shared memory mul-
tiprocessors. In ICDCS, pages 116–123, 1990.

[73] R. Rajkumar. Dealing with Suspending Periodic Tasks. Technical report,
IBM T. J. Watson Research Center, 1991. http://www.cs.cmu.edu/afs/cs/
project/rtmach/public/papers/period-enforcer.ps.

[74] P. Richard. On the complexity of scheduling real-time tasks with self-
suspensions on one processor. In Proceedings. 15th Euromicro Conference
onReal-Time Systems, (ECRTS), pages 187–194, July 2003.

[75] F. Ridouard and P. Richard. Worst-case analysis of feasibility tests for
self-suspending tasks. In proc. 14th Real-Time and Network Systems RTNS,
Poitiers, pages 15–24, 2006.

[76] F. Ridouard, P. Richard, and F. Cottet. Negative Results for Scheduling
Independent Hard Real-Time Tasks with Self-Suspensions. In 25th IEEE
International Real-Time Systems Symposium, pages 47 – 56, 2004.

[77] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: an
approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[78] M. Spuri. Analysis of deadline scheduled real-time systems. Technical
Report RR-2772, INRIA, 1996.

http://www.cs.cmu.edu/afs/cs/project/rtmach/public/papers/period-enforcer.ps
http://www.cs.cmu.edu/afs/cs/project/rtmach/public/papers/period-enforcer.ps

Bibliography 61

[79] Y. Sun, G. Lipari, N. AGuan, W. Yi, et al. Improving the response time
analysis of global fixed-priority multiprocessor scheduling. In IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA), pages 1–9, 2014.

[80] A. Toma and J.-J. Chen. Computation offloading for frame-based real-time
tasks with resource reservation servers. In ECRTS, pages 103–112, 2013.

[81] G. von der Brüggen, W.-H. Huang, J.-J. Chen, and C. Liu. Uniprocessor
scheduling strategies for self-suspending task systems. In International
Conference on Real-Time Networks and Systems, RTNS ’16, pages 119–128,
2016.

[82] A. Wieder and B. Brandenburg. On spin locks in AUTOSAR: blocking
analysis of FIFO, unordered, and priority-ordered spin locks. In RTSS,
pages 45–56, 2013.

[83] M. Yang, H. Lei, Y. Liao, and F. Rabee. PK-OMLP: An OMLP based k-
exclusion real-time locking protocol for multi- GPU sharing under parti-
tioned scheduling. In DASC, pages 207–214, 2013.

[84] M. Yang, H. Lei, Y. Liao, and F. Rabee. Improved blocking timg analysis
and evaluation for the multiprocessor priority ceiling protocol. Jounal of
Computer Science and Technology, 29(6):1003–1013, 2014.

[85] M. Yang, A. Wieder, and B. Brandenburg. Global real-time semaphore
protocols: A survey, unified analysis, and comparison. In IEEE Real-Time
Systems Symposium (RTSS), pages 1–12, 2015.

[86] H. Zeng and M. di Natale. Mechanisms for guaranteeing data consistency
and flow preservation in AUTOSAR software on multi-core platforms. In
SIES, pages 140–149, 2011.

[87] F. Zhang and A. Burns. Schedulability analysis for real-time systems with
edf scheduling. IEEE Transactions on Computers, 58(9):1250–1258, 2009.

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Impact of Self-Suspending Behavior
	1.2 Purpose and Organization of This Paper

	2 Examples of Self-Suspending Task Systems
	3 Real-Time Sporadic Self-Suspending Task Models
	3.1 Assumptions and Terminology
	3.1.1 Scheduling:
	3.1.2 Analysis:
	3.1.3 Platform:

	4 General Design and Analysis Strategies
	4.1 Modeling the Interfered Task
	4.1.1 Modeling suspension as computation
	4.1.2 Modeling each computation segment as an independent task
	4.1.3 Hybrid approaches
	4.1.4 Exact schedulability analysis

	4.2 Modeling the Interfering Tasks
	4.2.1 Suspension-oblivious analysis
	4.2.2 Modeling self-suspensions with carry-in jobs
	4.2.3 Modeling self-suspensions as release jitter
	4.2.4 Modeling self-suspensions as blocking
	4.2.5 A Unifying Analysis Framework
	4.2.6 Improving the modeling of segmented self-suspending tasks
	4.2.7 Remarks on the Methods without Enforcement

	4.3 Period Enforcement Mechanisms
	4.3.1 Dynamic online period enforcement
	4.3.2 Static period enforcement
	4.3.3 Slack enforcement

	4.4 Multiprocessor Scheduling for Self-Suspending Tasks

	5 Existing Misconceptions in the State of the Art
	5.1 Incorrect Quantifications of Jitter (Dynamic Self-Suspension)
	5.2 Incorrect Quantifications of Jitter (Segmented Self-Suspension)
	5.3 Incorrect Assumptions Regarding the Critical Instant
	5.3.1 A counterexample to the synchronous release
	5.3.2 A counterexample to the minimum inter-release time

	5.4 Counting Highest-Priority Self-Suspension Time to Reduce the Interference
	5.5 Incorrect Analysis of Segmented Fixed-Priority Scheduling with Periodic Enforcement
	5.6 Incorrect Conversion of Higher Priority Self-Suspending Tasks

	6 Self-Suspending Tasks in Multiprocessor Synchronization
	6.1 Semaphores in Uniprocessor Systems
	6.2 Semaphores in Partitioned Multiprocessor Systems
	6.3 Incorrect Contention Bound in Interface-Based Analysis
	6.4 A Safe Response-Time Bound

	7 Soft Real-Time Self-Suspending Task Systems
	7.1 Suspension-Oblivious Analysis
	7.2 Suspension-Aware Analysis

	8 Computational Complexity and Approximations
	8.1 Computational Complexity of Designing Scheduling Policies
	8.1.1 Segmented Self-Suspending Tasks
	8.1.2 Dynamic Self-Suspending Tasks

	8.2 Computational Complexity of Schedulability Tests
	8.2.1 Segmented Self-Suspending Tasks
	8.2.2 Dynamic Self-Suspending Tasks

	9 Final Discussion
	9.1 Unresolved Issues
	9.2 Non-Implicated Approaches

