Sprungmarken

Service navigation

Hauptnavigation

You are here:

Bereichsnavigation

Hauptinhalt

Lecture Computer Vision, SS 2017


General Information:

  • No lecture on June, 20 (general assembly of student council)
  • Starting on May 2, the lecture will be offered at two alternate dates with identical content:
    • Tuesday, 14-16 hours (regular) and
    • Tuesday, 16-18 hours (additional),
    • both OH 16, room 205.

Tutorials:

  • Group A: July 31-August 4, 2017
  • Group B: August 7-11, 2017
Location: OH 16, R.U09

Note: Registration required (register with ASSESS, login, select "Computer Vision" and the desired tutorial)

Introduction:

For the majority of living beeings vision is the most important perception mechanism for orienting themselves in the environment. Therefore, there exists a multitude of attempts to recreate this capability in artificial systems. In contrast to image processing techniques found in industrial applications the aim of such advanced systems for machine vision is to obtain a task-oriented interpretation of a complex scene with as few restrictions as possible concerning the context and the recording conditions.

In this lecture advanced techniques of machine vision are covered which to some extent are inspired by cognitive processes known from human visual perception. First, important aspects of imaging processes are introduced with an emphasis on the perception of colors. Afterwards, methods for the extraction of image primitives (e.g. regions and edges) and for the calculation of feature representations (e.g. texture, depth, or motion) are presented. Finally, the lecture focusses on visual perception processes at the boundary between image processing and scene interpretation. Several appearance based object recognition techniques will be covered, e.g., Bag-of-Features approaches, Eigenimages, and deep Convolutional Neural Networks (CNNs) which define the state-of-the art for many current computer vision problems.

The accompanying tutorials will give students the opportunity to deepen their knowledge of the theoretical concepts presented in the lecture by working on relevant practical problems.

Specialization Module (Vertiefungsmodul INF-MSc-502) for Master (Applied) Computer Science

Topical focus areas (Schwerpunktgebiete): 2 (..., Embedded Systems, ...), 7 (Intelligent Systems)

Bibliography:

Accompanying Materials:

(For tutorial materials see the Tutorial web pages.)