Resource Augmentation

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

28 April 2015
Schedulability Condition for Rate Monotonic

The time-demand function $W_i(t)$ of the task τ_i is defined as follows:

$$W_i(t) = C_i + \sum_{j=1}^{i-1} \left\lceil \frac{t}{T_j} \right\rceil C_j.$$

Theorem

A system T of periodic, independent, preemptible tasks is schedulable on one processor by rate monotonic scheduling if

$$\forall \tau_i \in T \exists t \text{ with } 0 < t \leq D_i \text{ and } W_i(t) \leq t.$$
Schedulability Condition for Rate Monotonic

The time-demand function $W_i(t)$ of the task τ_i is defined as follows:

$$W_i(t) = C_i + \sum_{j=1}^{i-1} \left\lceil \frac{t}{T_j} \right\rceil C_j.$$

Theorem

A system T of periodic, independent, preemptable tasks is schedulable on one processor by rate monotonic scheduling if

$$\forall \tau_i \in T \ \exists t \text{ with } 0 < t \leq D_i \text{ and } W_i(t) \leq t.$$

Theorem

Eisenbrand and Rothvoss [RTSS 2008]: Fixed-Priority Real-Time Scheduling: Response Time Computation Is \mathcal{NP}-Hard
Theorem

A task set T of independent, preemptable, periodic tasks with relative deadlines equal to or less than their periods can be feasibly scheduled (under EDF) on one processor if and only if

$$\forall t \geq 0, \sum_{i=1}^{n} dbf(\tau_i, t) = \sum_{i=1}^{n} \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor C_i \leq t,$$

where $dbf(\tau_i, t) = \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor C_i$ is the definition of the demand bound function of task τ_i at time t.
Schedulability Conditions for EDF Scheduling

Theorem

A task set T of independent, preemptable, periodic tasks with relative deadlines equal to or less than their periods can be feasibly scheduled (under EDF) on one processor if and only if

$$\forall t \geq 0, \sum_{i=1}^{n} dbf(\tau_i, t) = \sum_{i=1}^{n} \left[\frac{t + T_i - D_i}{T_i} \right] C_i \leq t,$$

where $dbf(\tau_i, t) = \left[\frac{t + T_i - D_i}{T_i} \right] C_i$ is the definition of the demand bound function of task τ_i at time t.

Theorem

Eisenbrand and Rothvoss [SODA 2010]: testing EDF schedulability of such a task set is (weakly) coNP-hard. That is, deciding whether a task set is not schedulable by EDF is (weakly) NP-hard.
Schedulability

- The issue for uniprocessor scheduling is how to analyze the schedulability.
 - EDF is optimal
 - DM is optimal for fixed-priority scheduling when $D_i \leq T_i$
 - Ausley’s iterative approach (1992) can also be applied for fixed-priority scheduling when $D_i > T_i$
- As verifying the schedulability is \mathcal{NP}-hard or co-\mathcal{NP}-hard, there does not exist any polynomial-time algorithm for schedulability tests unless $\mathcal{P} = \mathcal{NP}$.

Approximations are possible, but what do we approximate when only binary decisions (Yes or No) have to be made?

Answers like probabilistic guarantee are unlikely preferred, e.g., the task set is 99% schedulable.

Deadline relaxation: requires modifications of task specification

Period relaxation: requires modifications of task specification

Resource augmentation by: a faster platform

Resource augmentation by: a better platform
Schedulability

- The issue for uniprocessor scheduling is how to analyze the schedulability.
 - EDF is optimal
 - DM is optimal for fixed-priority scheduling when $D_i \leq T_i$
 - Ausley’s iterative approach (1992) can also be applied for fixed-priority scheduling when $D_i > T_i$
- As verifying the schedulability is \mathcal{NP}-hard or co\mathcal{NP}-hard, there does not exist any polynomial-time algorithm for schedulability tests unless $\mathcal{P} = \mathcal{NP}$.
- Approximations are possible, but what do we approximate when only binary decisions (Yes or No) have to be made?
 - Answers like probabilistic guarantee are unlikely preferred, e.g., the task set is 99% schedulable.
 - Deadline relaxation: requires modifications of task specification
 - Period relaxation: requires modifications of task specification
 - Resource augmentation by speeding up: a faster platform
 - Resource augmentation by allocating more processors: a better platform
Schedulability

• The issue for uniprocessor scheduling is how to analyze the schedulability.
 • EDF is optimal
 • DM is optimal for fixed-priority scheduling when $D_i \leq T_i$
 • Ausley’s iterative approach (1992) can also be applied for fixed-priority scheduling when $D_i > T_i$
• As verifying the schedulability is \mathcal{NP}-hard or co\mathcal{NP}-hard, there does not exist any polynomial-time algorithm for schedulability tests unless $\mathcal{P} = \mathcal{NP}$.
• Approximations are possible, but what do we approximate when only binary decisions (Yes or No) have to be made?
 • Answers like probabilistic guarantee are unlikely preferred, e.g., the task set is 99% schedulable.
 • Deadline relaxation: requires modifications of task specification
 • Period relaxation: requires modifications of task specification
 • Resource augmentation by **speeding up**: a faster platform
 • Resource augmentation by allocating more processors: a better platform
Resource Augmentation

For an algorithm A with a resource augmentation factor ρ, it guarantees that

⇒

if the task set (system) is schedulable (feasible), Algorithm A will also returns a schedulable (feasible) answer when speeding up the system by a factor ρ, or
Resource Augmentation

For an algorithm A with a resource augmentation factor ρ, it guarantees that

\Rightarrow

if the task set (system) is schedulable (feasible), Algorithm A will also returns a schedulable (feasible) answer when speeding up the system by a factor ρ, or

\Leftarrow

if Algorithm A does not return a schedulable (feasible) answer, the system is also unschedulable (infeasible) when slowing down by a factor ρ.
Schedulability by Least Utilization Bound

Algorithm: Given n periodic tasks with relative deadline equal to the period

- If the total utilization is less than $n(2^{\frac{1}{n}} - 1)$, the task set is schedulable;
- otherwise, the task set is probably not schedulable.
Schedulability by Least Utilization Bound

Algorithm: Given \(n \) periodic tasks with relative deadline equal to the period

- If the total utilization is less than \(n\left(2^{\frac{1}{n}} - 1\right)\), the task set is schedulable;
- otherwise, the task set is probably not schedulable.

The algorithm has resource augmentation factor \(\frac{1}{0.693} \) (or \(\frac{1}{\ln 2} \)) to decide whether a task set is schedulable by the rate monotonic scheduling algorithm.
Schedulability by Least Utilization Bound

Algorithm: Given \(n \) periodic tasks with relative deadline equal to the period

- If the total utilization is less than \(n(2^{\frac{1}{n}} - 1) \), the task set is schedulable;
- otherwise, the task set is probably not schedulable.

The algorithm has resource augmentation factor \(\frac{1}{0.693} \) (or \(\frac{1}{\ln 2} \)) to decide whether a task set is schedulable by the rate monotonic scheduling algorithm.

- The resource augmentation factor analysis is tight
 - \(n \) jobs with the same parameters \(C = (2^{\frac{1}{n}} - 1) + \epsilon, D = P = 1 \) where \(\epsilon > 0 \) and \(\epsilon \to^+ 0 \).
 - The task set is schedulable, but the above testing algorithm says that it is probably not schedulable.
Time Demand Function Revisit for RM/DM

Let $w_i(t)$ of the task τ_i be defined as follows:

$$w_i(t) = \left\lceil \frac{t}{T_i} \right\rceil C_i.$$

We need approximation to enforce a \textit{polynomial-time} schedulability test.

$$w^*_i(t) = C_i + \frac{t}{T_i} C_i.$$
Let $w_i(t)$ of the task τ_i be defined as follows:

$$w_i(t) = \left\lceil \frac{t}{T_i} \right\rceil C_i.$$

We need approximation to enforce a \textit{polynomial-time} schedulability test.

$$w_i^*(t) = C_i + \frac{t}{T_i} C_i.$$
Time Demand Function Revisit for RM/DM

Let $w_i(t)$ of the task τ_i be defined as follows:

$$w_i(t) = \left\lceil \frac{t}{T_i} \right\rceil C_i.$$

We need approximation to enforce a *polynomial-time* schedulability test.

$$w_i^*(t) = C_i + \frac{t}{T_i} C_i.$$

![Graph showing the relationship between $w_i(t)$ and $w_i^*(t)$ with $w_i(t) \leq w_i^*(t) \leq 2w_i(t)$](image)
Resource Augmentation

The approximated time-demand function $W_i^*(t)$ of τ_i is defined as follows:

$$W_i^*(t) = C_i + \sum_{j=1}^{i-1} w_j^*(t).$$

- If $W_i^*(t) \leq t$, then $W_i(t) \leq t$.
- If $W_i^*(t) > t$, then $W_i(t) > 0.5t$.

Theorem

[Fisher and Baruah, 2005] A system T of periodic, independent, preemptable tasks is schedulable on one processor by RM/DM if

$$\forall \tau_i \in T \exists t \text{ with } 0 < t \leq D_i \text{ and } W_i^*(t) \leq t.$$

Otherwise, the system is not schedulable when slowing down by a factor 2 (i.e., running at 0.5 of the original speed).
Resource Augmentation

The approximated time-demand function $W_i^*(t)$ of τ_i is defined as follows:

$$W_i^*(t) = C_i + \sum_{j=1}^{i-1} w_j^*(t).$$

- If $W_i^*(t) \leq t$, then $W_i(t) \leq t$.
- If $W_i^*(t) > t$, then $W_i(t) > 0.5t$.

The analysis is tight by considering the following example:

- A task with period $P = D = 1$ and $C = 0.5 + \epsilon$.
- Since $(0.5 + \epsilon)(1 + x) > x$ for all $x \geq 0$ and $\epsilon > 0$, the above test does not succeed.
- The system is still schedulable if it is slowed down to run at $0.5 + \epsilon$ of the original speed.
Given a precision factor δ, we can approximation $\left \lfloor \frac{t}{T_j} \right \rfloor$ by $w'_j(t)$

$$w'_j(t) = \begin{cases}
\left \lfloor \frac{t}{T_j} \right \rfloor C_j & \text{if } t \leq (\left \lfloor \frac{1}{\delta} \right \rfloor - 2) T_j \\
(1 + \frac{t}{T_j})C_j & \text{if } t > (\left \lfloor \frac{1}{\delta} \right \rfloor - 2) T_j
\end{cases}$$
Time Demand Function Revisit for RM/DM

Given a precision factor δ, we can approximation $\left\lceil \frac{t}{T_j} \right\rceil$ by $w'_j(t)$

$$w'_j(t) = \begin{cases}
\left\lceil \frac{t}{T_j} \right\rceil C_j & \text{if } t \leq \left(\left\lceil \frac{1}{\delta} \right\rceil - 2\right)T_j \\
(1 + \frac{t}{T_j})C_j & \text{if } t > \left(\left\lceil \frac{1}{\delta} \right\rceil - 2\right)T_j
\end{cases}$$
Resource Augmentation

The approximated time-demand function $W_i'(t)$ of τ_i is defined as follows:

$$W_i'(t) = C_i + \sum_{j=1}^{i-1} w_j'(t).$$

- If $W_i'(t) \leq t$, then $W_i(t) \leq t$.
- If $W_i'(t) > t$, then $W_i(t) > (1 - \frac{1}{\lceil \frac{1}{\delta} \rceil})t$.

Theorem

[Fisher and Baruah, 2005] A system T of periodic, independent, pre-emptable tasks is schedulable on one processor by RM/DM if

$$\forall \tau_i \in T \ \exists t \text{ with } 0 < t \leq D_i \text{ and } W_i'(t) \leq t.$$

Otherwise, the system is not schedulable when slowing down to run at speed $(1 - \delta)$ of the original speed.
Exercise

Please provide pseudo code and analyze the complexity and resource augmentation factor so that

- the algorithm runs in polynomial time with respect to \(\frac{1}{\delta} \) and the number of tasks, and
- the resource augmentation factor is \(\frac{1}{1-\delta} \).
Demand Bound Function Revisit for EDF

Define demand bound function \(dbf(\tau_i, t) \) as

\[
dbf(\tau_i, t) = \max \left\{ 0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor \right\} \quad C_i = \max \left\{ 0, \left\lfloor \frac{t - D_i}{T_i} \right\rfloor + 1 \right\} C_i.
\]

We need approximation to enforce a polynomial-time schedulability test.

\[
dbf^*(\tau_i, t) = \begin{cases} 0 & \text{if } t < D_i \\ \left(\frac{t-D_i}{T_i} + 1 \right) C_i & \text{otherwise.} \end{cases}
\]
Demand Bound Function Revisit for EDF

Define demand bound function \(dbf(\tau_i, t) \) as

\[
 dbf(\tau_i, t) = \max \left\{ 0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor \right\} C_i = \max \left\{ 0, \left\lfloor \frac{t - D_i}{T_i} \right\rfloor + 1 \right\} C_i.
\]

We need approximation to enforce a \textit{polynomial-time} schedulability test.

\[
 dbf^*(\tau_i, t) = \begin{cases}
 0 & \text{if } t < D_i \\
 \left(\frac{t-D_i}{T_i} + 1 \right) C_i & \text{otherwise.}
 \end{cases}
\]
Demand Bound Function Revisit for EDF

Define demand bound function $dbf(\tau_i, t)$ as

$$dbf(\tau_i, t) = \max \left\{ 0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor \right\} \quad C_i = \max \left\{ 0, \left\lfloor \frac{t - D_i}{T_i} \right\rfloor + 1 \right\} C_i.$$

We need approximation to enforce a polynomial-time schedulability test.

$$dbf^*(\tau_i, t) = \begin{cases} 0 & \text{if } t < D_i \\ \left(\frac{t-D_i}{T_i} + 1 \right) C_i & \text{otherwise.} \end{cases}$$

$$dbf(\tau_i, t) \leq dbf^*(\tau_i, t) \leq 2dbf(\tau_i, t)$$
Resource Augmentation by EDF

• If $\sum_{i=1}^{n} dbf^*(\tau_i, t) \leq t$, then $\sum_{i=1}^{n} dbf(\tau_i, t) \leq t$.
• If $\sum_{i=1}^{n} dbf^*(\tau_i, t) > t$, then $\sum_{i=1}^{n} dbf(\tau_i, t) > 0.5t$.

With similar strategy, we can prove that such an approach has a resource augmentation factor 2.

• For all t, if $\sum_{i=1}^{n} dbf^*(\tau_i, t) \leq t$, then it is schedulable by EDF;
• otherwise, it is probably not schedulable.
Resource Augmentation by EDF

- If \(\sum_{i=1}^{n} dbf^*(\tau_i, t) \leq t \), then \(\sum_{i=1}^{n} dbf(\tau_i, t) \leq t \).
- If \(\sum_{i=1}^{n} dbf^*(\tau_i, t) > t \), then \(\sum_{i=1}^{n} dbf(\tau_i, t) > 0.5t \).

With similar strategy, we can prove that such an approach has a resource augmentation factor 2.

- For all \(t \), if \(\sum_{i=1}^{n} dbf^*(\tau_i, t) \leq t \), then it is schedulable by EDF;
- otherwise, it is probably not schedulable.

Similarly, we can also extend to approximate with a given error tolerate parameter \(\delta \). [Albers and Slomka, 2004]
Is the Approximation for EDF Tight?

\[dbf^*(\tau_i, t) = \begin{cases}
0 & \text{if } t < D_i \\
\left(\frac{t-D_i}{T_i} + 1\right)C_i & \text{otherwise.}
\end{cases} \]

\[dbf(\tau_i, t) \leq dbf^*(\tau_i, t) \leq 2dbf(\tau_i, t) \]

- Not really, when \(t \) is very close to \(t + D_i \), we can find a sharp increase of the demand bound function.
- Even though a factor 2 in is tight to bound \(dbf \) and \(dbf^* \), it is not tight for resource augmentation even for a uniprocessor system.
Resource Augmentation for EDF

Theorem

Chen and Chakraborty [RTSS 2011]

- There exists a set of input instances such that the resource augmentation factor for one-step approximation of DBF is 1.5.
- The resource augmentation factor for one-step approximation of DBF is at most $\frac{2e-1}{e} \approx 1.6322$.

Proofs and details are omitted.