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Abstract This article describes a method to develop a generic approach to acquire navigation
capabilities for the standard platform of the IMAV indoor competition: the Parrot AR.Drone.
Our development is partly based on simulation, which requires both a realistic sensor and motion
model. The AR.Drone simulation model is described and validated. Furthermore, this article
describes how a visual map of the indoor environment can be made, including the effect of sensor
noise. This visual map consists of a texture map and a feature map. The texture map is used
for human navigation and the feature map is used by the AR.Drone to localize itself. To do so,
a localization method is presented. An experiment demonstrates how well the localization works
for circumstances encountered during the IMAV competition.

1 Introduction

Nowadays, small quadrotors with on-board stabilization like the Parrot AR.Drone can be bought
off-the-shelf. These quadrotors make it possible to shift the research from basic control of the
platform towards applications that make use of their versatile scouting capabilities. Possible
applications are surveillance, inspection and search & rescue. Still, the limited sensor suite and the
fast movements make it quite a challenge to fully automate the navigation for such platforms. One
of the prerequisites for autonomous navigation is the capability to make a map of the environment.

The paper proceeds as follows. In Section 2 we give a short overview of related work. Section
3 describes our methods. First the simulation model of the AR.Drone is outlined in Section 3.1.
Section 3.2 describes how the AR.Drone’s pose can be estimated. This pose is used to build two
visual maps: a texture map (Section 3.3.1) and a feature map (Section 3.3.2). The texture map
is used for human navigation and the feature map can be used to localize the AR.Drone (Section
3.4). We present experiments and results in Section 4. This section demonstrates how well the
localization works for circumstances encountered during the IMAV competition. Conclusions and
future work are covered in Section 5 and 6.

2 Related work

Our approach was inspired by Steder et al. [1], who presented a system that allows aerial vehicles
to acquire visual maps of large environments using comparable setup with an inertial sensor and a
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2 Integrating sensor and motion models to localize an autonomous AR.Drone

low-quality camera pointing downward. In their approach the inertial sensor was used to estimate
a number of parameters in the spatial relation between two camera poses, which reduces the
dimensionality of the pose to be estimated. Equivalent with our approach, Steder uses Speeded-
Up Robust Features (SURF) [2] that are invariant with respect to rotation and scale. By matching
features between different images, one can estimate the relative motion of the camera and construct
the graph that serves as input to the TORO-based network optimizer [3].

While Steder uses a Euclidean distance measure to compare the correspondences of the features
in two images, Caballero et al. [4] indicate that this is a last resort. They are able to make a robust
estimation of the spatial relationship on different levels: homogeneous, affine and Euclidean. First
an attempt is made to estimate complete homogeneous transformation (8 degrees of freedom).
When the number of correspondences is too low an affine transformation (6 degrees of freedom)
is estimated. Only when the features in the image are really noisy a Euclidean transformation (4
degrees of freedom) is estimated.

Since the 2011 summer edition of the Micro Air Vehicle competition, a team can choose to
either use a standard platform or create their own. Prior to 2011 no standard platform existed in
the competition, resulting in participants to focus on constructing optimal sensor configurations.
For instance, [5] describes a quadrotor equipped a Hokuyo laser scanner, allowing many techniques
developed for ground robotics to be applied on their flying robot. Another example is the approach
from [6], where an omnidirectional camera was mounted on the platform, which was used to acquire
a heading estimation from the optical flow. At the Spring 2011 Micro Air Vehicle competition1 a
Parrot AR.Drone was extended with an infrared camera to be able to follow people [7]. Because the
AR.Drone is a quite recent development, the number of studies based on this platform is limited.
A recent publication is from Cornell University [8], where an AR.Drone is used to automatically
navigate corridors and staircases based on visual clues.

Figure 1: 3D model of a gym with realistic ground and wall textures which represents the circum-
stances during the Micro Air Vehicle pylon challenge.

The other teams during the 2011 summer edition of the IMAV indoor competition relied on
detecting the brightly coloured pylons to navigate their drones. In 2010 edition the PixHawk team
[9] already demonstrated that autonomous navigation is possible by making a visual map from
the ground, although they needed artificial texture on the ground. In the method described in
this article the natural texture of the ground in the gym is used.

As indicated in [10], an accurate simulation of a quadrotor is a valuable asset, which allows
safe and efficient development of control algorithms. Additionally, it gives direct access to ground
truth values and allows to design repeatable experiments. Validation of the sensor and actuator
models is essential to guarantee the utility of both development and experimentation. Another
useful feature is that the simulation environment is equipped with an editor, which allows detailed
modifications to the simulated environment. The details needed for the experiment can be easily
added as illustrated in Figure 1.

1http://www.springimav2011.com
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3 Methods

In this section, we describe the AR.Drone simulation model, which includes a sensor and motion
model. Furthermore, we describe how a visual map of the indoor environment can be made and
how this map can be used by the AR.Drone to localize itself.

3.1 Simulation model

An accurate simulation of a quadrotor is a valuable asset, which allows safe and efficient develop-
ment of control algorithms. Additionally, it gives direct access to ground truth values and allows
to design repeatable experiments. The simulation environment selected is USARSim [11], which
is based on the Unreal Tournament game engine2. It allows physical realistic simulations and a
versatile environment editor.

3.1.1 Motion model

The AR.Drone is a stabilized system (Figure 2). When no control signals are given the quadrotor
hovers on the same location, which is accomplished by a feedback loop which uses the sonar (for
altitude) and the bottom camera (for horizontal position). The simulation makes use of this
assumption. When no control signal is given, the AR.Drone stays at the same location. When a
control signal for a longitudinal or lateral velocity is given, it calculates the force needed to reach
that velocity (and assuming that the drag force Db increases linearly with the velocity). When
the control signal stops, the drag force Db slows the quadrotor down until it hovers again. The
USARSim quadrotor model uses the Karma physics engine (part of the Unreal Engine [12]) to
simulate the force and torque acting on the aircraft. Yet, only the overall thrust is calculated, the
differential thrust is not used. When moving in the horizontal plane, a real quadrotor changes its
angle of attack (which is the defined as the angle between direction of motion eV and the body
frame eN [13]). The Karma physics engine does not need this angle to calculate the resulting
horizontal movement. Yet, this angle of attack has direct consequences for the viewing directions
of the sensors, so the roll and the pitch should be adjusted in correspondence with horizontal
movements. The active control of the AR.Drone is incorporated in the value of the dragforce Db.

Figure 2: Free body diagram of a quadrotor helicopter [14]. Note that a right-handed orthogonal
coordinate system is used with the z-axis pointing down. Each of the 4 motors has a thrust Ti and
momentum Mi. Together the motors should generate sufficient vertical thrust to stay airborne,
which is indicated by the gravity force mg in the direction eD. Differential thrust between the
motors can provide roll φ and pitch θ torques, which lead to an angle of attack α. This can result
in fast movements of the helicopter (e.g. in the horizontal plane) in the direction eV which a
resulting drag force Db.

2http://www.unrealengine.com/
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4 Integrating sensor and motion models to localize an autonomous AR.Drone

Control signals for vertical and rotational movements (around the z-axis) are calculated in the
same manner. For vertical movements not only the drag force Db is taken into account. In this
case also the gravitational force mg is included in the equation. Rotations around the z-axis stop
quite quickly when no control signal is given. For this rotational movement a strong drag force
Dr = 20×Db is used to model the additional inertia.

Figure 3: 3D model of the Parrot AR.Drone. This is a model optimized for simulation, based on
the highly detailed model provided by Parrot SA.

The result is a simulation model (Figure 3), which maneuvers in a way similar to the actual
AR.Drone, as demonstrated in Section 4.1. Both the simulated and real system have the same
dimensions (0.525, 0.515, 0.115)m. The principal elements of inertia are calculated correspondingly
to (0.0241, 0.0232, 0.0451)kg ·m2, assuming a homogeneous distribution of the mass.

3.1.2 Sensor model

The USARSim simulator has a set of configurable sensors, which include all the sensors from the
AR.Drone. Each mounted sensor is triggered at fixed time intervals (every 200ms by default).
The AR.Drone’s time interval is reduced to 5ms, producing up to 200 sensor measurements per
second.

The sonar sensor emits a number of traces, which in combination form a cone. First the sensor
sends out one trace in the direction of its orientation remembering the measured range. Then
it does several conical measurements and calculates the minimal measured distance. If the angle
between a trace and the surface normal is smaller than angle αmaxIncidence the measurement is
ignored.

The acceleration sensor computes the body accelerations using the AR.Drone’s velocity:

at = (vt − vt−∆t)/∆t (1)

where ∆t is the time between measurements and v is the velocity of the AR.Drone. The velocity
of an object is modeled explicitly by the simulator.

The camera is modeled by creating a viewpoint in the Unreal engine. The field of view is
set to 64 degrees and the resolution is set to 176 × 144 pixels, matching the specifications of the
AR.Drone’s bottom camera. USARSim supports dynamic lightning to produce realistic images
and shadows. However, the camera sensor lacks a noise model and doesn’t emulate the effect of
automatic white balancing that is performed in most cameras (including the AR.Drone’s camera).
Our previous paper [15] briefly describes the influence of white balancing on image stitching and
how to mimic the real images as close as possible.

3.2 Pose estimation

In order to initialize a visual localization and mapping algorithm, a good estimate of the position
based on the internal sensors of the AR.Drone is essential. The AR.Drone has several sources of
information available about its movements and the majority of its computing power is dedicated
to combine these sources into combined estimates. Here this information is combined into a state
vector, with all information needed to initialize visual localization and mapping.
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The AR.Drone is equipped with a number of sensors, which give frequent updates about the
motion. The inertial sensor measures the body accelerations and angular velocities. A proprietary
filter on board of the AR.Drone converts the angular velocities to an estimated attitude (orien-
tation). A sonar sensor is used to measure the altitude of the vehicle. In addition to the body
accelerations, the AR.Drone sends an estimate of its estimated body velocity. This estimate is
based on the inertia measurements and optical flow obtained from the relative motion between
camera frames. The details of this algorithm are proprietary information of the manufacturer.

The information from the sensors are used in an Extended Kalman Filter (EKF) to estimate
the current position. The EKF has been considered [16] the facto standard in the theory of
nonlinear state estimation. Our EKF state vector comprises a position vector pW , velocity vector
vW , acceleration vector aW and attitude (orientation) vector qW . All vectors are 3-dimensional
Cartesian coordinates.

x = [pW vW aW qW ] (2)

The filtered attitude (orientation) from the proprietary onboard filter is written directly to
the attitude vector qW of the state. Steder et al. [1] found that roll and pitch measurements
are accurate, even for low-cost sensors and can be directly integrated into the state. The body
accelerations can be used to estimate the current velocity of the vehicle. However, we found that
the low-cost acceleration sensor from the AR.Drone provides unreliable data. This is modeled by
a large uncertainty in the covariance matrix Q of the EKF.

Unlike the acceleration data, the velocity estimate sent by the AR.Drone is accurate enough
for integration into the state. Based on the previous position pt−1, the state’s velocity vt and time
between measurements, the new position pt can be calculated as follows:

pt = pt−1 + vt ×∆t + at × 0.5∆t2 (3)

where ∆t is the variable time (seconds) between the last two measurements. The body accel-
erations or velocity is sufficient to estimate the vehicle’s altitude. However, the sonar’s altitude
measurement can be integrated into the EKF to improve the altitude estimate. The sonar sensor
is not sensitive to drift because it provides an absolute altitude measurement. Relying only on the
sonar sensor is not optimal since the measurements depend heavily on material and structure of
the floor.

3.3 Visual mapping

3.3.1 Texture map

Now that we have an estimate of the AR.Drone’s position and attitude in the world, we can
use this information to build a visual map of the environment. The AR.Drone is equipped with
a down-looking camera that has a resolution of 176 × 144 pixels. The frames captured by this
camera can be warped on a flat canvas to create a visual map. Directly merging the frames on
the canvas is not possible, because individual frames can be taken from a broad range of angles
and altitudes. Instead, perspective correction is applied and all frames are normalized in size and
orientation.

Before describing how a frame is warped, some basics about image formation are explained.
The AR.Drone’s camera is modeled using a pinhole camera model (Figure 4). In this model, a scene
view is formed by projecting 3D points into the image plane using a perspective transformation.
3D camera coordinates are typically described with homogeneous coordinates.

 xf

yf

1

 = A[R|t]


xw

yw

zw

1

 (4)
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6 Integrating sensor and motion models to localize an autonomous AR.Drone

Figure 4: In the pinhole camera model, a scene view is formed by projecting 3D points into the
image plane using a perspective transformation.

where xf and yf represent a 2D point in pixel coordinates and xw, yw and zw represent a 3D point
in world coordinates. The 3× 3 camera intrinsic matrix A includes the camera’s focal length and
principal point. The 3 × 4 joint rotation-translation matrix [R|t] includes the camera extrinsic
parameters, which denote the coordinate system transformations from 3D world coordinates to
3D camera coordinates. Equivalently, the extrinsic parameters define the position of the camera
center and the camera’s heading (attitude) in world coordinates.

Figure 5: Visual map: warping a camera frame on the map’s canvas. The frame’s corners (px)
are mapped to 2D world coordinates that lie on the world’s plane. The 2D world coordinates of
the frame are mapped to the map’s canvas coordinates (px).

In order to warp a camera frame on the correct position of the canvas, we need to know which
area of the world (floor) is captured by the camera. This is the inverse operation of the image
formation described above. Instead of mapping 3D world coordinates to 2D pixel coordinates, 2D
pixel coordinates are mapped to 3D world coordinates (mm). It is impossible to recover the exact
3D world coordinates, because a pixel coordinate maps to a line instead of a point (i.e., multiple
points in 3D world coordinates map to the same 2D pixel coordinate). This ambiguity can be
resolved by assuming that all 3D world points lie on a plane (zw = 0), which makes it possible to
recover xw and yw. The 2D world coordinates of the frame’s corners are obtained by casting rays
from the four frame’s corners (top of Figure 5). The 2D world coordinate that corresponds to a
frame corner is defined as the point (xw, yw, 0) where the ray intersects the world plane (zw = 0).
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 xw

yw

0

 =
(p0 − l0) · n

l · n
(5)

where n =
[

0 0 −1
]T is a normal vector to the world plane and p0 =

[
0 0 0

]T is a point
on the world plane. l is a vector in the direction of the ray and l0 = pW is a point where the ray
intersects the camera plane. l is computed as follows:

l =

∣∣∣∣∣∣RA−1

 xf

yf

1

∣∣∣∣∣∣ (6)

Both the camera’s extrinsic and intrinsic parameters are required for this operation. The
extrinsic parameters (position and attitude of the camera) are provided by the EKF state vector.
The camera intrinsic parameters are estimated using OpenCV’s camera calibration tool3. The
implementation is based on the work from [17, 18].

Now, a relation between the pixel coordinates and world coordinates is known. However, the
2D world coordinates (mm) need to be mapped to the corresponding 2D pixel coordinates (xm, ym)
of the map’s canvas. A canvas with a fixed resolution of 4.883mm/px is used.[

xm

ym

]
= smap ·

[
xw

yw

]
(7)

where smap = 1/4.884.
Now, the map’s pixel coordinates of the frame corners are known (bottom of Figure 5). In order

to transform a frame to the map’s canvas, a relation between the frame’s pixels and map’s pixels
is required. A transformation from the frame’s corner pixel coordinates and the corresponding
pixel coordinates of the map’s canvas can be computed. xm,i

ym,i

1

 ∼ H

 xf,i

yf,i

1

 (8)

The local perspective transformation H is calculated by minimizing the back-projection using
a least-squares algorithm. We used OpenCV’s findHomography3 to find the perspective transfor-
mation. This transformation describes how each frame’s pixel needs to be transformed in order to
map to the corresponding (sub) pixel of the map’s canvas. The transformation is used to warp the
frame on the map’s canvas. By warping the frame on a flat canvas, implicit perspective correction
is applied to the frames. We used OpenCV’s warpPerspective4 to warp the frame on the map’s
canvas.

In this way a texture map can be built. This map consists of a set overlapping textures.
The placement and discontinuities of the overlapping textures could be further optimized by map
stitching, as described in [15]. Here the texture map is used for human navigation. For automatic
navigation a feature map is used, as described in the next section.

3.3.2 Feature map

In addition to the visual map described above, a grid of image features (feature map) is created
using a method we have developed. This feature map will be used for localization purposes, as
described in Section 3.4. The inertia measurements provide frequent position estimates. If the
AR.Drone is able to relate a video frame to a position inside the feature map, the vehicle is able to
correct this drift long enough to build a map as large as the indoor arena of the IMAV competition
(as described in Section 4).

3http://opencv.itseez.com/modules/calib3d/doc/camera calibration and 3d reconstruction.html
4http://opencv.itseez.com/modules/imgproc/doc/geometric transformations.html
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8 Integrating sensor and motion models to localize an autonomous AR.Drone

Figure 6: Feature map: adding visual features to a feature grid. Each feature found in the camera
frame is mapped to the corresponding 2D world coordinates. The 2D world coordinates are
mapped to the grid cell the feature belongs to. For each cell, only the best feature is stored.

A 2D grid with a fixed resolution of 100×100mm per cell is used. From each camera frame we
extract Speeded-Up Robust Features (SURF) [2] that are invariant with respect to rotation and
scale. Each feature is an abstract description of an ”interesting” part of an image (e.g., corners).
A feature is described by a center point in image sub-pixel coordinates and a descriptor vector
that consists of 64 floats.

Each feature that is detected in a camera frame is mapped to the corresponding cell of the
feature map. A feature’s center point (xf , yf ) is transformed to its corresponding position in 2D
world coordinates (xw, yw), visible in the top of Figure 6. This is done by casting a ray from the
features pixel coordinates in the frame. The method is similar to the method used for casting ray’s
from the frame’s corners (Section 3.3.1). Finally, the 2D world position (xw, yw) of each feature
is transformed to the corresponding cell indices (xbin, ybin), visible in the bottom of Figure 6.[

xbin

ybin

]
= Round(sbin ·

[
xw

yw

]
) (9)

where sbin = 0.01.
For each cell, only the best feature (e.g. with the highest response) is kept and the other

features are dropped. If a cell already contains a feature descriptor (gridx,y 6= ∅), the cell is
ignored.

gridx,y =

{
arg maxd∈Dx,y response(d) if gridx,y = ∅
gridx,y else

(10)

where Dx,y is the set of features that is mapped to cell xbin, ybin.
The remaining (best) feature descriptors, including the corresponding world coordinates (xw, yw),

are added to the corresponding grid cells.

3.4 Localization

The feature map created in the previous section can be used for absolute position estimates, at
the moment of loop-closure (when the AR.Drone is above a location where it has been before).
This allows to correct the drift that originates from the internal sensors of the AR.Drone. The
inertia measurements provide frequent position estimates. However, the estimated position will
drift over time, because the errors of the inertia measurements being accumulated. The feature
map that is created can be exploited to reduce this drift, because localization against this map
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provides absolute positions of the vehicle. These absolute positions are integrated into the EKF
and improve the estimated position and reduce the covariance of the state.

When a camera frame is received, SURF features are extracted. Each feature consists of a
center position in pixel coordinates (xf , yf ) and a feature descriptor. A feature’s center point
(xf , yf ) is transformed to its corresponding position in 2D world coordinates (xw, yw), visible in
the top of Figure 6. This is done by casting a ray from the features pixel coordinates in the frame.
The method is similar to the method used for casting ray’s from the frame’s corners (Section
3.3.1).

The next step is matching the feature descriptors from the camera frame against the feature
descriptors from the feature map. When the feature map is quite large, this process becomes
slow. However, the estimated position of the vehicle can be used to select a subset of the feature
map. This can be done by placing a window that is centered at the vehicle’s estimated position.
The covariance of the estimated position can be used to determine the size of the window. The
set of frame descriptors (query descriptors Dq) is matched against the map descriptors (training
descriptors Dt). Matching is done using a brute force matcher that uses the L2 norm as simi-
larity measure. For each query descriptor dq from the frame, function C(dq) selects the training
descriptor dt from the map that minimizes the L2 norm:

C(dq) = arg min
dt∈DT

L2(dq, dt) (11)

where DT is the set of map descriptors within a window around the estimated position. The L2
distance between two descriptors a and b is defined as:

L2(a, b) =

√√√√ N∑
i=1

|ai − bi|2 (12)

where N = 64 is the length of the SURF descriptor vector.
Each query descriptor (frame) is matched against the descriptor from the training descriptors

(map) that is most similar. Please note it is possible that multiple descriptors from the frame are
matched against a single descriptor from the map.

For each match C(dq, dt) the 2D world coordinates (xw,dq
, yw,dq

) and (xw,dt
, yw,dt

) of both
descriptors are already computed. These point pairs can be used to calculate a transformation
between the query points (frame) and training (map) points. This transformation describes the
relation between the EKF estimated vehicle position (described in Section 3.2) and the position
according to the feature map.

Different types of transformations can be used to describe the relation between the point pairs
(e.g., perspective transformation or affine transformation). However, if not all of the point pairs
fit the transformation (due to outliers), the initial transformation estimate will be poor. We use
Random Sample Consensus (RANSAC) [19] to filter the set of matches in order to detect and elim-
inate erroneous matches (point pairs). RANSAC tries different random subsets of corresponding
point pairs. It estimates the transformation using this subset and then computes the quality of
the computed transformation by counting the number of inliers.

Since the point pairs are normalized, the perspective deformation and scale differences be-
tween the point pairs (matches) are already removed. The remaining degrees of freedom are the
translation and rotation between the point pairs. Perspective transformation and affine transfor-
mation provide more degrees of freedom than required. This is potentially dangerous, because an
incorrect transformation may still results in a high percentage of inliers. For example, this may
happen when multiple query descriptors (frame) are matched against a single training descriptor
(map). In that case, a perspective or affine transformation is found that scales all points to a
single position. This transformation does not correspond with the actual translation and rotation,
but is a valid transformation according to the RANSAC algorithm.

Instead of computing a full perspective, affine or Euclidean transformation, here only the
translation in x and y direction is estimated. The rotation is estimated independently, as described
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10 Integrating sensor and motion models to localize an autonomous AR.Drone

Figure 7: Localization: features from the camera frame (red circles) are matched against the
features from the feature map (black circles). All the feature points (pixels) are converted to 2D
word coordinates. The translation T between both feature sets is calculated and used to correct
the estimated position of the AR.Drone.

at the end of this section. The translation is estimated by taking a subset of 3 random point pairs.
The translation for those points is computed as follows:

Tx =
∑N

i (xw,dt,i − xw,dq,i)
N

(13)

Ty =
∑N

i (yw,dt,i − yw,dq,i)
N

(14)

where N = 3 is the number of point pairs.
The standard deviation of translation T is defined as:

σx =

√√√√ N∑
i

((xw,dt
− xw,dq

)− Tx)2 (15)

σy =

√√√√ N∑
i

((yw,dt − yw,dq )− Ty)2 (16)

The confidence c of translation T is computed using the standard deviation:

cT = 1− σx/θd − σy/θd (17)

where θd = 200.
After RANSAC has performed all iterations, the translation with highest confidence Tbest is

used as final translation. A big advantage of this two degrees of freedom approach is that it is very
efficient, allowing a great number of RANSAC iterations to find the optimal subset of point pairs.
If the confidence cT of the translation Tbest exceeds a threshold, the transformation T is added
to the estimated position pW to compute the corrected position pW∗. This corrected position is
integrated in the EKF as measurement with low covariance. Please note this method requires that
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the estimated yaw of the vehicle is close to the actual yaw. A large difference between estimated
and actual yaw results in low confidence cT . Localization on regular basis should sufficiently
correct errors in the estimated yaw.

If the confidence is exceptionally high (i.e., good matches are found), the selected point pairs
are used to determine the rotation between the estimated yaw and the real yaw of the vehicle.
This rotation is used to correct the drift in yaw. The rotation is computed using Kabsch algorithm
[20]. This method computes the optimal rotation matrix that minimizes the RMSD (root mean
squared deviation) between two paired sets of points. Like the translation, the rotation is added
to the estimated rotation to calculate the correct rotation. This rotation is directly written to the
EKF state.

This localization method allows us to exploit the feature map created in Section 3.3.2 and
get absolute position estimates which can be used to autonomously navigate the AR.Drone, as
demonstrated in the next section.

4 Results

4.1 Validation of the simulation model

To evaluate the USARSim simulation model, a set of maneuvers is flown with the actual AR.Drone
and simulated AR.Drone. The differences between the maneuvers are studied in detail. To enable
multiple repetitions of the same maneuver it is described as a set of time points (milliseconds
since initialization) each coupled to a movement command. We wrote wrappers for the AR.Drone
programming interface and for USARSim interface which read these scripts and output a control
signal, using the system clock to manage the timing independently from the game engine and the
AR.Drone hardware. Orientation, altitude and horizontal speed are recorded at a frequency of
200Hz during the maneuvers. These are gathered through the AR.Drone’s internal sensors and
the build-in algorithms, which are also used by the controller to operate the drone. The filtered
output of the MEMS gyroscope is used for estimating orientation. The filtered output of the
ultrasound distance sensor is used for estimating altitude. The optical flow algorithm using the
bottom camera is used for estimating the horizontal (linear and lateral) speeds. The simulator
has equivalent sensors. In addition, simulation can provide ground-truth data. Also for the real
maneuvers an attempt was made to generate ground truth via an external reference system; the
movements were recorded with a synchronized video system consisting of four firewire cameras,
capturing images at 20 frames per second at a resolution of 1024× 768 pixels. The position of the
AR.Drone in each frame has been annotated by hand.

Corresponding to NIST guidelines [21] a set of experiments of increasing complexity was per-
formed. For the AR.Drone four different experiments were designed. The first experiment is a
simple hover, in which the drone tries to maintain its position (both horizontal and vertical). The
second experiment is linear movement, where the drone actuates a single movement command.
The third experiment is a small horizontal square. The last experiment is a small vertical square.

4.1.1 Hovering

Quadrotors have hovering abilities just like a helicopter. The stability in maintaining a hover
depends on environmental factors (wind, underground, aerodynamic interactions) and control
software. If no noise model is explicitly added, the USARSim model performs a perfect hover;
when no control signal is given the horizontal speeds are zero and the altitude stays exactly the
same.

For the AR.Drone, this is a good zero-order model. One of the commercial features of the
AR.Drone is its ease of operation. As part of this feature it maintains a stable hover when given no
other commands, which is accomplished by a visual feedback loop. So, the hovering experiment is
performed indoors with an underground chosen to have enough texture for the optical flow motion
estimation algorithm.
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12 Integrating sensor and motion models to localize an autonomous AR.Drone

As experiment the AR.Drone maintains a hover for 35 seconds. This experiment was repeated
10 times, collecting 60k movement samples for a total of 350 seconds. Over all samples the mean
absolute error in horizontal velocity (the Euclidean norm of the velocity vector) is 0.0422m/s with
a sample variance of 0.0012m2/s2. From the samples we obtain the distribution of the linear and
lateral velocity components.

From the velocity logs the position of the AR.Drone during the 35-second flight was calculated.
The mean absolute error of the horizontal position is 0.0707m with a sample variance of 0.0012m2.

4.1.2 Horizontal movement

In this experiment the AR.Drone is flown in a straight line. It is given a control pulse (i.e., pitch)
with a constant signal for 5 different time periods: 0.1s, 1s, 2s, 3s, and 5s. Each pulse is followed
by a null signal for enough time for the AR.Drone to make a full stop and a negative pulse of
the same magnitude for the same period, resulting in a back and forth movement. In Figure 8
the red line shows the control signal, the blue line the response (i.e., velocity) of the AR.Drone.
The experiment was repeated for 5 different speeds. The control signal s specifies the pitch of the
AR.Drone as a factor (between 0 and 1) of the maximum absolute tilt θmax, which was set to the
default value5. The trials were performed with the values of 0.05, 0.10, 0.15, 0.20, 0.25 for the
control signal s.
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Figure 8: Velocity of the real AR.Drone (blue) on a number of control pulses (red) with a pitch of
s = 0.15× θmax .

Robots in USARSim are controlled with a standardized interface, which uses SI units. A robot
in USARSim expects a DRIVE command with a speed in m/s and not the AR.Drone native signal
s. Thus in order to fly comparable trials the relation between the AR.Drone’s angle of attack α
and the corresponding velocity v has to be investigated. When flying straight forward in no-wind
conditions, the angle of attack α is equivalent with the pitch θ. In order to do this the samples
from the logs where the AR.Drone has achieved maximum velocity have to be selected. Closer
inspection of the velocity logs show that in each trial there is still constant increase of velocity for
the first three pulses. For the last two pulses there is obvious plateauing, which indicates that the
last two seconds of the five-second pulses is a good indication for the maximum velocity. Therefore
the velocity at those last two seconds was used to compute mean absolute speeds v̄, which are
combined with the mean absolute pitch θ̄ as measured by the MEMS gyroscope. The estimates for
v̄ and pitch θ̄ are presented in Table 1 together with their standard deviation. Extrapolating the

5ARDrone firmware (1.3.3)
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mean pitch θ̄ ' 7.5o at control value s = 0.25 to the maximum control signal gives an indication
of the AR.Drone’s maximum pitch θmax ' 30o value. For typical usage, the angle of attack never
exceeds 12o degrees.

Control signal s
0.05 0.10 0.15 0.20 0.25

v̄ (m/s) 0.4044 0.6284 1.4427 1.7587 2.2094
σv (m/s) 0.096 0.226 0.070 0.126 0.165
θ̄ (deg) 1.4654 2.9025 4.1227 5.7457 7.4496
σθ (deg) 0.455 0.593 0.482 0.552 0.921

Table 1: Averaged velocity v̄ measured at the end of a 5 seconds pulse of the control signal s,
including the corresponding pitch θ̄ as measured by the gyroscope.

To convert the AR.Drone’s control signal s to USARSim commands v a least-squares fit through
the points of Table 1 is made for the linear function v = c · θ, which gives us c = 0.2967. Equation
18 gives the final conversion of a control signal s to a velocity v in m/s given the AR.Drone’s
maximum pitch θmax in degrees.

v = 0.2967 · s · θmax (18)

The USARSim model has a parameter Pθ for calculating the angle (radian) given the velocity,
which is the value P̂θ = 0.057, as used in subsequent simulations.

The next experiment checks the acceleration of the real and simulated AR.Drone. First we give
an estimate of how quickly the AR.Drone’s controller changes its pitch to match the commanded
pitch and how well it can keep it. For this we select all samples from 100ms after the start of the
2s, 3s and 5s pulses till the first sample at which the commanded pitch has been reached. This
corresponds to the time-span between which the AR.Drone has started to act on the change in
the control signal until it reaches the commanded pitch. The result is illustrated in Figure 9.
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Figure 9: Velocity of the real (blue) and simulated AR.Drone (red) on the same control pulses as
shown in Figure 8.

As one can see, the acceleration has for the real and simulated AR.Drone nearly the same
slope. The deceleration of the simulated AR.Drone is slightly lower. In the real AR.Drone the
feedback loop (based on the optical flow of the ground camera) actively decelerates the system.
Overall, the dynamic behavior of the simulator closely resembles the dynamic behavior of the real
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14 Integrating sensor and motion models to localize an autonomous AR.Drone

system. Additionally, tests with more complex maneuvers (horizontal and vertical square) have
been recorded, but unfortunately not yet analyzed in detail.

4.2 Mapping

An experiment has been carried out to evaluate the mapping approach. This experiment is per-
formed with the AR.Drone and the simulated AR.Drone using USARSim.

6 m

2 
m

A/EB F

GD/HC

6 m

Figure 10: Top view of the experiment’s floorplan. The AR.Drone flew an 8-shape. The labels
A-G represent six landmarks that provide ground truth to evaluate the accuracy of a map.

A sports hall is used as indoor testing environment. This environment closely resembles the
environment of the IMAV2011 indoor competitions. Six magazines are laid out on the floor at the
locations A, B, C, D, F, G in Figure 10. These magazines are used as landmarks that are easily
recognizable in the map. The distances between these landmarks are known, providing ground
truth. The AR.Drone flew in a 8-shape above the floor to capture an intermediate loop (point
A and E in Figure 10). In addition to the landmarks, the lines on the floor provide visual clues
about the overall quality of a created map. Care has been taken to mimic the gym floor in the
simulated environment. The floor of the simulated environment consists of an image taken at the
IMAV2011 competitions. The image was taken from the gym tribune and warped with an image
editor to remove the perspective view as much as possible. Unfortunately, some warping artifacts
are visible on the simulated gym floor.

The mapping method is performed on the floor as described above. The distances between
the landmarks inside the generated map (red lines) are compared to the know ground truth to
compute the error of the map.

Figure 11: Visual map created by the mapping method. Camera images are taken by the
AR.Drone, flying at approximately 70cm altitude.

The results of this experiment can be found in Table 2 and Figures 11 (real AR.Drone) and
12 (simulated AR.Drone). Both the simulated and real AR.Drone produce a map with enough
quality for navigation in the IMAV Pylon challenge. The visual map could be further optimized by
a method equivalent to TORO [3]. The visual map created by the simulated AR.Drone contains
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Figure 12: Visual map created by the mapping method. Camera images are taken by the simu-
lated AR.Drone, flying at approximately 85cm altitude.

landmarks A-B B-C C-D D-E E-F F-G B-G C-F
AR.Drone
mean error (m) 0.042 0.653 0.087 0.726 0.350 0.579 0.491 0.388
error (%) 0.71 32.65 1.44 36.28 5.84 28.95 4.03 3.19
USARSim simulator
mean error (m) 0.280 0.095 0.319 0.010 0.172 0.021 4.566 0.496
error (%) 4.66 4.74 5.31 4.98 2.85 1.1 3.75 4.1

Table 2: Accuracy of the visual map by measuring the distance between landmarks. The maps
are created using the AR.Drone (Figure 11) and the USARSim simulator (Figure 12) .

fewer errors than the map of the real AR.Drone. Despite the simulator’s inertia measurements are
noise-free, there are small errors in the map. These errors are due to integrating the acceleration
measurements to velocities and positions. The largest errors are in the long stretches of the
trajectory, because these parts of the trajectory are longer affected by integration errors due to
the larger traveling times.

The position of the real AR.Drone was estimated using the AR.Drone’s velocity estimates
produced by the proprietary onboard filter. This estimate is based on inertia measurements and
optical flow obtained from the relative motion between camera frames. These measurements suffer
from noise, resulting in larger map errors. The AR.Drone’s proprietary optical flow algorithm is
probably having difficulties with the gym floor. When flying along a single line or parallel lines
(e.g. path B-C in Figure 11), no apparent motion can be observed from the camera frames. These
circumstances mainly occured when flying along the short stretches in the trajectory, producing
the largest errors in this direction. This behavior is not observed for the simulated AR.Drone,
because it lacks an optical flow method to estimate the velocity.

4.3 Localization

Another experiment has been carried out to evaluate the localization approach. This experiment
resembles quite closely the IMAV Pylon Challenge. This experiment is performed with the simu-
lated AR.Drone only to demonstrate the possibilities for localization when a reasonable accurate
visual map (errors in the order of 5%, as found in the previous section) is available. The USARSim
simulator provides accurate ground truth that is used to evaluate the performance.

For this experiment, the trajectory from the mapping experiment (Figure 10) is repeated several
times. Eleven 8-shapes (called rounds) were flown autonomously. During the first round, the map
is created. The remaining 10 rounds are flown with mapping turned off and localization turned
on. The x, y and z distance between the estimated location and real location (ground truth) is
measured and used as error measure. This experiment is repeated with localization turned off,
meaning that the location is estimated using the inertia measurements only.

The results of this experiment can be found in Figure 13. Without localization, the error of the
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Figure 13: Error between the estimated position and actual position (ground truth). The exper-
iment is performed with visual localization (solid lines) and repeated without visual localization
(dashed lines).

Figure 14: Visual map with localization positions. Each red dot represents a position of the
AR.Drone where visual localization was performed.

estimated position increases over time (dashed lines). Around 280 seconds the drift in Y direction
seems to reverse. This drift in reversed direction is causing a decreasing Y error until the error
is completely compensated. However, the drift is continuing and the error increases again. With
localization turned on, the error remains low over time. The first 75 seconds correspond to the
first 8-shape that is used create a map. During this mapping flight, the error of the estimated
position increases and the quality (accuracy) of the map decreases. Again, reversed drifting causes
a temporary drop in error around 35 seconds. The repetitive error pattern suggests that the error
of the estimated position largely depends on the quality (accuracy) of the map, if localization can
be performed regularly.

Figure 14 indicates the positions where the AR.Drone was able to localize itself. Localization
was performed at almost every position of the 8-shape trajectory. Not only the magazines, but
also the lines on the gym floor provide sufficient information for localization. At some positions
localization was not possible, because the camera observed insufficient image features. For ex-
ample, when lines without intersections are observed. These results confirm that the localization
method is able to deal with circumstances encountered during the IMAV competition.

5 Conclusion
The validation effort of the hovering and the forward movement shows that the dynamic be-
havior of the simulated AR.Drone closely resembles the dynamic behavior of the real AR.Drone.
Further improvement would require more system identifications (e.g., rotational movements, wind-
conditions) and include the characteristics of the Parrot’s proprietary controller into the simulation
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model. Our research would benefit from a realistic modeling of the noise aggregation in the inertia
sensor.

The mapping method is able to map areas visually with sufficient quality for both human and
artificial navigation purposes. Both the AR.Drone and USARSim simulator can be used as source
for the mapping algorithm. The visual map created by the simulated AR.Drone contains fewer
errors than the map of the real AR.Drone. The difference can be explained by the measurement
noise produced by the real AR.Drone. The optical flow algorithm in the AR.Drone’s firmware
should improve the accuracy, but is probably having difficulties with the gym floor.

The localization method is able to significantly reduce the error of the estimated position
when places are revisited. The lines on the gym floor provide sufficient information for robust
localization. It was demonstrated that autonomous navigation is possible by visual localization
and mapping, with the natural texture of the IMAV indoor competition. This removes the reliance
on the detection of the artificial landmarks in the IMAV Pylon challenge.

6 Future work
Future work will use additional data sources to improve the accuracy of the estimated position.
The vehicle’s motion can be computed from consecutive video frames. Our previous paper [15]
describes a method for this. A loop-closure method can be used to optimize the map when
places are revisited. Other future work is building an elevation map using the sonar’s altitude
measurements. Merging it with the texture map results in a textured 3D map of the floor, similar
to [1]. This map can be used to help ground robots navigate.

A further improvement would be to include the images of the high-resolution front camera
into the process. Those images can be used to calculate the optical flow from monocular stereo
vision, which serves as the basis for both creating a disparity map of the environment. The
disparity map can be used to detect obstacles ahead, which can be used in autonomous navigation.
When combined with a time to contact method, the measurements can be used for a coarse 3D
reconstruction of the environment and another source for estimating the egomotion.

Once the visual map exists, this map can be extended with range and bearing information
towards landmarks (as the pylons from the IMAV challenge). On close distance the bearing
information could be derived directly from perception. By modeling this as an attractive force,
the correct heading could be spread over the map by value iteration. In addition, obstacles visible
in the disparity map of the front camera could be used as basis for a repulsive force. Both forces
could be combined to a force field that guides a robot on the map. The availability of a realistic
simulation model will contribute to the training of these machine-learning approaches.
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