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Memory Management

• Subdividing memory to accommodate multiple tasks

• Memory needs to be allocated to ensure a reasonable supply
of ready tasks to consume available processor time

• Memory allocation:
• Programmers do not know where the program will be placed in

memory when it is executed
• While the program is executing, it may be swapped to external

memory (disks etc.) and returned to main memory at a
different location (for general OS)

• Memory references must be translated in the code to actual
physical memory address

• This is implemented by calling malloc() in Linux and Unix

• Memory deallocation:
• The unused memory space is given back to OS so that other

tasks can use this part of memory again
• This is implemented by calling free() in Linux and Unix
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Memory Management in Embedded Systems
• The RTOS kernel has to allocate RAM each time a task,

queue or semaphore is created. The malloc() and free()
functions can sometimes be used for this purpose, but ...

1 they are not always available on embedded systems,
2 take up valuable code space,
3 are not thread safe, and
4 are not deterministic (the amount of time taken to execute the

function will differ from call to call)
• An alternative scheme is required. One embedded / real time

system can have very different RAM and timing requirements
to another - so a single RAM allocation algorithm will only
ever be appropriate for a subset of applications.

• The memory allocation API is included in the RTOS portable
layer

• When the real time kernel in FreeRTOS requires RAM, instead
of calling malloc() it makes a call to pvPortMalloc(). When
RAM is being freed, instead of calling free() the real time
kernel makes a call to vPortFree().
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Default Schemes in FreeRTOS
• heap 1.c: This is the simplest scheme of all. It does not

permit memory to be freed once it has been allocated, but
despite this is suitable for a large number of applications.

• Can be used if the application never deletes a task or queue (no
calls to vTaskDelete() or vQueueDelete() are ever made).

• Is always deterministic (always takes the same amount of time to
return a block).

• heap 2.c: This scheme uses a best fit algorithm and, unlike
scheme 1, allows previously allocated blocks to be freed. It
does not combine adjacent free blocks into a single large
block.

• It can be used even when the application repeatedly calls
vTaskCreate()/vTaskDelete() or vQueueCreate()/vQueueDelete()

• It could possible result in memory fragmentation problems should
your application create blocks of queues and tasks in an
unpredictable order.

• It is not deterministic - but is also not particularly inefficient.

• heap 3.c: This is just a wrapper for the standard malloc() and
free() functions. It makes them thread safe.
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Case 1: heap 1.c
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Placement Algorithms
Different strategies may be taken as to how space is allocated to
processes: (reference “Operating System Concepts” by Abraham
Silberschatz, Peter B. Galvin (Author), and Greg Gagne.)

• First Fit: Allocate the first hole that is big enough. Searching
may start either at the beginning of the set of holes or where
the previous first-fit search ended.

• Best Fit: Allocate the smallest hole that is big enough. The
entire list of holes must be searched unless it is sorted by size.
This strategy produces the smallest leftover hole.

• Worst Fit: Allocate the largest hole. In contrast, this strategy
aims to produce the largest leftover hole, which may be big
enough to hold another process.

• Experiments have shown that both first fit and best fit are
better than worst fit in terms of decreasing time and storage
utilization. First fit is generally faster.
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Case 2: heap 2.c

• It is more involving by using a best fit algorithm.

• We will look into the source code directly.
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Memory Protection

• Using a Memory Protection Unit (MPU) can protect
applications from a number of potential errors, ranging from
undetected programming errors to errors introduced by system
or hardware failures.

• In FreeRTOS: FreeRTOS-MPU
• It can be used to protect the kernel itself from invalid

execution by tasks and protect data from corruption.
• It can also protect system peripherals from unintended

modification by tasks and guarantee the detection of task
stack overflows.
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Creating Restricted Tasks in FreeRTOS

• The created task can run in either Privileged or User modes.

• When Privileged mode it used the task will have access to the
entire memory map

• When User mode is used the task will have access to only its
stack.

• In both cases the MPU will not automatically catch stack
overflows.

• If a task wants to use the MPU then the following additional information

has to be provided:

• The address of the task stack.
• The start, size and access parameters for up to three user

definable memory regions.
• The memory regions allocated to a task can be changed using

vTaskAllocateMPURegions().
• It is implemented in xTaskCreateRestricted() in task.h

• A Privileged mode task can call portSWITCH TO USER MODE() to set
itself into User mode. A task that is running in User mode cannot set
itself into Privileged mode.
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