Memory Management

(slides are based on Prof. Dr. Jian-Jia Chen and http://www.freertos.org)

Anas Toma

LS 12, TU Dortmund

January 24, 2019

technische universitat S fakultat fiir | computer
dortmund informatik O science 12 Anas Toma (LS 12, TU Dortmund)

1/9

Memory Management

e Subdividing memory to accommodate multiple tasks

e Memory needs to be allocated to ensure a reasonable supply
of ready tasks to consume available processor time
e Memory allocation:
e Programmers do not know where the program will be placed in
memory when it is executed
o While the program is executing, it may be swapped to external
memory (disks etc.) and returned to main memory at a
different location (for general OS)
e Memory references must be translated in the code to actual
physical memory address
e This is implemented by calling malloc() in Linux and Unix

e Memory deallocation:
e The unused memory space is given back to OS so that other

tasks can use this part of memory again
e This is implemented by calling free() in Linux and Unix

S fakultat fiir computer
informatik I science 12 Anas Toma (LS 12, TU Dortmund) 2/9

Memory Management in Embedded Systems

e The RTOS kernel has to allocate RAM each time a task,
queue or semaphore is created. The malloc() and free()
functions can sometimes be used for this purpose, but ...

@ they are not always available on embedded systems,

@ take up valuable code space,

©® are not thread safe, and

O are not deterministic (the amount of time taken to execute the
function will differ from call to call)

e An alternative scheme is required. One embedded / real time
system can have very different RAM and timing requirements
to another - so a single RAM allocation algorithm will only
ever be appropriate for a subset of applications.

e The memory allocation APl is included in the RTOS portable
layer

e When the real time kernel in FreeRTOS requires RAM, instead
of calling malloc() it makes a call to pvPortMalloc(). When
RAM is being freed, instead of calling free() the real time
kernel makes a call to vPortFree().

S fakultat fiir I computer

informatik science 12 Anas Toma (LS 12, TU Dortmund) 3/9

Default Schemes in FreeRTOS

e heap_l.c: This is the simplest scheme of all. It does not
permit memory to be freed once it has been allocated, but
despite this is suitable for a large number of applications.

e Can be used if the application never deletes a task or queue (no
calls to vTaskDelete() or vQueueDelete() are ever made).

e Is always deterministic (always takes the same amount of time to
return a block).

e heap_2.c: This scheme uses a best fit algorithm and, unlike
scheme 1, allows previously allocated blocks to be freed. It
does not combine adjacent free blocks into a single large
block.

® |t can be used even when the application repeatedly calls
vTaskCreate()/vTaskDelete() or vQueueCreate()/vQueueDelete()

e It could possible result in memory fragmentation problems should
your application create blocks of queues and tasks in an
unpredictable order.

® |t is not deterministic - but is also not particularly inefficient.

e heap_3.c: This is just a wrapper for the standard malloc() and

free() functions. It makes them thread safe.

e universitat S fakultat fiir I computer

informatik science 12 Anas Toma (LS 12, TU Dortmund) 4/9

Case 1: heap_1.c

void *pvPortMalloc(size t xWantedSize){
void *pvReturn = NULL;
/* Ensure that blocks are always aligned to the required number of bytes. */
#1f portBYTE_ALIGNMENT != 1
if(xWantedSize & portBYTE_ALIGNMENT_MASK)

{
/* Byte alignment required. */
xWantedSize += (portBYTE_ALIGNMENT - (xWantedSize & portBYTE_ALIGNMENT_MASK));
}
#endif
vTaskSuspendAll();
{

/* Check there is fgnough room left for the allocation. */
if(((xNextFreeByte + xWantedSize) < configTOTAL_HEAP_SIZE) &&

((xNextFreeByte + xWantedSize) > xNextFreeByte))/* Check for overflow. */
{
/* Return the next free byte then increment the index past this
block. */
pvReturn = &(xHeap.ucHeap[xNextFreeByte]);
xNextFreeByte += xWantedSize;

}

}
xTaskResumeAll();
#17(configUSE_MALLOC_FAILED HOOK == 1)

if(pvReturn == NULL)
{

extern void vApplicationMallocFailedHook(void);
vApplicationMallocFailedHook();

#endif

return pvReturn;

technische universitat S fakultat fiir cs | computer
science 12 Anas Toma (LS 12, TU Dortmund)

dortmund

informatik

5/9

Placement Algorithms

Different strategies may be taken as to how space is allocated to
processes: (reference “Operating System Concepts” by Abraham
Silberschatz, Peter B. Galvin (Author), and Greg Gagne.)

e First Fit: Allocate the first hole that is big enough. Searching
may start either at the beginning of the set of holes or where
the previous first-fit search ended.

e Best Fit: Allocate the smallest hole that is big enough. The

entire list of holes must be searched unless it is sorted by size.

This strategy produces the smallest leftover hole.

e Worst Fit: Allocate the largest hole. In contrast, this strategy
aims to produce the largest leftover hole, which may be big
enough to hold another process.

e Experiments have shown that both first fit and best fit are
better than worst fit in terms of decreasing time and storage
utilization. First fit is generally faster.

S fakultat fiir computer
informatik 12 &ehee Anas Toma (LS 12, TU Dortmund)

dortm:

6/9

Case 2: heap_ 2.c

e |t is more involving by using a best fit algorithm.

e We will look into the source code directly.

hJ technische universitat S fakultét fiir cS computer
dortmund informatik I science 12 Anas Toma (LS 12, TU Dortmund) 7/9

Memory Protection

¢ Using a Memory Protection Unit (MPU) can protect
applications from a number of potential errors, ranging from
undetected programming errors to errors introduced by system
or hardware failures.

e In FreeRTOS: FreeRTOS-MPU

e It can be used to protect the kernel itself from invalid
execution by tasks and protect data from corruption.

e It can also protect system peripherals from unintended
modification by tasks and guarantee the detection of task
stack overflows.

technische universitat S fakultat fiir computer
dortmund informatik I science 12 Anas Toma (LS 12, TU Dortmund) 8/9

Creating Restricted Tasks in FreeRTOS

® The created task can run in either Privileged or User modes.
e When Privileged mode it used the task will have access to the
entire memory map
e When User mode is used the task will have access to only its
stack.
e In both cases the MPU will not automatically catch stack
overflows.
e If a task wants to use the MPU then the following additional information
has to be provided:
e The address of the task stack.
e The start, size and access parameters for up to three user
definable memory regions.
e The memory regions allocated to a task can be changed using
vTaskAllocateMPURegions().
® [t is implemented in xTaskCreateRestricted() in task.h
® A Privileged mode task can call portSWITCH_-TO_USER_MODE() to set
itself into User mode. A task that is running in User mode cannot set
itself into Privileged mode.

e universitat S fakultat fiir computer
informatik 12 &ehee Anas Toma (LS 12, TU Dortmund)

9/9

