Dortmund -ﬁ._ Department o_f
* University of Technology Computer Science

Real-time Operating System

Kevin Wen-Hung Huang
LS 12, TU Dortmund

Embedded
Systems

VS RTOS

Embedded Systems

Automobiles

e Medical

I ="“ Airplanes

Real-Time Operating System (RTOS)

= An operating system intended to server real-time application
requests

= Specified time constrains
= Applications

» Automotive systems

» Avionics

» Pacemaker

/ Pacemaker .y
leads

iy % \;/ Pacemaker

L\} Ao

Stanford Cardiac Arrhythmia Service

4

http://stanfordhospital.org/clinicsmedServices/COE/heart/DiseasesConditions/arrhythmia/

Overview of
FreeRTOS

FreeRTOS

A real-time operating system (RTOS)
Relatively small application
Various architectures support

Three main areas

Tasks

Communications
The hardware wrapper

Executing Software

Application Software

Task1 Task2 Task3 Taskd
- =
L Kernel Scheduler
S Inter-task
Device Drivers communications

|
~

Hardware

Hardware Considerations

Hardware-dependent layer
Talk to the chip architecture you choose
FreeRTOS ships with all the hardware-independent
ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051, etc.

FreeRTOS User Tasks and ISR Code

FreeRTO5 Hardware-Independent Code

FreeRTOS Hardware-Dependent Code

Hardware

Ref: http://aosabook.org/en/freertos.html

Variables and Functions Naming Conventions

Variables prefix
C: char
s: short
| : long
X: portBASE_TYPE and any others
u: unsigned
p: pointer
Combinations are possible
Function prefix
By the returning data type
V: void
Macros everywhere
PdTRUE is 1, pdFALSE is O
PdPASS is 1, pdFAIL is O

Tasks

Running
When a task is actually executing

A task that is able to execute is not
currently running due to its lower
priority

Blocked

Waiting for either a temporal or
external event

Always has a timeout

vTaskSuspendl)

vTaskSuspend|) called

called

vTaskResume()
called

vTaskSuspend()

SUSpended called Event Blocking API

Via vTaskSuspend() and e e
vTaskResume()
No timeout period allowed

10

Tasks In FreeRTOS

pvTaskCode
A function that performs the computation of the task
pcName
Name of the task used for debugging
usStackDepth
Stack size of the process (task)
pvParameters
Parameters passed to the process (task)
uxPriority PortBASE_TYPE xTaskCreate(
Priority level pdTASK_CODE pvTaskCode,

wTaskHandle con.st char * const pcName,
unsigned short usStackDepth,
Handler when ¢ void *pvParameters,
unsigned portBASE_TYPE uxPriority,
xTaskHandle *pvCreatedTask

11

Tasks In FreeRTOS

[* Task to be created. */
void vTaskCode(void * pvParameters)
{

for(;;)

{

[* Task code goes here. */

}

}

/* Function that creates a task. */

void vOtherFunction(void)

{

static unsigned char ucParameterToPass;
TaskHandle t xHandle = NULL;

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY,
&xHandle);
configASSERT(xHandle);

/* Use the handle to delete the task. */
if(xHandle '= NULL)

{
vTaskDelete(xHandle);

B

}

12

Task Control Block & Task Executions

Central Processing Unit (CPU)

Program Counter (PC)

Stack Pointer (SP)

Registers

Task Control Block (TCB)

Stack pointer
Waiting time
priority

currentTCB

ReadyL.ist

CPU

PC

SP

Tme

Prio

» Tme

Prio

memory

Reg

sp/

PC

Reg

PC

13

Task Control Block in FreeRTOS

typedef struct tskTaskControlBlock

{
volatile portSTACK_TYPE *pxTopOfStack; /*<Points to the location of the last item

placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE STRUCT. */

XListltem xGenericListltem; /*< List item used to place the TCB in ready and blocked
gueues. */

xListltem XEventListitem; /*< Listitem used to place the TCB in event lists. */

unsigned portBASE_TYPE uxPriority; [*< The priority of the task where O is the lowest
priority. */

portSTACK_TYPE *pxStack; /*< Points to the start of the stack. */

#if (portSTACK_GROWTH >0)

portSTACK_TYPE *pxEndOfStack; [*< Used for stack overflow checking on

architectures where the stack grows up from low memory. */

#endif

#if (configUSE_MUTEXES ==1)
unsigned portBASE_TYPE uxBasePriority; /*< The priority last assigned to the task - used by
the priority inheritance mechanism. */
#endif

} tskTCB;

Task Priority & Ready List

= User-assigned priority
> configMAX_PRIORITIES
= An array of task lists

» static xList pxReadyTasksLists[configMAX_ PRIORITIES]; /*<
Prioritised ready tasks. */

%ReadyTaskLists[@] +————p
P Y next ptr == NULL

pxReadyTaskLists[1] —|A pointer to task — »

pxReadyTaskLists[2]

(empty list)
T —

Y
next ptr — next ptr = next ptr == NULL
pointer to task pointer to task pointer to task
task B task C task D
N " T

Ref: http://aosabook.org/en/freertos.html

Overview of Lists

pxReadyTaskLists[@]
uxHumberofItems = 3
pxIndex
xListEnd
xItemValue =

v axffffffff

pxNext

pxPrevious

struct xListItem

xItemValue = @

struct xListItem

wItemValue = @

pxNext

pxPrevious

struct xListItem

xItemValue = @

pxNext

A

| TCB: Task A

pvOwner

pxMext

pxPrevious -

pvOwner —

pvContainer

pvContainer

pxPrevious

pvOwner

pvContainer

TCB: Task B |-

pxCurrentTCB
—

TCB: Task C |-

Ref: http://aosabook.org/en/freertos.html

16

Lists in FreeRTOS

struct XLIST_ITEM
{

portTickType xltemValue; [*< The value being listed.
In most cases this is used to sort the list in descending order. */

volatile struct xLIST _ITEM * pxNext; /*<Pointer to the
next xListltem in the list. */

volatile struct XLIST_ITEM * pxPrevious;/*< Pointer to the
previous xListitem in the list. */

void * pvOwner; [*< Pointer to the object
(normally a TCB) that contains the list item. There is therefore a
two way link between the object containing the list item and the
list item itself. */

void * pvContainer, [*< Pointer to the list in which
this list item is placed (if any). */

3

17

Scheduling
in RTOS

Context Switch

What is a context switch
The computing process of storing and restoring state of a CPU
Not for free
When to switch
Multitasking
Interrupt handling
User and kernel mode change

- o
< »

19

Scheduling in FreeRTOS

A ready queue maintains the TCB pointers of the tasks that are
ready to be executed.

The scheduler then selects the highest-priority job (task instance) in
the ready queue for execution

Fixed-priority scheduling

All the task instances of the task will then use the same priority for
executing

If there are multiple task instances in the ready queue with the same

priority, they share the processor and FreeRTOS uses a shared
scheme to run these tasks

20

Heartbeat of FreeRTOS

= System periodic tick
» Millisecond range

= vTaskSwitchContext
» Selects Highest-priority ready task
» Puts it in pxCurrentTCB

[* Find the highest priority queue that contains ready tasks. */

while(listLIST_IS EMPTY(&(pxReadyTasksLists[uxTopReadyPriority])

))
{
--uxTopReadyPriority;

}

[* listGET_OWNER_OF NEXT_ ENTRY walks through the list, so the tasks of
the same priority get an equal share of the processor time. */
listGET_OWNER_OF NEXT_ENTRY(pxCurrentTCB,
_ &(pxReadyTasksLists[uxTopReadyPriority]));

Communication &
Synchronization

in RTOS

Interrupt Handling in RTOS

The needs of interrupt handling
Help peripherals “talk” to microprocessors
These devices occasionally need CPU service
We can’t predict when
External events typically occur on a macroscopic timescale
we want to keep the CPU busy between events

Three types:
Software interrupts
Hardware interrupts

Exceptions

Occur in response to error state in the processor or during debugging (trace,
breakpoint, etc.)

23

Possible Solutions

Polling
Constantly testing a port to see if data is available.
Inefficient, as it requires CPU for busy-looping

Interrupt

an external hardware/software event that causes the CPU to interrupt
the current instruction sequence
Interrupt Service Routine (ISR)

More efficient, as the CPU can continue while it is waiting for I/O

Interrupt 1. Device is finished
CPU 3. CPU acks _controller /
interrupt <—| I Disk
| /’\ — | EE====a=\ Keyboard
—1 L%) Clock
2. Controller (— _ Print
X issues : - e

24

What to Notice for Interrupt Handling in RTOS

General
The interrupt handler should be fast, efficient, and predictable
The execution time of an interrupt handler should be bounded
It is normally desirable to keep each ISR as short as possible
FreeRTOS:
No specific event processing strategy on the application designer
Feature provision for simple implementation

25

Mutexes & Semaphores

= Mutexes (lock) = Semaphores (toilet)

» a key and a locker » persons and rooms
» critical sections » Producer & consumer

F* Task 1 */
mutexWait (Tutex mens room) ; f* Task 1 - Producer */

Vi EEEEly EAE sz LEdallne gemPo3t (3em power btn); /S Send the signal
mitexRelease (Mitex MeEns room) ;

J* Task 2 - Consumer */f

F* Tagk 2 *f
gemPend (sem_power btn); /f/ Wait for signal

mtexWait (utexX mens room) ;
/S Safely usze shared reaocurce

muitexRelease (itex mens room) ;

Ref: http://www.barrgroup.com/Embedded-
Systems/How-To/RTOS-Mutex-Semaphore#endnotel

26

Critical Sections

A critical section is a piece of code that accesses a shared
resource (data structure or device) that must not be concurrently
accessed by more than one thread of execution.

Some synchronization mechanism is required at the entry and exit
of the critical section to ensure exclusive use.

Race condition

No preemptive allowed

/| Global data declaration and initialization
Int GlobalData;

int LocalData; /l Thread 2 code

// Thread 1 code |{f (SomeCondition = FALSE)
If (GlobalData!= 0) { GlobalData = 0-
LocalData = GlobalData; : J

}

27

Which one can be used with multiple calls from
different tasks?

long addOneHundered(long IVarl) long addOneHundered(long IVarl)
{ {

long IVar2; static long IVar2;

IVar2 = [Var1+100; IVar2 = [Var1+100;

return IVar2; return IVar2;
} }

28

Critical Sections in FreeRTOS

void vPortEnterCritical(void)
{
vPortDisablelnterrupts();
uxCriticalNesting++;

}
void vPortEXxitCritical(void)

{

[* Check for unmatched exits. */
If (uxCriticalNesting >0)
{

}

[* If we have reached 0 then re-enable the interrupts. */
If(uxCriticalNesting ==0)
{

uxCriticalNesting--;

[* Have we missed ticks? This is the equivalent of pending an interrupt. */
vPortEnablelnterrupts();

}

: _9

Queue

R

Queue

I Data Producer I-bt(

taskDelay(1sec)

-

v

Data Consumer |

|

Take Action e.qg.
Display a string

30

Semaphores in FreeRTOS

Do not store any actual data
» Only care how many entries are currently occupied

#define vSemaphoreCreateBinary(xSemaphore) { xSemaphore =
XQueueCreate((unsigned portBASE _TYPE) 1,
semSEMAPHORE QUEUE_ITEM _LENGTH);

If(xSemaphore '= NULL) { xSemaphoreGive(xSemaphore); }

}

#define xSemaphoreTake(xSemaphore, xBlockTime)
XQueueGenericReceive((xQueueHandle) xSemaphore, NULL,
xBlockTime, pdFALSE)

#define xSemaphoreGive(xSemaphore)
xQueueGenericSend((xQueueHandle) xSemaphore, NULL,
semGIVE_BLOCK_ TIME, queueSEND_TO_ BACK)

31

Priority Inversion (Recap)

= A medium-priority task preempts a lower-priority task using a
shared resource on which the higher-priority task is pending.

J1 intends to access
critical sections

J1

5 I .

|
|
|

13 — | I .
R ! B ciical sections

Priority inversion - Normal execution
between J1 and J2

32

Workaround - PIP

Disallow preemption

Simple

Unnecessary blockings occur
Priority Inheritance Protocol (PIP)

When a lower-priority job Jjblocks a higher-priority job, the priority of
job Jjis promoted to the priority level of highest-priority job that job J;
blocks.

——
J1 >
B —-

53 — T- .

Promote to the priority of J1

Critical sections
Normal execution

33

PIP in FreeRTOS

void vTaskPrioritylnherit(xTaskHandle * const pxMutexHolder)

{
tskTCB * const pxTCB = (tskTCB *) pxMutexHolder;

if(pxTCB->uxPriority < pxCurrentTCB->uxPriority)
{
/* Adjust the mutex holder state to account for its new priority. */

listSET_LIST_ITEM_VALUE(&(pxTCB->xEventListitem), configMAX_ PRIORITIES - (portTickType)
pxCurrentTCB->uxPriority);

[* If the task being modified is in the ready state it will need to

be moved in to a new list. */

if(listlIS_CONTAINED_ WITHIN(&(pxReadyTasksLists[pxTCB->uxPriority]), &(pxTCB-
>xGenericListltem)))

{
vListRemove(&(pxTCB->xGenericListltem));

/* Inherit the priority before being moved into the new list. */
pXTCB->uxPriority = pxCurrentTCB->uxPriority;
prvAddTaskToReadyQueue(pxTCB);

}

else

{
[* Just inherit the priority. */
pXTCB->uxPriority = pxCurrentTCB->uxPriority;

}

}
}

34

Questions?

35

juey

mwmnpmm

=<
noAueyy : ;
Merci2
hank You

LAA" R A AY LI~ A"~
Thank You

Merci

- Gracias
10X jueyj,

nke
uey |

hank You
e TOIdN

Gracias

Thank You

noA ueyy
Thank You Merci

noA v_.,,_m,:
Merci
ank You

1 Grazie

eIdE

ayueq [

Thank You

seroeIn)

zie

noA yueyy
Danke

49

noj jueyy %

p !
m (
3
S T

NOAyuey

au
=
QO ¢
ﬁugmz Th

Than

ayueq M
seroeun

Thank You .—.S
Danke NOA j

Graci

Thank You ¢

o =i nu Thank

rc
Yo
1

Thank

NManlk A

Q
=

Merc

no,

36

Ref: http://www.coach-em.com/

