
Dortmund
University of Technology

Department of
Computer Science

Real-time Operating System

Kevin Wen-Hung Huang

LS 12, TU Dortmund

2

Embedded

Systems

vs RTOS

3

Embedded Systems

4

Real-Time Operating System (RTOS)

 An operating system intended to server real-time application

requests

 Specified time constrains

 Applications

 Automotive systems

 Avionics

 Pacemaker

Stanford Cardiac Arrhythmia Service

http://stanfordhospital.org/clinicsmedServices/COE/heart/DiseasesConditions/arrhythmia/

5

FreeRTOS

Overview of

6

FreeRTOS

 A real-time operating system (RTOS)

 Relatively small application

 Various architectures support

 Three main areas

 Tasks

 Communications

 The hardware wrapper

7

Hardware Considerations

 Hardware-dependent layer

 Talk to the chip architecture you choose

 FreeRTOS ships with all the hardware-independent

 ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051, etc.

Ref: http://aosabook.org/en/freertos.html

8

Variables and Functions Naming Conventions

 Variables prefix

 c: char

 s: short

 l : long

 x: portBASE_TYPE and any others

 u: unsigned

 p: pointer

• Combinations are possible

 Function prefix

 By the returning data type

 v: void

 Macros everywhere

 pdTRUE is 1, pdFALSE is 0

 pdPASS is 1, pdFAIL is 0

9

Tasks

in RTOS

10

Tasks

 Running

 When a task is actually executing

 Ready

 A task that is able to execute is not

currently running due to its lower

priority

 Blocked

 Waiting for either a temporal or

external event

 Always has a timeout

 Suspended

 Via vTaskSuspend() and

vTaskResume()

 No timeout period allowed

11

Tasks in FreeRTOS

 pvTaskCode

 A function that performs the computation of the task

 pcName

 Name of the task used for debugging

 usStackDepth

 Stack size of the process (task)

 pvParameters

 Parameters passed to the process (task)

 uxPriority

 Priority level

 xTaskHandle

 Handler when creating a task

portBASE_TYPE xTaskCreate(

 pdTASK_CODE pvTaskCode,

 const char * const pcName,

 unsigned short usStackDepth,

 void *pvParameters,

 unsigned portBASE_TYPE uxPriority,

 xTaskHandle *pvCreatedTask

);

12

Tasks in FreeRTOS

 /* Task to be created. */

void vTaskCode(void * pvParameters)

{

 for(;;)

 {

 /* Task code goes here. */

 }

}

/* Function that creates a task. */

void vOtherFunction(void)

{

static unsigned char ucParameterToPass;

TaskHandle_t xHandle = NULL;

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY,

 &xHandle);

 configASSERT(xHandle);

 /* Use the handle to delete the task. */

 if(xHandle != NULL)

 {

 vTaskDelete(xHandle);

 }

 }

13

Task Control Block & Task Executions

 Central Processing Unit (CPU)

 Program Counter (PC)

 Stack Pointer (SP)

 Registers

 Task Control Block (TCB)

 Stack pointer

 Waiting time

 priority

memory

PC SP

Reg

CPU

Reg

PC SP

Tme

Prio

TCB

SP

Tme

Prio

TCB

ReadyList

currentTCB

Reg

PC

14

Task Control Block in FreeRTOS

 typedef struct tskTaskControlBlock

{

 volatile portSTACK_TYPE *pxTopOfStack; /*< Points to the location of the last item

placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE STRUCT. */

 xListItem xGenericListItem; /*< List item used to place the TCB in ready and blocked

queues. */

 xListItem xEventListItem; /*< List item used to place the TCB in event lists. */

 unsigned portBASE_TYPE uxPriority; /*< The priority of the task where 0 is the lowest

priority. */

 portSTACK_TYPE *pxStack; /*< Points to the start of the stack. */

 #if (portSTACK_GROWTH > 0)

 portSTACK_TYPE *pxEndOfStack; /*< Used for stack overflow checking on

architectures where the stack grows up from low memory. */

 #endif

 #if (configUSE_MUTEXES == 1)

 unsigned portBASE_TYPE uxBasePriority; /*< The priority last assigned to the task - used by

the priority inheritance mechanism. */

 #endif

} tskTCB;

15

Task Priority & Ready List

 User-assigned priority



 An array of task lists

 static xList pxReadyTasksLists[configMAX_PRIORITIES]; /*<

Prioritised ready tasks. */

configMAX_PRIORITIES

Ref: http://aosabook.org/en/freertos.html

16

Overview of Lists

Ref: http://aosabook.org/en/freertos.html

17

Lists in FreeRTOS

struct xLIST_ITEM

{

 portTickType xItemValue; /*< The value being listed.

In most cases this is used to sort the list in descending order. */

 volatile struct xLIST_ITEM * pxNext; /*< Pointer to the

next xListItem in the list. */

 volatile struct xLIST_ITEM * pxPrevious;/*< Pointer to the

previous xListItem in the list. */

 void * pvOwner; /*< Pointer to the object

(normally a TCB) that contains the list item. There is therefore a

two way link between the object containing the list item and the

list item itself. */

 void * pvContainer; /*< Pointer to the list in which

this list item is placed (if any). */

};

18

Scheduling

in RTOS

19

Context Switch

 What is a context switch

 The computing process of storing and restoring state of a CPU

 Not for free

 When to switch

 Multitasking

 Interrupt handling

 User and kernel mode change

20

Scheduling in FreeRTOS

 A ready queue maintains the TCB pointers of the tasks that are

ready to be executed.

 The scheduler then selects the highest-priority job (task instance) in

the ready queue for execution

 Fixed-priority scheduling

 All the task instances of the task will then use the same priority for

executing

 If there are multiple task instances in the ready queue with the same

priority, they share the processor and FreeRTOS uses a shared

scheme to run these tasks

21

Heartbeat of FreeRTOS

 System periodic tick

 Millisecond range

 vTaskSwitchContext

 Selects Highest-priority ready task

 Puts it in pxCurrentTCB

 /* Find the highest priority queue that contains ready tasks. */

while(listLIST_IS_EMPTY(&(pxReadyTasksLists[uxTopReadyPriority])

))

 {

 --uxTopReadyPriority;

 }

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the tasks of

the same priority get an equal share of the processor time. */

 listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB,

&(pxReadyTasksLists[uxTopReadyPriority]));

22

Communication &

Synchronization

in RTOS

23

Interrupt Handling in RTOS

 The needs of interrupt handling

 Help peripherals “talk” to microprocessors

 These devices occasionally need CPU service

• We can’t predict when

 External events typically occur on a macroscopic timescale

 we want to keep the CPU busy between events

 Three types:

 Software interrupts

 Hardware interrupts

 Exceptions

• Occur in response to error state in the processor or during debugging (trace,

breakpoint, etc.)

24

Possible Solutions

 Polling

 Constantly testing a port to see if data is available.

 Inefficient, as it requires CPU for busy-looping

 Interrupt

 an external hardware/software event that causes the CPU to interrupt

the current instruction sequence

• Interrupt Service Routine (ISR)

 More efficient, as the CPU can continue while it is waiting for I/O

25

What to Notice for Interrupt Handling in RTOS

 General

 The interrupt handler should be fast, efficient, and predictable

 The execution time of an interrupt handler should be bounded

 It is normally desirable to keep each ISR as short as possible

 FreeRTOS:

 No specific event processing strategy on the application designer

 Feature provision for simple implementation

26

Mutexes & Semaphores

 Mutexes (lock)

a key and a locker

critical sections

 Semaphores (toilet)

persons and rooms

Producer & consumer

Ref: http://www.barrgroup.com/Embedded-

Systems/How-To/RTOS-Mutex-Semaphore#endnote1

27

Critical Sections

 A critical section is a piece of code that accesses a shared

resource (data structure or device) that must not be concurrently

accessed by more than one thread of execution.

 Some synchronization mechanism is required at the entry and exit

of the critical section to ensure exclusive use.

 Race condition

 No preemptive allowed

// Thread 2 code

if (SomeCondition != FALSE)

{

 GlobalData = 0;

}

int LocalData;

// Thread 1 code

if (GlobalData!= 0) {

 LocalData = GlobalData;

}

// Global data declaration and initialization

int GlobalData;

28

Which one can be used with multiple calls from

different tasks?

 long addOneHundered(long lVar1)

{

 long lVar2;

 lVar2 = lVar1+100;

 return lVar2;

}

long addOneHundered(long lVar1)

{

 static long lVar2;

 lVar2 = lVar1+100;

 return lVar2;

}

29

Critical Sections in FreeRTOS

 void vPortEnterCritical(void)

{

 vPortDisableInterrupts();

 uxCriticalNesting++;

}

void vPortExitCritical(void)

{

 /* Check for unmatched exits. */

 if (uxCriticalNesting > 0)

 {

 uxCriticalNesting--;

 }

 /* If we have reached 0 then re-enable the interrupts. */

 if(uxCriticalNesting == 0)

 {

 /* Have we missed ticks? This is the equivalent of pending an interrupt. */

 vPortEnableInterrupts();

 }

}

30

Queue

31

Semaphores in FreeRTOS

 Do not store any actual data

 Only care how many entries are currently occupied

#define vSemaphoreCreateBinary(xSemaphore) { xSemaphore =

xQueueCreate((unsigned portBASE_TYPE) 1,

semSEMAPHORE_QUEUE_ITEM_LENGTH);

if(xSemaphore != NULL) { xSemaphoreGive(xSemaphore); }

}

#define xSemaphoreTake(xSemaphore, xBlockTime)

xQueueGenericReceive((xQueueHandle) xSemaphore, NULL,

xBlockTime, pdFALSE)

#define xSemaphoreGive(xSemaphore)

xQueueGenericSend((xQueueHandle) xSemaphore, NULL,

semGIVE_BLOCK_TIME, queueSEND_TO_BACK)

32

Priority Inversion (Recap)

 A medium-priority task preempts a lower-priority task using a

shared resource on which the higher-priority task is pending.

J1

J2

J3

Critical sections

Normal execution

J1 intends to access

critical sections

Priority inversion

between J1 and J2

33

Workaround - PIP

 Disallow preemption

 Simple

 Unnecessary blockings occur

 Priority Inheritance Protocol (PIP)

 When a lower-priority job Jj blocks a higher-priority job, the priority of

job Jj is promoted to the priority level of highest-priority job that job Jj

blocks.

 J1

J2

J3

Critical sections

Normal execution
Promote to the priority of J1

34

PIP in FreeRTOS

void vTaskPriorityInherit(xTaskHandle * const pxMutexHolder)

 {

 tskTCB * const pxTCB = (tskTCB *) pxMutexHolder;

 if(pxTCB->uxPriority < pxCurrentTCB->uxPriority)

 {

 /* Adjust the mutex holder state to account for its new priority. */

 listSET_LIST_ITEM_VALUE(&(pxTCB->xEventListItem), configMAX_PRIORITIES - (portTickType)

pxCurrentTCB->uxPriority);

 /* If the task being modified is in the ready state it will need to

 be moved in to a new list. */

 if(listIS_CONTAINED_WITHIN(&(pxReadyTasksLists[pxTCB->uxPriority]), &(pxTCB-

>xGenericListItem)))

 {

 vListRemove(&(pxTCB->xGenericListItem));

 /* Inherit the priority before being moved into the new list. */

 pxTCB->uxPriority = pxCurrentTCB->uxPriority;

 prvAddTaskToReadyQueue(pxTCB);

 }

 else

 {

 /* Just inherit the priority. */

 pxTCB->uxPriority = pxCurrentTCB->uxPriority;

 }

 }

 }

35

Questions?

36

Ref: http://www.coach-em.com/

