
Dortmund
University of Technology

Department of
Computer Science

Real-time Operating System

Kevin Wen-Hung Huang

LS 12, TU Dortmund

2

Embedded

Systems

vs RTOS

3

Embedded Systems

4

Real-Time Operating System (RTOS)

 An operating system intended to server real-time application

requests

 Specified time constrains

 Applications

 Automotive systems

 Avionics

 Pacemaker

Stanford Cardiac Arrhythmia Service

http://stanfordhospital.org/clinicsmedServices/COE/heart/DiseasesConditions/arrhythmia/

5

FreeRTOS

Overview of

6

FreeRTOS

 A real-time operating system (RTOS)

 Relatively small application

 Various architectures support

 Three main areas

 Tasks

 Communications

 The hardware wrapper

7

Hardware Considerations

 Hardware-dependent layer

 Talk to the chip architecture you choose

 FreeRTOS ships with all the hardware-independent

 ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051, etc.

Ref: http://aosabook.org/en/freertos.html

8

Variables and Functions Naming Conventions

 Variables prefix

 c: char

 s: short

 l : long

 x: portBASE_TYPE and any others

 u: unsigned

 p: pointer

• Combinations are possible

 Function prefix

 By the returning data type

 v: void

 Macros everywhere

 pdTRUE is 1, pdFALSE is 0

 pdPASS is 1, pdFAIL is 0

9

Tasks

in RTOS

10

Tasks

 Running

 When a task is actually executing

 Ready

 A task that is able to execute is not

currently running due to its lower

priority

 Blocked

 Waiting for either a temporal or

external event

 Always has a timeout

 Suspended

 Via vTaskSuspend() and

vTaskResume()

 No timeout period allowed

11

Tasks in FreeRTOS

 pvTaskCode

 A function that performs the computation of the task

 pcName

 Name of the task used for debugging

 usStackDepth

 Stack size of the process (task)

 pvParameters

 Parameters passed to the process (task)

 uxPriority

 Priority level

 xTaskHandle

 Handler when creating a task

portBASE_TYPE xTaskCreate(

 pdTASK_CODE pvTaskCode,

 const char * const pcName,

 unsigned short usStackDepth,

 void *pvParameters,

 unsigned portBASE_TYPE uxPriority,

 xTaskHandle *pvCreatedTask

);

12

Tasks in FreeRTOS

 /* Task to be created. */

void vTaskCode(void * pvParameters)

{

 for(;;)

 {

 /* Task code goes here. */

 }

}

/* Function that creates a task. */

void vOtherFunction(void)

{

static unsigned char ucParameterToPass;

TaskHandle_t xHandle = NULL;

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY,

 &xHandle);

 configASSERT(xHandle);

 /* Use the handle to delete the task. */

 if(xHandle != NULL)

 {

 vTaskDelete(xHandle);

 }

 }

13

Task Control Block & Task Executions

 Central Processing Unit (CPU)

 Program Counter (PC)

 Stack Pointer (SP)

 Registers

 Task Control Block (TCB)

 Stack pointer

 Waiting time

 priority

memory

PC SP

Reg

CPU

Reg

PC SP

Tme

Prio

TCB

SP

Tme

Prio

TCB

ReadyList

currentTCB

Reg

PC

14

Task Control Block in FreeRTOS

 typedef struct tskTaskControlBlock

{

 volatile portSTACK_TYPE *pxTopOfStack; /*< Points to the location of the last item

placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE STRUCT. */

 xListItem xGenericListItem; /*< List item used to place the TCB in ready and blocked

queues. */

 xListItem xEventListItem; /*< List item used to place the TCB in event lists. */

 unsigned portBASE_TYPE uxPriority; /*< The priority of the task where 0 is the lowest

priority. */

 portSTACK_TYPE *pxStack; /*< Points to the start of the stack. */

 #if (portSTACK_GROWTH > 0)

 portSTACK_TYPE *pxEndOfStack; /*< Used for stack overflow checking on

architectures where the stack grows up from low memory. */

 #endif

 #if (configUSE_MUTEXES == 1)

 unsigned portBASE_TYPE uxBasePriority; /*< The priority last assigned to the task - used by

the priority inheritance mechanism. */

 #endif

} tskTCB;

15

Task Priority & Ready List

 User-assigned priority

 An array of task lists

 static xList pxReadyTasksLists[configMAX_PRIORITIES]; /*<

Prioritised ready tasks. */

configMAX_PRIORITIES

Ref: http://aosabook.org/en/freertos.html

16

Overview of Lists

Ref: http://aosabook.org/en/freertos.html

17

Lists in FreeRTOS

struct xLIST_ITEM

{

 portTickType xItemValue; /*< The value being listed.

In most cases this is used to sort the list in descending order. */

 volatile struct xLIST_ITEM * pxNext; /*< Pointer to the

next xListItem in the list. */

 volatile struct xLIST_ITEM * pxPrevious;/*< Pointer to the

previous xListItem in the list. */

 void * pvOwner; /*< Pointer to the object

(normally a TCB) that contains the list item. There is therefore a

two way link between the object containing the list item and the

list item itself. */

 void * pvContainer; /*< Pointer to the list in which

this list item is placed (if any). */

};

18

Scheduling

in RTOS

19

Context Switch

 What is a context switch

 The computing process of storing and restoring state of a CPU

 Not for free

 When to switch

 Multitasking

 Interrupt handling

 User and kernel mode change

20

Scheduling in FreeRTOS

 A ready queue maintains the TCB pointers of the tasks that are

ready to be executed.

 The scheduler then selects the highest-priority job (task instance) in

the ready queue for execution

 Fixed-priority scheduling

 All the task instances of the task will then use the same priority for

executing

 If there are multiple task instances in the ready queue with the same

priority, they share the processor and FreeRTOS uses a shared

scheme to run these tasks

21

Heartbeat of FreeRTOS

 System periodic tick

 Millisecond range

 vTaskSwitchContext

 Selects Highest-priority ready task

 Puts it in pxCurrentTCB

 /* Find the highest priority queue that contains ready tasks. */

while(listLIST_IS_EMPTY(&(pxReadyTasksLists[uxTopReadyPriority])

))

 {

 --uxTopReadyPriority;

 }

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the tasks of

the same priority get an equal share of the processor time. */

 listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB,

&(pxReadyTasksLists[uxTopReadyPriority]));

22

Communication &

Synchronization

in RTOS

23

Interrupt Handling in RTOS

 The needs of interrupt handling

 Help peripherals “talk” to microprocessors

 These devices occasionally need CPU service

• We can’t predict when

 External events typically occur on a macroscopic timescale

 we want to keep the CPU busy between events

 Three types:

 Software interrupts

 Hardware interrupts

 Exceptions

• Occur in response to error state in the processor or during debugging (trace,

breakpoint, etc.)

24

Possible Solutions

 Polling

 Constantly testing a port to see if data is available.

 Inefficient, as it requires CPU for busy-looping

 Interrupt

 an external hardware/software event that causes the CPU to interrupt

the current instruction sequence

• Interrupt Service Routine (ISR)

 More efficient, as the CPU can continue while it is waiting for I/O

25

What to Notice for Interrupt Handling in RTOS

 General

 The interrupt handler should be fast, efficient, and predictable

 The execution time of an interrupt handler should be bounded

 It is normally desirable to keep each ISR as short as possible

 FreeRTOS:

 No specific event processing strategy on the application designer

 Feature provision for simple implementation

26

Mutexes & Semaphores

 Mutexes (lock)

a key and a locker

critical sections

 Semaphores (toilet)

persons and rooms

Producer & consumer

Ref: http://www.barrgroup.com/Embedded-

Systems/How-To/RTOS-Mutex-Semaphore#endnote1

27

Critical Sections

 A critical section is a piece of code that accesses a shared

resource (data structure or device) that must not be concurrently

accessed by more than one thread of execution.

 Some synchronization mechanism is required at the entry and exit

of the critical section to ensure exclusive use.

 Race condition

 No preemptive allowed

// Thread 2 code

if (SomeCondition != FALSE)

{

 GlobalData = 0;

}

int LocalData;

// Thread 1 code

if (GlobalData!= 0) {

 LocalData = GlobalData;

}

// Global data declaration and initialization

int GlobalData;

28

Which one can be used with multiple calls from

different tasks?

 long addOneHundered(long lVar1)

{

 long lVar2;

 lVar2 = lVar1+100;

 return lVar2;

}

long addOneHundered(long lVar1)

{

 static long lVar2;

 lVar2 = lVar1+100;

 return lVar2;

}

29

Critical Sections in FreeRTOS

 void vPortEnterCritical(void)

{

 vPortDisableInterrupts();

 uxCriticalNesting++;

}

void vPortExitCritical(void)

{

 /* Check for unmatched exits. */

 if (uxCriticalNesting > 0)

 {

 uxCriticalNesting--;

 }

 /* If we have reached 0 then re-enable the interrupts. */

 if(uxCriticalNesting == 0)

 {

 /* Have we missed ticks? This is the equivalent of pending an interrupt. */

 vPortEnableInterrupts();

 }

}

30

Queue

31

Semaphores in FreeRTOS

 Do not store any actual data

 Only care how many entries are currently occupied

#define vSemaphoreCreateBinary(xSemaphore) { xSemaphore =

xQueueCreate((unsigned portBASE_TYPE) 1,

semSEMAPHORE_QUEUE_ITEM_LENGTH);

if(xSemaphore != NULL) { xSemaphoreGive(xSemaphore); }

}

#define xSemaphoreTake(xSemaphore, xBlockTime)

xQueueGenericReceive((xQueueHandle) xSemaphore, NULL,

xBlockTime, pdFALSE)

#define xSemaphoreGive(xSemaphore)

xQueueGenericSend((xQueueHandle) xSemaphore, NULL,

semGIVE_BLOCK_TIME, queueSEND_TO_BACK)

32

Priority Inversion (Recap)

 A medium-priority task preempts a lower-priority task using a

shared resource on which the higher-priority task is pending.

J1

J2

J3

Critical sections

Normal execution

J1 intends to access

critical sections

Priority inversion

between J1 and J2

33

Workaround - PIP

 Disallow preemption

 Simple

 Unnecessary blockings occur

 Priority Inheritance Protocol (PIP)

 When a lower-priority job Jj blocks a higher-priority job, the priority of

job Jj is promoted to the priority level of highest-priority job that job Jj

blocks.

 J1

J2

J3

Critical sections

Normal execution
Promote to the priority of J1

34

PIP in FreeRTOS

void vTaskPriorityInherit(xTaskHandle * const pxMutexHolder)

 {

 tskTCB * const pxTCB = (tskTCB *) pxMutexHolder;

 if(pxTCB->uxPriority < pxCurrentTCB->uxPriority)

 {

 /* Adjust the mutex holder state to account for its new priority. */

 listSET_LIST_ITEM_VALUE(&(pxTCB->xEventListItem), configMAX_PRIORITIES - (portTickType)

pxCurrentTCB->uxPriority);

 /* If the task being modified is in the ready state it will need to

 be moved in to a new list. */

 if(listIS_CONTAINED_WITHIN(&(pxReadyTasksLists[pxTCB->uxPriority]), &(pxTCB-

>xGenericListItem)))

 {

 vListRemove(&(pxTCB->xGenericListItem));

 /* Inherit the priority before being moved into the new list. */

 pxTCB->uxPriority = pxCurrentTCB->uxPriority;

 prvAddTaskToReadyQueue(pxTCB);

 }

 else

 {

 /* Just inherit the priority. */

 pxTCB->uxPriority = pxCurrentTCB->uxPriority;

 }

 }

 }

35

Questions?

36

Ref: http://www.coach-em.com/

