
Memory Management
(slides are based on Prof. Dr. Jian-Jia Chen and http://www.freertos.org)

Anas Toma

LS 12, TU Dortmund

January 24, 2019

Anas Toma (LS 12, TU Dortmund) 1 / 9



Memory Management

• Subdividing memory to accommodate multiple tasks

• Memory needs to be allocated to ensure a reasonable supply
of ready tasks to consume available processor time

• Memory allocation:
• Programmers do not know where the program will be placed in

memory when it is executed
• While the program is executing, it may be swapped to external

memory (disks etc.) and returned to main memory at a
different location (for general OS)

• Memory references must be translated in the code to actual
physical memory address

• This is implemented by calling malloc() in Linux and Unix

• Memory deallocation:
• The unused memory space is given back to OS so that other

tasks can use this part of memory again
• This is implemented by calling free() in Linux and Unix

Anas Toma (LS 12, TU Dortmund) 2 / 9



Memory Management in Embedded Systems
• The RTOS kernel has to allocate RAM each time a task,

queue or semaphore is created. The malloc() and free()
functions can sometimes be used for this purpose, but ...

1 they are not always available on embedded systems,
2 take up valuable code space,
3 are not thread safe, and
4 are not deterministic (the amount of time taken to execute the

function will differ from call to call)
• An alternative scheme is required. One embedded / real time

system can have very different RAM and timing requirements
to another - so a single RAM allocation algorithm will only
ever be appropriate for a subset of applications.

• The memory allocation API is included in the RTOS portable
layer

• When the real time kernel in FreeRTOS requires RAM, instead
of calling malloc() it makes a call to pvPortMalloc(). When
RAM is being freed, instead of calling free() the real time
kernel makes a call to vPortFree().

Anas Toma (LS 12, TU Dortmund) 3 / 9



Default Schemes in FreeRTOS
• heap 1.c: This is the simplest scheme of all. It does not

permit memory to be freed once it has been allocated, but
despite this is suitable for a large number of applications.

• Can be used if the application never deletes a task or queue (no
calls to vTaskDelete() or vQueueDelete() are ever made).

• Is always deterministic (always takes the same amount of time to
return a block).

• heap 2.c: This scheme uses a best fit algorithm and, unlike
scheme 1, allows previously allocated blocks to be freed. It
does not combine adjacent free blocks into a single large
block.

• It can be used even when the application repeatedly calls
vTaskCreate()/vTaskDelete() or vQueueCreate()/vQueueDelete()

• It could possible result in memory fragmentation problems should
your application create blocks of queues and tasks in an
unpredictable order.

• It is not deterministic - but is also not particularly inefficient.

• heap 3.c: This is just a wrapper for the standard malloc() and
free() functions. It makes them thread safe.

Anas Toma (LS 12, TU Dortmund) 4 / 9



Case 1: heap 1.c

Anas Toma (LS 12, TU Dortmund) 5 / 9



Placement Algorithms
Different strategies may be taken as to how space is allocated to
processes: (reference “Operating System Concepts” by Abraham
Silberschatz, Peter B. Galvin (Author), and Greg Gagne.)

• First Fit: Allocate the first hole that is big enough. Searching
may start either at the beginning of the set of holes or where
the previous first-fit search ended.

• Best Fit: Allocate the smallest hole that is big enough. The
entire list of holes must be searched unless it is sorted by size.
This strategy produces the smallest leftover hole.

• Worst Fit: Allocate the largest hole. In contrast, this strategy
aims to produce the largest leftover hole, which may be big
enough to hold another process.

• Experiments have shown that both first fit and best fit are
better than worst fit in terms of decreasing time and storage
utilization. First fit is generally faster.

Anas Toma (LS 12, TU Dortmund) 6 / 9



Case 2: heap 2.c

• It is more involving by using a best fit algorithm.

• We will look into the source code directly.

Anas Toma (LS 12, TU Dortmund) 7 / 9



Memory Protection

• Using a Memory Protection Unit (MPU) can protect
applications from a number of potential errors, ranging from
undetected programming errors to errors introduced by system
or hardware failures.

• In FreeRTOS: FreeRTOS-MPU
• It can be used to protect the kernel itself from invalid

execution by tasks and protect data from corruption.
• It can also protect system peripherals from unintended

modification by tasks and guarantee the detection of task
stack overflows.

Anas Toma (LS 12, TU Dortmund) 8 / 9



Creating Restricted Tasks in FreeRTOS

• The created task can run in either Privileged or User modes.

• When Privileged mode it used the task will have access to the
entire memory map

• When User mode is used the task will have access to only its
stack.

• In both cases the MPU will not automatically catch stack
overflows.

• If a task wants to use the MPU then the following additional information

has to be provided:

• The address of the task stack.
• The start, size and access parameters for up to three user

definable memory regions.
• The memory regions allocated to a task can be changed using

vTaskAllocateMPURegions().
• It is implemented in xTaskCreateRestricted() in task.h

• A Privileged mode task can call portSWITCH TO USER MODE() to set
itself into User mode. A task that is running in User mode cannot set
itself into Privileged mode.

Anas Toma (LS 12, TU Dortmund) 9 / 9


