Mapping of Applications to Platforms

Peter Marwedel
TU Dortmund, Informatik 12
Germany

2012年 12 月 18 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.
Structure of this course

2: Specification & Modeling
3: ES-hardware
4: system software (RTOS, middleware, …)

Design repository

6: Application mapping
7: Optimization
5: Evaluation & Validation (energy, cost, performance, …)

Application Knowledge

8: Test

Numbers denote sequence of chapters
Classification of Scheduling Problems

Scheduling

Independent Tasks
- EDD, EDF, LLF, RMS

Dependent Tasks
- Resource constrained
 - 1 Proc.
 - LDF
- Time constrained
 - LS
- Unconstrained
 - FDS
 - ASAP, ALAP
Scheduling with precedence constraints

Task graph and possible schedule:
Simultaneous Arrival Times: The Latest Deadline First (LDF) Algorithm

LDF [Lawler, 1973]: reads the task graph and among the tasks with no successors inserts the one with the latest deadline into a queue. It then repeats this process, putting tasks whose successor have all been selected into the queue.

At run-time, the tasks are executed in the generated total order. LDF is non-preemptive and is optimal for mono-processors.

If no local deadlines exist, LDF performs just a topological sort.
Asynchronous Arrival Times: Modified EDF Algorithm

This case can be handled with a modified EDF algorithm. The key idea is to transform the problem from a given set of dependent tasks into a set of independent tasks with different timing parameters [Chetto90]. This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm developed by Stankovic and Ramamritham can be used.
Dependent tasks

The problem of deciding whether or not a schedule exists for a set of dependent tasks and a given deadline is NP-complete in general [Garey/Johnson].

Strategies:
1. Add resources, so that scheduling becomes easier
2. Split problem into static and dynamic part so that only a minimum of decisions need to be taken at run-time.
3. Use scheduling algorithms from high-level synthesis
Classes of mapping algorithms considered in this course

- Classical scheduling algorithms
 Mostly for independent tasks & ignoring communication, mostly for mono- and homogeneous multiprocessors

- Dependent tasks as considered in architectural synthesis
 Initially designed in different context, but applicable

- Hardware/software partitioning
 Dependent tasks, heterogeneous systems, focus on resource assignment

- Design space exploration using genetic algorithms
 Heterogeneous systems, incl. communication modeling
Task graph

Assumption:
execution time = 1
for all tasks
As soon as possible (ASAP) scheduling

ASAP: All tasks are scheduled as early as possible

Loop over (integer) time steps:

- Compute the set of unscheduled tasks for which all predecessors have finished their computation
- Schedule these tasks to start at the current time step.
As soon as possible (ASAP) scheduling: Example
As-late-as-possible (ALAP) scheduling

ALAP: All tasks are scheduled as late as possible

Start at last time step*:

Schedule tasks with no successors and tasks for which all successors have already been scheduled.

* Generate a list, starting at its end
As-late-as-possible (ALAP) scheduling: Example
(Resource constrained) List Scheduling

List scheduling: extension of ALAP/ASAP method

Preparation:

- Topological sort of task graph \(G = (V, E) \)
- Computation of priority of each task:

 Possible priorities \(u \):
 - Number of successors
 - Longest path
 - Mobility = \(\tau \) (ALAP schedule) - \(\tau \) (ASAP schedule)
Mobility as a priority function

Mobility is not very precise
Algorithm

List($G(V,E)$, B, u){
 $i := 0$;
 repeat {
 Compute set of candidate tasks A_i;
 Compute set of not terminated tasks G_i;
 Select $S_i \subseteq A_i$ of maximum priority r such that
 $|S_i| + |G_i| \leq B$ (*resource constraint*)
 foreach ($v_j \in S_i$): $\tau(v_j) := i$; (*set start time*)
 $i := i + 1$;
 }
 until (all nodes are scheduled);
 return (τ);
}

Complexity: $O(|V|)$
Example

Assuming $B = 2$, unit execution time and $u :$ path length

$u(a) = u(b) = 4$
$u(c) = u(f) = 3$
$u(d) = u(g) = u(h) = u(j) = 2$
$u(e) = u(i) = u(k) = 1$
$\forall i : G_i = 0$

Modified example based on J. Teich
(Time constrained) Force-directed scheduling

- Goal: balanced utilization of resources
- Based on spring model;
- Originally proposed for high-level synthesis

Phase 1: Generation of ASAP and ALAP Schedule

\[\tau = 0 \]

\[\tau = 1 \]

\[\tau = 2 \]

\[\tau = 3 \]

\[\tau = 4 \]

\[\tau = 5 \]
Next: computation of “forces”

- Direct forces push each task into the direction of lower values of $D(i)$.
- Impact of direct forces on dependent tasks taken into account by indirect forces
- Balanced resource usage \approx smallest forces
- For our simple example and time constraint=6: result = ALAP schedule

![Diagram of task dependencies and scheduling]

More precisely …
1. Compute time frames $R(j)$; 2. Compute “probability“ $P(j, i)$ of assignment $j \rightarrow i$

$R(j) = \{ \text{ASAP-control step} \ldots \text{ALAP-control step} \}$

$$P(j, i) = \begin{cases} \frac{1}{|R(j)|} & \text{if } i \in R(j) \\ 0 & \text{otherwise} \end{cases}$$
3. Compute “distribution” \(D(i) \) (# Operations in control step \(i \))

\[
D(i) = \sum_{j, \text{type}(j) \in H} P(j, i)
\]

\[P(j,i) \quad D(i) \]

\[
D(1) = 2 \frac{5}{6}
D(2) = 2 \frac{2}{6}
D(3) = 5 \frac{5}{6}
D(4) = 0
\]
4. Compute direct forces (1)

- $\Delta P_i(j, i')$: Δ for force on task j in time step i', if j is mapped to time step i.

The new probability for executing j in i is 1; the previous was $P(j, i)$.

The new probability for executing j in $i' \neq i$ is 0; the previous was $P(j, i)$.

$$\Delta P_i(j, i') = \begin{cases} 1 - P(j, i) & \text{if } i = i' \\ -P(j, i') & \text{otherwise} \end{cases}$$
4. Compute direct forces (2)

- \(SF(j, i) \) is the overall change of direct forces resulting from the mapping of \(j \) to time step \(i \).

\[
SF(j, i) = \sum_{i' \in R(j)} D(i') \Delta P_i(j, i')
\]

\[
\Delta P_i(j, i') = \begin{cases}
1 - P(j, i) & \text{if } i = i' \\
-P(j, i') & \text{otherwise}
\end{cases}
\]

Example

\[
\begin{array}{c|c|c|c|c}
0 & 1 & 2 & 3 \\
\hline
D(1) = 2 & 5/6 \\
D(2) = 2 & 2/6 \\
D(3) = 5/6 \\
D(4) = 0 \\
\end{array}
\]

\[
SF(1, 1) = 2 \frac{5}{6} (1 - \frac{1}{2}) - 2 \frac{2}{6} \frac{1}{2} = 1/2 (17/6 - 14/6) = 1/2 (3/6) = 1/4
\]
4. Compute direct forces (3)

Direct force if task/operation 1 is mapped to time step 2

\[
\begin{align*}
D(1) &= \frac{5}{6} \\
D(2) &= \frac{2}{3} \\
D(3) &= \frac{5}{6} \\
D(4) &= 0 \\

SF(1, 2) &= D(1) \cdot \Delta P_2(1, 1) + D(2) \cdot \Delta P_2(1, 2) \\
&= 2 \frac{5}{6} \cdot (-0, 5) + 2 \frac{2}{6} \cdot 0.5 \\
&= \frac{-17}{12} + \frac{14}{12} \\
&= \frac{-3}{12} = -\frac{1}{4}
\end{align*}
\]
5. Compute indirect forces (1)

Mapping task 1 to time step 2 implies mapping task 2 to time step 3

Consider predecessor and successor forces:

\[VF(j, i) = \sum_{j' \in \text{predecessor of } j} \sum_{i' \in I} D(i') \Delta P_{j,i}(j', i') \]

\[NF(j, i) = \sum_{j' \in \text{successor of } j} \sum_{i' \in I} D(i') \Delta P_{j,i}(j', i') \]

\(\Delta P_{j,i}(j', i') \) is the \(\Delta \) in the probability of mapping \(j' \) to \(i' \) resulting from the mapping of \(j \) to \(i \)
5. Compute indirect forces (2)

\[VF(j, i) = \sum_{j' \in \text{predecessor of } j} \sum_{i' \in I} D(i') \Delta P_{j', i}(j', i') \]

\[NF(j, i) = \sum_{j' \in \text{successor of } j} \sum_{i' \in I} D(i') \Delta P_{j, i}(j', i') \]

Example: Computation of successor forces for task 1 in time step 2

\[NF(1, 2) = D(2) \times \Delta P_{1, 2}(2, 2) + D(3) \times \Delta P_{1, 2}(2, 3) \]

\[= \frac{2}{6} \times (-0, 5) + \frac{5}{6} \times 0.5 \]

\[= -\frac{14}{12} + \frac{5}{12} \]

\[= -\frac{9}{12} = -\frac{3}{4} \]
Overall forces

The total force is the sum of direct and indirect forces:

\[F(j, i) = SF(j, i) + VF(j, i) + NF(j, i) \]

In the example:

\[F(1, 2) = SF(1, 2) + NF(1, 2) = -\frac{1}{4} + (-\frac{3}{4}) = -1 \]

The low value suggests mapping task 1 to time step 2
Overall approach

procedure forceDirectedScheduling;

begin

AsapScheduling;
AlapScheduling;

while not all tasks scheduled **do**

begin

select task T with smallest total force;
schedule task T at time step minimizing forces;
recompute forces;

end;

end

May be repeated for different task/processor classes

Not sufficient for today's complex, heterogeneous hardware platforms
Evaluation of HLS-Scheduling

- Focus on considering dependencies
- Mostly heuristics, few proofs on optimality
- Not using global knowledge about periods etc.
- Considering discrete time intervals
- Variable execution time available only as an extension
- Includes modeling of heterogeneous systems
Overview

Scheduling of aperiodic tasks with real-time constraints:
Table with some known algorithms:

<table>
<thead>
<tr>
<th></th>
<th>Equal arrival times; non-preemptive</th>
<th>Arbitrary arrival times; preemptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent tasks</td>
<td>EDD (Jackson)</td>
<td>EDF (Horn)</td>
</tr>
<tr>
<td>Dependent tasks</td>
<td>LDF (Lawler), ASAP, ALAP, LS, FDS</td>
<td>EDF* (Chetto)</td>
</tr>
</tbody>
</table>
Conclusion

- HLS-based scheduling
 - ASAP
 - ALAP
 - List scheduling (LS)
 - Force-directed scheduling (FDS)

- Evaluation