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Abstract—Due to aggressive technology downscaling, mobile
and embedded systems are susceptible to transient faults in
the underlying hardware. Transient faults may incur soft-errors
or even lead to system failure. A recent study has proposed
to exploit the concept of the (m, k)-firm real-time task model
with compensation techniques to manage redundant executions,
aiming to selectively protect the control application. In this
work we provide an empirical approach to find the (m, k)
robustness requirements. With the delivered (m, k) robustness
requirements on path tracing and balance control tasks, we
conduct comprehensive case studies to evaluate the effectiveness
of the compensation techniques under different fault locations
and fault rates.

I. INTRODUCTION

Mobile and embedded systems are susceptible to transient
faults in the underlying hardware [1], which may occur due
to rising integration density, low voltage operation, and en-
vironmental influences such as radiation and electromagnetic
influences. Transient faults may alter the execution state, or
incur a soft error, which is the state in which bits in memory
are flipped temporarily. The consequences are difficult to
predict; in the worst case they could lead to irrecoverable
system failure. Recently, the Japanese satellite Hitomi crashed,
because its control loop got corrupted. According to investiga-
tions in [10] a transient fault occurred in the satellite’s rotation
control, which led to its destruction. The financial damage was
severe, a few hundred million Euros.

To protect systems from such catastrophes, one way is
to apply software-based fault-tolerance techniques, such as
redundant execution and error-correction code [9], [14], [12],
[21]. However, trivially adopting redundant execution or error
correction code may lead to significant computational over-
head, e.g., when N+1 redundancy is used. Due to spatial
limitation and timeliness, skillfully adopting software-based
fault-tolerance approaches to prevent failure due to transient
faults is not a trivial problem.

Instead of over-provisioning with extra hardware or execu-
tion time, sometimes errors can be tolerated; there may be no
need to protect the whole system. Due to the potential inherent
safety margins and noise interference, control applications
might tolerate a limited number of errors with a downgrade
of control performance without leading to an unrecoverable
system state. In several studies, fault tolerance techniques
have been proposed for delayed [17], [11] or dropped [8], [2]
signal samples. Chen et al. [5] explored the fault tolerance of
a LegoNXT path-tracing control application. They proposed
to use the (m, k)-firm real-time task model to quantify the

robustness of control tasks: m out of k consecutive task
instances need to be correct to prevent the system from
mission failure. They use this (m, k) robustness requirement to
manage the expensive error correction to avoid over-provision
by applying their proposed compensation techniques.

To the best of our knowledge, no detailed information to
safely determine the (m, k) robustness requirement of control
tasks exists in the literature. In [5], faults were only injected
into sensor sampling data. Other faults, e.g., in actuators and
D/A converters were not discussed. Although their results
indicate that the effectiveness of the proposed compensation
techniques is significant, they only considered one task at
a time with fault injection instead of showing the interplay
of dependent robustness requirements. To be able to apply
the compensation techniques in practice, the aforementioned
perspectives have to be investigated.
Our contributions:
• To investigate the impact of different fault locations on a

self-balancing robot, we consider fault injection in both
sensor data and motor input values in Section III.

• We present an empirical approach to find and verify
(m, k) robustness requirements by analyzing the correct-
ness of executed instances in Section IV.

• We explore impacts of concurrent fault injection with
dependent (m, k) requirements in Section IV-E.

• To evaluate the overall system utilization under different
fault rates and compensation techniques, we conduct
comprehensive case studies in Section V.

II. SYSTEM MODEL

This section provides the models and the notation, as well
as the hard- and software used in the experiments.

A. Control Application Model

A control application has a set of periodic, preemptive
control tasks, which we denote as Γ = {τ1, τ2, . . . , τn}. Each
task has a period Ti and a relative deadline Di = Ti. The
output of each instance will be used by itself again in the next
instance, in a closed loop feedback control application.

A task is available in three versions with different execution
times: unreliable version τui with execution time cui , error
detection version τdi with cdi , and error correction version
τ ci with cci . The least protected task version is τui , which
only protects from errors that lead to system crash and
allows incorrect output. In the literature, several fault tolerant
software techniques exist and they typically require additional



execution time for error handling, e.g., special encoding of
data [20], control flow checking [18], and majority voting [3].
We assume cui < cdi < cci .

B. Fault Model

In this paper, we deal with potentially wrong values in the
data transfer of the motor and the light sensor values caused
by soft errors in the system We denote the fault rate as f
throughout the paper. The probability of the occurrence of a
fault is assumed, and every task instance has at most one fault
under single event upset [22]. Without using error detection
and correction, the system can still be executed without a
system crash. However, the wrong values in the data transfer
may degrade the control performance and may lead to mission
failure, e.g., under soft errors the robot deviates from or leaves
the track, but its operating system does not crash.

In τdi , the light sensor samples twice and the two values
are compared to detect an error. In τ ci , the sensor samples
three times consecutively and returns the majority value. The
frequency between consecutive samplings is high enough to
produce two or three similar values with negligible difference.

To have a control of the soft errors in the control application,
we assume only τui and the first execution in τdi and τ ci
versions can potentially be wrong. If the fault rate is f , then the
probability that the first execution of a job is incorrect is f . The
following one or two executions for detection or correction,
if they exist, are assumed to be hardened perfectly; error
detection and correction always perform correctly. Without
such a control of errors in the experiments, the conclusions
may not be drawn correctly, since the erroneous executions
can be similar under different error rates.

C. (m,k) Robustness Requirement

To quantify the inherent tolerance of tasks to recover from
previous instance’s lack of or faulty output, we use the
(m, k) robustness requirement. For each task τi, the robustness
requirement (mi, ki) is given by using analytical or empirical
methods; we explore the latter for each task τi. Any m out of
k consecutive executions of a task τi have to be correct for
the control application to run without mission failures. mi and
ki are both positive integers and 0 < mi ≤ ki.

For example, consider a control task controlling specific
steering actions of a vehicle. Its robustness requirement could
be that it requires at least two correct in every three instances,
denoted as (2, 3). A sequence of bits contains the information
whether faults were injected into instances of τi. When starting
the system, we initialize an empty sequence of bits. If a fault
was injected, we add ”0” to the sequence, otherwise we add
”1”. This is done for all instances of τi. E.g., a possible
sequence of bits is {1, 1, 0, 1, 1, 0, 1, 1}. In the following,
we refer to this sequence of bits as bit sequence. In the
experiments, the iterative way of checking is called sliding
window, which is defined as follows: we first check the first
three bits, in our example these are {1, 1, 0}, then the second
three {1, 0, 1}, the third three {0, 1, 1}, etc. All such sets in
the bit sequence have at least two correct task instances, we

say the (2, 3) requirement is fulfilled. If the (2, 3) requirement
is not fulfilled, e.g., {0, 0, 1} occurs in the bit sequence, the
vehicle may steer in a wrong direction and possibly cause an
accident.

D. Lego NXT Robot and nxtOSEK
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Fig. 1. The NXT system architecture. Left block: gyro sensor (top) and two
light sensors (bottom two); right block: motors. Adapted from [6].

The Lego Mindstorms NXT brick is used as the computing
unit for all the experiments in this paper. It runs the RTOS
nxtOSEK which supports OSEK standard [15] with a C/C++
programming environment using the GCC tool chain. The C
API [6] allows access to motors, sensors, and other devices,
and enables the upload of C programs directly to memory. In
Fig. 1, the system architecture is illustrated; more details on
hardware specifications are in [19].

E. Schedulability and Scheduling

The system runs on the main CPU and adopts preemptive
Rate-Monotonic Scheduling to schedule control tasks, given
with fixed priorities. Task τ1 has the highest priority and τn the
lowest. If all tasks meet their deadlines while (mi, ki) holds for
each τi, then the schedule is feasible. The schedulability test
under fixed-priority scheduling is an orthogonal problem of
the studied problem. For all the applied scheduling strategies,
their schedulability tests can be found in [5]. For all the
investigations in this work, we configure the system such that
all the strategies can result in feasible schedules.

III. STUDIED APPLICATION WITH FAULT INJECTION

This section introduces the studied control application and
the fault locations. The self-balancing robot [7] uses two
motors, one gyro-, and two light sensors, see Fig. 1. It has two
control tasks: the path tracing task τpath, and the balance task
τbal. We discuss the original design’s limitations in Section
III-A, and explain our extensions of it in Section III-B.

A. Original Design by Chen et al. [5]

In [5], a fault injection function, defined in the nxtOSEK
kernel, is based on a predefined average fault rate to simulate
the occurrence of transient faults. This function generates a
32-bit unsigned random integer and compares it to a specific
value which depends on the given fault rate. Only when the
random integer is larger than the specific number, the correct
value of the task is replaced by a faulty value.

Fig. 2.A shows the execution steps of τpath. It reads the
sampling data from the light sensors, and stores the data in a
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Fig. 2. The considered robotic application [7]: (A) path tracing task, (B) balance control task. Lightnings are the location of transient faults.

fuzzy table which records the most recent results of previous
computations. The steering value is calculated based on the
data in the table, and is referred to as ”Turn” in Fig. 2.
Depending on the task version, which is decided by ”Check
(m, k)”, detection or correction (C/D) is performed. Fault
injection (FI) in τpath occurs after the light sensor sampling.
The location of faults is illustrated with lightning symbols
below FI. We consider worst-case bit flips; effects of faults are
simulated as the minimum or maximum light sensor value. At
the end of segment A in Fig. 2, the turn value is passed to the
balance function for further calculations.

Chen et al. adopted the aforementioned mechanism to simu-
late the occurrence of faults and focused on how to design the
compensation techniques with the given (m, k) requirement to
prevent the robot from mission failures, while avoiding over-
provision. After all, their approach only manipulates sensor
sampling values. We extend their original fault injection to
motor input values, and provide an empirical approach to find
(m, k) requirements for each task.

B. Our Extended Fault Injection

In the previous study, they concluded that the balance
control loop could not tolerate any single fault. However, this
is not entirely true if we consider the whole task. If faults only
corrupt the motor input values, and are not present inside the
balance control loop, then it is possible for τbal to tolerate
faults.

Thus, we inject faults into the two output values of the
balance control loop, which are the motor impulses for the
left and right motors; we refer to them as the motor input
values. The fault injection mechanism takes the motor input
value and the fault rate to determine whether to inject a fault,
see Fig. 2.B. The fault value is the maximum allowed motor
input value. When protection is used, the balance function
is executed multiple times with the same input values as in
the first execution, producing the same output values. The
potentially faulty value is stored in the fuzzy table. Then the
task calculates an output value on the basis of the most recent
entries in the fuzzy table, delivers a final motor input value,
and sends the motor input value to the corresponding motor.

IV. EMPIRICAL APPROACH FOR OBTAINING (M,K)
ROBUSTNESS REQUIREMENTS

To provide a formal empirical approach to find and verify
(m, k) robustness requirements, we apply the proposed
approach on τpath and τbal. The goal is to verify that the
robustness requirements prevent the control application
from mission failure. The approach for finding robustness
requirement candidates is proposed as follows:

The potential robustness requirement candidates (m, k)
can be found by finding the minimum number i′ of the correct
instances, given sliding window size j, among all the possible
(i, j) observed, i.e., (m, k) = (i′, k).

Among the candidates, the best one is decided as follows:

Out of all candidates, the best (m, k) candidate has
the lowest m compared to its k, while guaranteeing the
prevention of mission failure. If the ratio m

k of (m, k)
candidates is equal, the candidate with the higher difference
k −m is chosen.

If the ratio of k to m of two robustness requirements
is equal, then (m, k) with the higher difference k − m is
easier to be satisfied. For example, (1, 2) needs an execution
pattern such as {0, 1, 0, 1}, whereas (2, 4) can also allow
patterns such as {0, 0, 1, 1}. We say that (2, 4) has a higher
flexibility than (1, 2).

A. Finding and Verifying (m,k) in Practice

To clarify empirically finding and testing (m, k), we provide
the instructions step-by-step. In Fig. 3, we show the steps for
finding and verifying (m, k) candidates. Using these steps,
our goal is to empirically prove the existence of an (m, k)
requirement for a control task τi. In the red blocks in Fig. 3, we
specify the steps for finding (m, k) candidates, and in the green
blocks we specify the steps for verifying (m, k) candidates.
When using numbers for the steps in this subsection, we refer
to the number of the steps in Fig. 3.

In the first step, we need a fault rate for which the system
always runs without mission failure, but is high enough
so that any increase would cause mission failure; we refer
to it as fmax. With fmax, the maximum tolerable amount
of faults is injected, thus the minimum number of correct
instances is executed. The knowledge about the minimum
number of correct instances allows us to use protection only
when necessary. Executing instances using protection costs
more execution time than using no protection, so only using
correction versions when necessary will minimize the cost of
protection.

To start the analysis, we configure the system without fault
detection and correction in the second step, so that it only
executes unreliable task versions. After setting the fault rate,
we run the experiment injecting faults into instances of τi.
We record the information about whether a fault occurred in
the instances of τi as explained in Section II-C. We do this
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Fig. 3. The process of finding and verifying (m, k) robustness requirements.
Red instructions are for finding, green ones for verifying (m, k) requirements.

for all instances of τi that are executed by the system in an
experimental run.

In the recorded bit sequence with sufficient amount of
bits, we quantify the correctness to prevent mission failure
by finding the minimal amount of correct instances m in
every k consecutive instances in the third step. To find (m, k)
candidates, we first have to choose an interval for the sliding
window size k. We use a sliding window to slide a window
of size k through the bit sequence to check whether the bit
sequence satisfies a certain requirement. This way, we check
for the whole bit sequence whether a certain (m, k) can be
observed. The goal is to find the best requirement.

We take the bit sequence {1, 1, 0, 1, 1, 0, 1, 1} as an exam-
ple. We use varying sizes of sliding windows to check the
recorded bits, to find potential candidates which guarantee
the prevention of mission failures. By definition, (1, 1) is a
possible candidate which always prevents mission failures, but
it is pessimistic, since the correction version will always be
executed. We rule out all (k, k) constraints and begin with

Fig. 4. Numbers on the test track correspond to the cases in Section IV-B;
red lines depict failed runs, the green line represents a possible successful
run.

(c)
(b)

(a)

Fig. 5. Positions of the robot’s light sensors on the track. In (a) and (b), the
light sensors still trace the path, in (c) the sensors left the line completely.

k = 2. For the simplicity of presentation, we stop at k = 4.

In the bit sequence above, we observe that the minimum
number of correct bits in a sliding window with k = 2 is
always one, thus we know (1, 2) is a potential candidate. With
k = 3, the minimum number of correct bits is two, so (2, 3) is
also a possible candidate. For k = 4, we gather (2, 4). (3, 4)
could also be a candidate, however, it is pessimistic; we are
interested in finding (m, k) with a lower m

k , so that we can
execute less correction versions.

From k = 2 to 4, we gathered (1, 2), (2, 3), and (2, 4) in the
third step. In fourth step, we sort these candidates, beginning
with the best one. We notice that the ratios of (1, 2) and (2, 4)
are equal. We take (2, 4) first because of its higher flexibility.
The list of sorted candidates is: (2, 4), (1, 2), (2, 3).

In the fifth step, our goal is to show that the requirements
prevent mission failure, i.e., we want to verify the (m, k)
requirements, the steps of which are in green in Fig. 3. We
first configure the system with a fault rate ffail > fmax,
which causes the system to fail when no protection is used.
Then, in the sixth step, we sequentially start from the first (the
best) requirement in the list, which is (2, 4). To let the system
always satisfy (2, 4), we use an (m, k)-pattern [16], [13],
e.g., {0, 0, 1, 1} using R-pattern, to decide when to execute
the correction version. If the system runs without mission
failures when fulfilling (2, 4) under ffail, we empirically show
(2, 4) successfully prevents mission failure for τi. If there is
a mission failure with (2, 4) in the seventh step, it may not
offer enough protection, we then try the next best requirement
in the list, (1, 2) in our case, with the pattern {0, 1}, till we
reach the last step.
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B. Experiment Setup

The elliptical track in Fig. 4 is specified with latus rectum
105 cm, semi-latus rectum 68 cm, and path width 2 cm. We
choose this quarter ellipse because it features elements of a
straight and a curved line, motivated by the work in [4].

We deploy the robot on the track and choose a fault rate. The
robot has two objectives: (1) balance itself, (2) trace the path.
Both have to be concurrently satisfied without mission failure.
If the robot falls down or leaves the track, the experimental run
is counted as a failed run. If the robot leaves the track such
that both light sensors are entirely out- or inside the track
as illustrated in Fig. 5) (c), it is counted as a failed run. If
the robot follows the line till the end, without both sensors
leaving it (scenarios (a) and (b) in Fig. 5), it is counted as a
successful run. If the robot leaves the track completely, but
randomly returns to the track, it is counted as a failed run.

Fig. 4 shows the four possible scenarios in the experiments:

• Case 1: The robot drives forward and follows the first
red line. Due to light sensor faults, it does not trace the
path and leaves it as soon as the curvature increases.

• Case 2: The jagged red line is the robot’s course, it
occurs with faults in motor input values.The robot makes
a leap forward and has to balance out that motion by
driving backwards, and then it has to drive forward again
to balance out the backward driving. This leads to the
robot losing balance and falling down.

• Case 3: For the green line, sensor sampling faults lead to
increased steering, in this example towards the outside of
the track, but the system can recover from the errors and
stay on the track. This is considered a successful run; the
robot traces the line till the end.

• Case 4: For the last red line, the (m, k) requirement does
not offer enough protection to keep the robot on the track.
The robot goes off track when the curvature is the highest.

C. Bit Sequence Construction and Tracking

In the robot, the correctness of the instances is stored in one
continuous bit sequence. When a fault is injected, ”0” is added
to the bit sequence, otherwise ”1” is added. We analyze the
bit sequence, find the minimal number of ”1”s for a sliding
window size k, and thus possible (m, k) candidates.

After the robot traces the path while recording the ”1”s
and ”0”s constructing the bit sequence, all possible (i, j) can
be found. When the robot finishes tracing, a background task
starts to analyze the bit sequence and searches for minimal i
for window sizes j. In our setting, the loop starts from j = 3.
The first three bits of the bit sequence are checked, and the
minimal number of ”1”s is stored. Then, the following bits are
analyzed with the sliding window and the minimal number of
”1”s is updated. After the analysis of (i, 3) is finished for the
whole bit sequence, the same procedure is done with (i, 4),
(i, 5), etc. The loop finally goes up to j = 16, but j can be
increased manually.

Fault rate % 20 25 30 35 40
(i,j) (5,16) (5,16) (5,20) (5,20) (5,20)

Fault rate % 10 12 14 16
(i,j) (11,16) (10,16) (10,16) (8,16)

Fig. 6. Potential (m,k) for path tracing (upper table) and balancing (lower
table) in steps of 5% and 2%, respectively.

D. Finding (m, k) for Path Tracing and Balance Control

To find (m, k) requirement candidates, a version of the
system without any protection is used. For τpath, we tried
from f = 5% to f = 60%, and recorded the minimum i
under given window size j in Figure 6. For the simplicity
of presentation, we only present the requirement candidates
under f = 20% to f = 40%, the results for f > 40% do
not differ from the previous ones. Under f ≥ 30%, (5, 20)
appears in all cases in steps of 1% up to f = 52%, thus
we consider a possible (m, k) candidate was observed. The
experiment fails when f > fmax = 52%. To the end, we
choose the requirement (5, 20) as our target for path tracing.
For τbal, f > fmax = 16% causes the robot to lose balance.
The potential robustness requirements are shown in Fig. 6
under different fault rates. We choose (10, 16) as the candidate
for τbal, as it is more stable empirically.

Interestingly, if the motor fault rate is higher than 16%, the
robot makes a small leap forward and has to balance itself
by driving backwards. It has to balance out that backward
movement by leaping forward again, and faults may amplify
that forward movement even further. This way, it increases
its swaying every time, while at the same time the robot
increases the amplitude of its tilt. The control loop in the
balance control tries to correct the previous movement but
falls down in the end. We conclude that although the injection
takes place outside of the balancing application, the motor
input value still has a major impact on the control loop and is
able to corrupt it.

E. Verifying (m, k) for Path Tracing and Balance Control

We now select the potential requirements (5, 20) for the sen-
sors and (10, 16) for the motors and test them with varying f .
We assume ideal correction, thus enforcing (m, k) guarantees
the correctness of m out of any k consecutive instances even
under f = 100%. The fault rates are always chosen such that
f > fmax of the task, so that the system has to compensate
to prevent from mission failure. To enforce (m, k) require-
ments statically, we adopt the concept of (m, k)-patterns [16],
[13]. To empirically prove that an (m, k) requirement is the
minimum one, we conduct the experiments for (m, k) under
different f and check if potentially better choices exist. Several
runs, i.e., a minumum of 20 for one combination of (m, k) and
f are conducted consecutively; if all runs are successful, it is
marked as ”Y”, and as ”N” otherwise. The observations are
presented in Fig. 7 as follows:

• Sensor task: (5, 20) always prevents mission failure
under arbitrary f .
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• Motor task: Although we found the potential require-
ment (10, 16) previously, the robot is not stable and loses
balance leading to mission failure, even under f = 25%.
As shown in Fig. 7, there is no one requirement that is
stable for all f , except for (16, 16).

(m,k) (5,20) (4,20)
f = 60% Y Y
f = 80% Y N
f = 100% Y N

(m,k) (16,16) (14,16) (11,16) (10,16)
f = 25% Y Y Y N
f = 50% Y Y N N
f = 100% Y N N N

Fig. 7. (m, k) tested for the path tracing task (upper table), and balance task
(lower table), f is fault rate, ”Y” stands for stable, ”N” for mission failure.

For τpath, (4, 20) with f = 60% leads to a successful run,
although 60% > fmax. (4, 20) is very close to (5, 20), which
guarantees certain robustness, while 60% is also close to fmax,
the combination of the two leads to successful runs. If the fault
rate is increased, only (5, 20) can guarantee successful runs.
For τbal, there is no requirement satisfying all f , but (11, 16)
is still useful up to 25%. For sophisticated applications such
as a balancer, our approach is successful up to a certain fault
rate and cannot be used with arbitrarily high fault rates. Based
on our empirical data, it is possible to give a guarantee that
there will be no mission failure if we configure the path tracing
task with (5, 20). For the balancer task however, we can only
give this guarantee for f up to 25%. To the end, we conclude
that the robustness requirements for the τpath is (5, 20), and
(11, 16) for τbal for fault rates up to f = 25%.

In reality, faults can occur in every part of the hardware. By
injecting faults into motor and sensor values concurrently, we
improve our model. We already verified the (m, k) require-
ments for τpath and the τbal, therefore we again adopt the
(m, k)-patterns [16], [13] with correction versions and deploy
the robot with (5, 20) for τpath and (11, 16) for τbal.

Even when enforcing (5, 20) with a fault rate of 60% for
the τpath and (11, 16) with 25% for τbal, the compensation
cannot prevent the robot from mission failure, it fails in 10%
of all runs by getting off track. We increased m of the two
requirements minimally, and with (8, 20) for τpath and (13, 16)
for τbal the robot successfully traces the path in all runs and
is stable in terms of balance. The reason comes from the
dependency between τpath and the τbal; both use the motors to
perform their control perspectives. If we compose dependent
requirements together, additional explorations are required.

V. COMPENSATION AND OVERALL UTILIZATION

It is possible to derive (m, k) requirements for different
tasks in the control application, and based on the given (m, k)
requirements, Chen et al. [5] proposed four compensation
techniques, and leverage on the concept of (m, k) pattern [16],
[13], which classifies the task instances into two different
types, either reliable marked as ”1” or unreliable marked as

”0. The compensation techniques prevent from over-provision
in terms of energy consumption while satisfying the hard-real
time requirement (schedulability).

Given a (m, k) pattern, we consider two significant tech-
niques in [5] as follows:
• Static Reliable Execution (SRE): Normally the system

executes τui if the current instance in the given pattern is
marked as ”0”. By following the given pattern, the system
directly executes τ ci when the current instance is marked
as ”1”.

• Dynamic Detection and Recovery (DDR): The given
pattern is represented as several tolerance counters, which
track the number of detected faults on-the-fly. The sys-
tem tolerates any faulty instances with τdi but updates
the counters under tolerant mode. When the counter
is depleted, the system aggressively executes τdi and
compensates with τ ci immediately in the same period once
a fault is detected under safe mode.

Chen et al. [5] show that DDR as an on-line adaption,
dominates the other techniques in terms of overall utilization
under a given configuration. We are interested whether the
conclusions in [5] still hold with more configurations based
on the derived (m, k) requirements in the previous section. In
the following experiments, the R-Pattern [13] is used for both
dynamic and static techniques, and the requirements verified
in this paper are evaluated, i.e., (5, 20) for τpath and (11, 16)
for τbal.

To calculate the overall utilization, we consider the number
of periods, denoted as p, and the numbers of executed unre-
liable, detection, and correction versions of a task, denoted
as u, d, and r, respectively. The overall utilization of the
compensation techniques is defined as: USRE =

u·cui +r·cci
p·Ti

and

UDDR =
cdi ·(d−r)+cci ·(d+r)

p·Ti
. The execution times are as follows:

cci = 700 µs, cdi = 120 µs, and cui = 100 µs, which align with
safety-critical systems [21], which typically use five identical
instances to recover the systems from soft-errors.

The results with (5, 20) requirement for τpath in Fig. 8
indicate that DDR always outperforms SRE in terms of overall
utilization. All experiments indicate that the margin between
USRE and UDDR decreases when the fault rates are higher. The
most significant case is for (5, 20) requirement with f = 30%;
the difference between USRE and UDDR is extremely low with
0.04. We observe that f has more impacts on USRE and UDDR
than the tightness of (m, k) requirements, i.e., the difference
between m and k. By setting (11, 16) requirement for τbal, we
observe that DDR still outperforms all the other techniques
under all tests. UDDR for (11, 16) with f = 30% compared to
f = 20% is only a small amount higher, since the results have
similar patterns in the bit sequence.

Interestingly, if we only alter f , the difference between USRE
and UDDR becomes smaller, as can be seen in Fig. 8. This is
because a higher f requires more compensation with τ ci when
DDR is used. The on-line adaptions are more effective when
f is lower, e.g., less than 10%, in which case we profit the
most from them in the overall utilization, especially in the case

6



(m,k)=(5,20) (m,k)=(15,20) (m,k)=(11,16)

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

Fault Rate per Instance

O
ve

ra
ll 

U
til

iz
at

io
n

Approach
SRE
DDR

Fig. 8. Overall utilization USRE in red and UDDR in blue after applying the techniques: (5, 20) and (15, 20) for τpath, (11, 16) for τbal; lower is better.
The execution times are specified as cci = 700 µs, cdi = 120 µs, and cui = 100 µs.
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Fig. 9. Overall utilization USRE in red and UDDR in blue after applying the techniques: (5, 20) and (15, 20) for τpath, (11, 16) for τbal; lower is better.
The execution times are specified as cci = 300 µs, cdi = 200 µs, and cui = 100 µs.

of DDR. If only m is increased with a constant k, then the
difference between USRE and UDDR increases, because SRE
executes more τ ci in a sliding window with higher m, while
DDR can recover from faults without executing many τ ci .
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Fig. 10. The linear dependences between the scale factor s on the x axis,
and the ratio USRE

UDDR
on the y-axis describe how much DDR dominates SRE in

the overall utilization.

Within the experiments, we notice that in some cases SRE as
a simple off-line method can outperform the on-line adaption
DDR. In Fig. 9, we specify the execution times of the system

as cci = 300 µs, cdi = 200 µs, and cui = 100 µs, since error
detection requires a minimum of two identical executions to
compare the values, and error correction requires a minimum
of three identical executions for majority voting. For (5, 20)
in Fig. 9, SRE clearly outperforms DDR, and the higher f ,
the more outperforming for this robustness requirement. For
(15, 20) and (11, 16), SRE also outperforms DDR in some
cases. This motivates us to investigate the impact of the
difference between the correction version τ ci and the detection
version τdi by adopting a scaling factor s, i.e., s =

cci
cdi

. The
considered parameters here are the fault rate f , the ratio m

k
and the scaling factor s. In the results in Fig. 8, s is 5.83 and
in Fig. 9, s is 1.5.

Fig. 10 presents the linear dependences between the scaling
factor s and the ratio USRE

UDDR
. We present the dependences for

four combinations of (m, k) and f , a tight or relaxed (m, k)
requirement in tandem with lower or higher f . In all cases,
we observe that the higher s, the more benefit we get from
DDR. If we only increase f , the gradient decreases (see blue
and black plot), since more faults force DDR to execute τdi
and τ ci within one period. If we only increase m, the gradient
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increases, because when the system executes more τ ci , it gets
more penalties with additional utilization, which increases
USRE more than UDDR. On the lower end, we see that for
s = 1.5, SRE only has 1.2 times overall utilization compared
to DDR for the red plot, and one for the green plot. We observe
a value smaller than one for the blue and black plot for s < 2,
which means that in this region SRE outpeforms DDR, in
which case f = 30%.

As a consequence, we conclude that it is not always
beneficial to solely adopt the on-line adaption DDR, though it
seems to be the dominant technique in many cases. When
f and interference noise are higher, the margin between
the on-line adaption and the off-line reliable execution gets
smaller; this can also be observed for more relaxed (m, k)
requirements. If the system designer analyses the execution
time of their execution versions τ ci , τdi and τui and finds out
that that the difference between the error correction version
and the error detection version is small, e.g., s < 2, the
off-line reliable execution could be a more beneficial choice.
However, the (m, k) requirement and f need to be considered
as well. Therefore, the choice between the techniques should
be considered thoroughly.

VI. CONCLUSION

Expanding the fault injection mechanism to motor steer-
ing values, we explore the interplay among robustness re-
quirements with fault injections. Comprehensive case studies
show how the (m, k) robustness requirements can be found
empirically for applying compensation techniques to avoid
over-provisioning. The results indicate that the effectiveness
of compensation techniques mainly depends on the execution
time of correction versions and the fault rates.

To the best of our knowledge, this paper provides the first
empirical approach for finding (m, k) robustness requirements
on different fault locations. However, our study is still limited
to control applications with least protections and perfect
recovery techniques. Moreover, our soft-errors are ideally
detectable and recoverable. There is also no mathematical
theory yet for deriving the suitable (m, k) requirement while
considering the stability for predefined controllers. We leave
such a fundamental topic as future work.
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