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1. INTRODUCTION

This Revision 1 replaces the original report (1). The syntax of MIMOLA
has been slightly changed and extended. The hardware declaration and
assignment parts have been redesigned. A MACRO feature has been added. A
description of the hardware database and the control language of the MSS
(MIMOLA Software System) has been added (2,3,4).

MIMOLA is a computer hardware description language (CHDL) and a programming
language. It has been developed for the following applications:

a. Nonprocedural description of hardware (especially computer hardware),

for declarations (e.g. appl. b.-d.), for education and documentation

b. Functional description of digital systems, procedural, for top-down

design, education and documentation

c. Algorithmic description of digital processors for optimizing top

down hardware design

d. High-level or intermediate microprogramming language for p-code

generation

e. Modelling of algorithms or machine instructions on a state

transition level for measurements and comparisons.

Other applications are possible. It is not the task of this REPORT to
show how problems can be solved using MIMOLA. In chapter 2 some examples
are explained to show the effectivity of MIMOLA. More details can be found
in (5,6) or will be published.

At this point we will summarize some features of MIMOLA to give a

frame for the details in the following chapters.



1. The hardware is mainly described on the register transfer

level. Lower levels (e.g. the gate level) can be described, but the
notation will not be optimal for this purpose. All modules that are
of interest. in the construction of computers today and in the near
future, have been included in MIMOLA as language primitives.
Language extensions to new modules can be made by macro definitions
or syntax extensions. Thus MIMOLA supports mainly modular and
structured hardware solutions with a small number of different
modules and simple interfaces, but admits also sophisticated special

structures for unusual problems.

2. The functional description level is strictly the state

transition level of a synchronous automaton. This is normally
called the microprogramming level. Thus a very close connection

between programs and hardware is achieved.

3. Parallelism or concurrency can be expressed in the range
of one state transition. Besides this constraint the limits
of parallel execution are given by the hardware
features only. The execution of parallel or spatial sequential
operations is asynchronous , as long as no states are changed.
Thus concurrent statements need not be order-invariant (as e.g.
in ISPS (7 ) ).

This means that all set and store operations are executed
synchronously, thus avoiding racing problems. All other operations
are thought to be executed by networks with only one permanent state.

Asynchronous feedbacks are prevented by the syntax of MIMOLA.



In some cases operations are too complex to be executed by
a network with a reasonable amount of hardware. A compromise can
be found by admitting the modules to have internal states not
visible to the outside. The activity of "impure" modules has tc
be controlled by additional signals. It is assumed that the control
unit generates an execution sequence as in a data flow graph.

Thus no synchronization problems will arise.

4. Asynchronous parallelism including more than one state transition
have been excluded as a language primitive. Further investigations are
necessary to find a general solution for expressions of this kind on the

register transfer level.

Asynchronous parallelism on the processor level can be expressed by
distinct MIMOLA programs with appropriate synchronization macros. As long as
no method exists to distribute algorithms on more than one processor
automatically, our design methods are sufficient to desiqn and optimize one

processor at a time.

5. For the use of MIMOLA as a high level programming language a macro
facility has been included. Thus expressions are allowed that cannot be
directly or uniquely be built in hardware.

Standard macros like IF.. THEN ..., CASE, FOR.... CALL are parts of

the syntax. The semantics is assumed to he near to the usual one. The



MIMOLA to his ideas or to a special HLL.

Additional user macros can be used to extend the language, to
introduce unusual constructions (e.g. synchronization primitives).

Thus experiments with different macro-replacements are possible.

6. Data types have been included only as far as they concern the
hardware. This is due to our main applications b. and c. Words of
different sizes, fields of words and concatenations of words or
fields are the only data structures in MIMOLA that can directly be
translated into hardware.

Array element references are included as a standard macro. Field
declarations can be used for PASCAL RECORD-fields. Distinctions between
different scalar data types can be expressed by different memory module
names and different operator functions. Different memory names can also
be used to express a difference between local and global variables.
This represents no limitation for the hardware design space, since

modules with different names can be easily merged by an edit process.

7. As CAD systems tend to become too large and inefficient, a
LR (1) grammar (Appendix B) has been chosen with additional

restrictions to simplify the syntax analysis.

These features could not be found in any other language. This
is the only reason for the definition of a new language. It was

originally written for our own research. But since our



MSS is written in PASCAL, it can be run on many installations. This may

encourage other groups to use MIMOLA together with MSS.



2. APPLICATIONS
MIMOLA was designed as a tool. Therefore examples for the applications
listed in Chapter 1 are given. They are partly selfexplaining. For details

refer to the appropriate chapters in this report.

2.1. Nonprocedural Description of Hardware

The simple processor in fig. 2.1 can be expressed by the DECLARATION

in example 2.1.1

5P

ADR
aM

T CRAD

CsSM

CRAC
FB

\__l__f._‘.mv

CRP

Fig. 2.1 Simple Processor



DECLARE

ADDMODUL
SM<A(16384:0) .BIT(15:0}, S5M=A
“main memory, 16k, 16 bits, 2 ports",
SP{1024:0).BIT{21:0) "microprogr.mem.",
RAC.BIT(9:0) "accumulator"™,
RAD.BIT(15:0) “address register"”,
RAC.BIT({15:0}) “accumulator",
Al.INCR) "monadic operator™,
Bi{+,-,.8,.b) "adder",
I.BIT({21)CRF.BIT{Z0)MRF.BIT(19:18)FE

LBIT(17)CRAC.BIT{16)CSM.BIT{15)MADR
+BIT{14)CRAD.BIT{13:0}ADR

"microprogram word, field names";

ADDCONNECTION
"declaration of data, address and
control paths"
B<a <= SM>d, "memory out to adder input"
Beh <= RAC,
B.FCT <- I.PB "microprogram field to
adder function control™,
RAC == B "adder out to accumulator”,
RAC.CON <- I.CRAC "accu load enable”,
RAD <= B, RAD.CON <- I.CRAD,
EM<A <- B, SM<A.COMN «- I.CS5M,
SM.ADR <- I.ADR /RAD "address field
and address register via multiplexer
+to address port of memory",
SM.ADR.MPX <- I.MADR "address multi-
plexer control",
RF <= A / I.ADR, RF.CON<- I.CRF,
RFP.MPX <= I.MFR,
A <— RP, S5P.ADR <- RP;

ENDDECLARE

Example 2.1.1 : Declaration of the Processor in Fig. 2.1

Besides some additional informations, the description in example 2.1.1
has no value of its own, because Fig. 2.1 gives a clearer view of the
structure. In the MIMOLA design systems hardware descriptions are used as an
input form for computer aided designs and transformations. The DECLARATION
can be used to show that the processor in Fig. 2.1 is able to execute a given
set of functions. The MSS would give an error output otherwise. It can also

be used to translate algorithms to microprograms for this processor.



Another way of hardware description is of more interest: the
definition of upper limits in the design space (Example 2.1.2).
The meaning is: one memory SM with a maximum of 6 ports is the
only memory. No more than three dyadic operators are allowed, B3
with a limited function set. All other recources are not limited.
This uncomplete description is the normal way to interact with

the MSS process.

DECLARATION

ADDMODUL

SM(65/535:9) . WORD.MOREPORT (6) ,
B1,B2,B3 (+,-);

Example 2.1.2

2.2. Functional Description

A computer can well be characterized by a description of its
machine instruction set. Only a part of the hardware is visible in
this description. The hidden part is of no direct importance to
the function the user of the computer sees. This "functional
description" can be formalized by a CHDL. Due to our familiarity
with programming languages procedural descriptiors are more
natural to express sequential microprogram steps or state
transitions than nonprocedural ones. The description level depends

on our purpose.

LSTAA SM(m/RIX -> B(+)) : = RACCA,
RCOND.N:= RACCA.BIT(7),
RCOND.Z:= RACCA => A(=0),
RCOND.V:= 0O;

"RACCA accumulator A
RIX indexregister
RCOND condition register"

Example 2.2.1 : Functional Description of the
M6800 Instruction "STAA m,X"



Example 2.2.1 shows a high level description of a MOTOROLA
M6800 microprocessor instruction. It is sufficient for an
ASSEMBLER programmer to understand the function of the
"store accumulator A indexed in memory, address m". In a

design process this description opens the greatest design

enara

LETAA EM{EM{RPC => A(.IKCR))/RIX -2E{(+)}
= RACCH,

RCOND.N := RACCA.BITI(7),
RCOND.Z := RACCA, == A(=0},
RCOND.V = 0O,

RPC := RPC/2 => 13(+);

"RPC program counter"

Example 2.2.2 : STAA m,X

Example 2.2.2 gives more details about the instruction format and the

program counter RPC behaviour.

LSTAA1 RIR := SM(RPC),

RPC := RPC -> A(.INCR);
LSTAA2 RHLP:= SM(RPC),

RPC := RPC -> A(.INCR);
LSTAA3 RHLP:= RHLP/RIX =-> B(+);

LSTAA4 RCOND.N:= RACCA.BIT(7),
RCOND.Z:= RACCA -> A(=0),
RCOND.V:= O;

LSTAAS SM(RHLP) := RACCA;

"RIR instruction register
RHLP internal register"

Example 2.2.3 : Possible p-instruction sequence of "STAA m.X"

In Example 2.2.3 the instruction is resolved in 5 microstatements. This
might be the execution sequence of the M6800 and a description of all
instructions of the M6800 in this manner would lead to a structure very

close to this microprocessor.



It can be seen from these examples, how useful a functional
description of a computer in MIMOLA may be in documentation and
education. But every level can also be used as an input to the
MSS to find different hardware structures. These will meet the
requirements correctly and can be optimized with different

constraints and goals.

2.3 Algorithmic Description

It has been shown in 2.2 that different description levels are
possible with one language. without passing a sharp border we can
increase the level of example 2.2.1. User problems seldom bother with
details like data storage in registers. Normally transformations are
applied on variables or more general data structures. The translation
to register load and store operations is a necessity due to the lack
of more powerful or simply suitable instructions.

If we want to design optimal structures from the users view, we
must start on the users level. Problems can only be solved by
computers using algorithms. Therefore a description on the
"algorithmic level" is the main application of MIMOLA. Example
2.3.1 shows a short program in three different languages. The
postfix-notation of MIMOLA may be unusual, but the correspondences
can be found easily. The differences to example 2.2.1 are only
gradual. But the point of view differs:

Example 2.2.1 describes the real function of the hardware. The
only uncertainty is the probability of occurance. All functions

can be listed completely.



10

20

PASCAL

min = list [1); max:= min;
for i:= 1 to (n div 2)-1 do (# n odd
pegin p:= list [2ei]; g:= list [2+i+1];
if p>g then
begin if p > max then max:= py
if g < min then min:= g
and
else
begin if g > max then max:= gi
if p < min then min:= p
end
end;
FORTRAN
min = list (1)
max = min

po 20 4 = Z,N-
p = list (i}
g = list {i+1)

o1 -

1.2

IF (p.LE.g) GOTO 10

%)

IF (p.GT.max} max = p
IF {g.LT.min) min = g
GOTO 20
IF (g.GT.max) max = g
IF (p.LT.min) min = p
CONTINUE
MIMOLA
L1 §(min}:= S{list[1] )},
g (max):= S{list(1] I,
FOR i FROM 2 BY 2 TO S5in)—A/(.DECR);
L2 DO(i)
IF s(list [D{i)})= v1/
S{list [Di{i)=A{.INCR}])= Vi
=B {>)
THEN IF V1/5 (max)==BE{>)
THEM 5 (max):= V1 FI,
IF W2/5imin) -=B{<)
THEN S(min):= W2 FI
ELSE
IF Vi/8(max)->B(>)
THEM S (max):= V2 FI,
IF V1/8(min)—=>B{<)
THEM Simin): = Vi FI
FI,
oDiid;

Example 2.3.1



Example 2.3.1 shows a possible function. We can estimate the
probability but we cannot give a limited list of all algorithms.
This is an additional degree of uncertainty. It can partly be
overcome by using large samples to be able to calculate "precise"
mean values. Due to the lack of knowledge about user behaviour and
therefore the difficulty of giving an exact task description of
the design object, "precise" is very relative.

Large program samples ask for a descriptive language with
high-level language features. This is an unusual demand for
CHDL's but had to be met by MIMOLA.

A set of algorithmic descriptions define an automaton or
hardware structure. The microinstructions of these programs cause
state transitions of this automaton. Different automatons can be
found by transforming these programs. On the other hand, manual
changes of this automaton (by declarations, see 2.1) can cause
transformations of the programs to preserve the ability of
execution.

Thus the hardware can be tailored to meet constraints and a
proof is given at the same time about the correct execution of
the programs on this hardware. Since the programs form the task
description, the correctness of the solution can be proven.

To find an optimum, the variations of the hardware are not
done arbitrarily. As the design space is too large to-try all

possibilities, occurence probabilities are calculated for all



resources (e.g. modules, connections, instruction word fields) to guide
the variations.

This is a very short description of our design method. It is implemented
to a large extend in the MSS (MIMOLA Software System). The use of
functional descriptions (Chapter 2.2) is a special case of the method. A

better description is (6).

2.4 Microprogramming Language

A welcome byproduct is the possibility to use MIMOLA as a high-level
microprogramming language. This is due to the fact that the state transition
level is a basic language feature and is preserved during all
transformations. For all MIMOLA programs an automaton or hardware structure
exists that can execute the microstatements of the programs without further
transformation. As already mentioned in 2.3 a change of the automaton causes
a program transformation. A complete declaration of a computer structure (see
chapter 2.1 ) can be seen as a change of this kind. Thus the MSS will respond
with transformed programs executable on this structure. Since these programs
describe state transitions, they contain the microcode in a special form.
Some decoding and software tasks like storage management have to be added to
change the MSS to a microprogram compiler. This application is under

investigation.
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3. SYNTAX
The syntax of MIMOLA is defined in two ways. The user can refer to the
syntax diagrams in Appendix A. The syntax analyzer of the MSS (MIMOLA
Software System) takes a production system in Backus notation, listed in
Appendix B. It is Il LR(1l)grammar.
Additional rules are listed in Appendix C. They are used
by a preprocessor in front of the syntax analyzer.
Part 1 is necessary to guarantee correct hardware functions.
Part 2 is additionally required to suppress meaningless programs.
A violation of theses rules does not necessarily lead to

hardware errors.

The symbol set of MIMOLA is 96 characters of ASCII.
Provisions are made to allow for 64 character sets. Throughout
this report the following meta symbols are used:

1= equivalence in Backus notation

< > include nonterminal symbols
include representatives of strings of

terminal symbols

m
{ } contents may be repeated at least n times and
n
at most m times (BNF)
*

A star ¥*# is used if the contents may be repeated
indefinitely.

symb-1|symb-2 means: symb-1 or symb-2

For different purposes four special adapted sublanguages

exist:
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assignment language, declaration language, macro language, program language.
The grammars of these languages differ only slightly. The differences are
marked in the syntax diagrams and the list of rules and will be explained in
the following chapters.

A MIMOLA string may contain a sequence of different language parts. Fig.

3.1 shows the endsymbols.

State Control key Endsymbol
Assignment ASSIGN ENDASSIGN
Declaration ADDMODUL / ,
ADDCONNECTION
Macro MACRO ENDMACRO
Program PROGRAM END /
ENDSUB
Fig. 3.1

Different language parts may be nested either by writing a $-sign into the
current source string or by using preprogrammed breakpoints (see chapter
9.1) . Both conditions cause MSS to expect a (nested) new command key.

Example 3.1 gives valid combinations of control commands.



ADDMODUL R1,R2 ; "level 1: addition of modules”
FROGRAM "level 1: start of program”™

begin L@ R1:= RZ;

$LBSIGN ar= @; ENDASEIGH "level 2: nested assignment"
L1 s{al= R1 : "eontinue with lewel 1"
and "end-of-program causes the

command to he read from

terminal for non-BATCH jobs"

PRINTHARDWARE

EXIT "exit from MSS"

Example 3.1

The set of allowed control commands depends on the context. It
is not allowed to put two or more identical control commands in
one nesting hierarchy (e.g. a PROGRAM part may not contain a
PROGRAM command) .

Assignment parts provide means to define software equivalences

with no direct influence on the hardware. They are tools for
program structuring and microcode generation, syntax analysis
starts after "ASSIGN". A correct assignment part can be reduced
to the assign-axiom, when the endsymbol "ENDASSIGN" has been
found. If equivalences are not changed by other assignments, they

are valid until exit from MSS.

Declaration-parts are used for unprocedural definitions or

changes of hardware structures. For correct parts a syntactical
reduction to the declaration-axiom is possible, when the
endsymbol "; " has been found. Hardware structures are valid

until exit from MSS if they are not changed by
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ADDMODUL and ADDCONNECTION commands or deleted with DELMODUL and

DELCONNECTION commands.

Macro parts allow the declaration of macro equivalences and
replacements (see chapter }.Definitions atart with
$MACRD and stop with ENDMACRO. Macro ranges are blockoriented
in order to allow easy conversion of variable declarations
of high-level programmibg languages. o block is opened by a
{3,}10 BLOCKE command and closed by [($ | ENDBLOCK. The first
block is preopened. ©
The program parts contain the algorithmic or functional descriptions.
Program parts generate hardware descriptions and statistical analyses if
applied to the MSS. Program parts may be subdivided in main program
parts, enclosed in BEGIN ... END, and subroutines enclosed in SUBROUTINE
. ENDSUB. The syntax analysis is separately applied if these parts are
disjunctive. Nested subroutines are analysed together with the enclosing

program.



4. HARDWARE DATA STRUCTURE

The MSS stores all information about the available hardware
together with the statistical information in a hardware data
structure (hds). The structure is similar to the network model of

data bases.

Most of the entities are hierarchically ordered:

4.1. Group, Module All modules with the same initial letter

form a group.

The MSS recognizes the following groups:
monadic operator,

dyadic operator,

triadic operator,

Do - Loop - variable storage,
hardwired constant,
microinstruction,

stack,

network,

register,

storage (RAM),

non-stored result.

<hWZzZRHTMOOQW W

4.2 Port Input

A module has at least one port. All input and output is
done

via ports. There are input ports, output ports and
bidirectional

ports: Portdirections may be specified by ' < ', ' > ' or '<
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a fixed number of ports (e.g. dyadic operators have three: two for input and
one for output); others have a varying number of ports (e.g. random access
memories). There are certain limitations to the set of allowed portnames and

directions, depending on the group which the module belongs to:

A, R, V no port-name (blanks),

F, I, D no port-name, only output (>),
S, K no restrictions,

B >, <a, <b ,

c >, < a, <b, <c,

N >,

<a, <b, <c, , <Z.

The control language command NOLOWERLETTER changes the above lower case
letters to upper case letters.

Each port has up to four inputs or outputs: a function input, an address

input, a control input and a data input or output. They are selected by the

reserved attributes .FCT, .ADR, .CON and .DAT. The latter is assumed by

default.

4.3. Field

Inputs and outputs have fields. These may be ranges of bitnumbers or
attributes which stand for unassigned ranges of bits (called
bitattributes). Any attribute which is not a predefined attribute, is
considered to be a bitattribute. The bitrange of a bitattribute can be
defined in the ADDMODUL declaration.

Input fields can be viewed as multiplexers if there is more than one
connection for a field. In this case the field has an associated
multiplexer address input field which the user can select with the .MPX

attribute.
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4.4. Connection

Connections in their most general form are concatenated subranges of data
fields of outputs. Connections are the hds representation of bundles of wires
connected to a destination. For example the block diagram of Fig. 4.4.1 is

transformed into the nodes of Fig. 4.4.2.

BIT (3:0) R 2
%ITU-.gy
R 1
BIT(3:9)
R 3
Fig. 4.4.1 Hardware Block Diagram
Group Module Port Input/output Field Connection

Fig. 4.4.2 Corresponding hds Structure

The hds description of connections contains independent ranges for source- and

destination bits. See chapters 5.3. and 5.4. for additional information.

4.5. Data Structure Entries

The following is a list of some of the entries in the just described

hierarchical part of the hds:



group

module

port

field

connection:

Other tables in the MSS are:

- 21 -

boolean value indicates whether or not a

module of this group has been declared in the
declaration or not.

number of possible duplicates,

pointer to joint distribution table,

number of additional ports allowed,

frequency of use,

distribution of concurrent uses of ports of this

module.

frequency of use,

pointer to entry in joint distribution table
(S and K only),

list of functions,

default function,

boolean value indicating the right to add more
functions to the list of functions.
frequency of use,

pointer to entry in joint distribution table
(uinstruction only)

symbolic value (microinstruction only)
frequency of use,

multiplexer address,

inhibit flag from $DELCONNECTION command.

1. Second order joint distributions for the
use of modules and storage ports.

2. Second order joint distributions for the use of the
microinstruction fields.
- All the above tables are.listed by $PRINTHARDWARE and

STYPEHARDWARE .
3. Frequency of function uses, listed by $PRINTFUNCTIONS and
$STYPEFUNCTIONS.
4. Overlapping status for bitattributes.
5. Label
table.
6. Identifier table (not yet implemented) .
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5. DECLARATION

5.1. Declaration of Modules, Ports and

5.1.1. Addition

Hardware modules, their ports and multiplexers can be
declared with the § ADDMODUL command. The command key must be
followed by a list of hardware descriptors.

The general form of the syntax is:

1 ]
{$] =2ooMoDUL  <descriptor= |, <descriptor> |
(i o
1
wdescriptors: := «smodulenames> { =direct innh[ <direction=<portn lm]o

1 o
[-cfunct:tcmlistﬂ-addressrang&:- } l‘ =attribute h}
&) o]
L 3
=functionlist> ::= | <function> {, <function=> } )
[8)
<addressrange> ::= [ <unsigned integer> : <unsigned integer> |

Complete syntax rules are given in Appendix B.

ADDMODUL
5 <= (# FFFF:@) .BIT (31:9)WORD,
"RAM of B4K cells of 32 bits which are named WORD"
BALU (#,-,.AND,.0OR,.HOR).BIT(32)CARRY.WORD,
"arithm.=-log. unit with functions and a CARRY cutput”
BALU = &. WORD. INFUTMAX (2). NOMOREFIELDS
"the a input of BALU is 32 bits wide, has a maximum
of two inputs to the multiplexer, no other fields

are allowed”

Example 5.1.1
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All ports, inputs, and outputs may be specified separately.
If no direction is present, output is assumed. Default portname
is 'A' for RAMs and stacks and (blanks) otherwise. .DAT is default

for inputs and outputs.

Continuous bit ranges used in ADDMODUL will not be concatenated.
R1.Bit (7:3,2:0) will generate two fields if used in ADDMODUL,
‘but only one field BIT(7:0) if it is a creating call in a PROGRAM
part. A list of reserved attribute names is used for entering
more information into the hardware data structure:

a) DUPLICATE {( ui) /NODUPLICATE

DUPLICATE means: this module may be duplicated ui times if
necessary. If ui is omitted, a default value of 26 is
assumed. Maximum value of ui is 26. NODUPLICATE is equivalent
to DUPLICATE (O). If no DUPLICATE attribute is present, a
value of 26 is assumed for Aand B-operators declared outside
of ADDMODUL and ¢ otherwise. Duplicates may not be duplicated

again.

If the number of temp-registers RHLP needed for the sequen-
tialization of a program is insufficient, the compiler creates
a new one if the duplicate entry of RHLP is greater than
zero. The new register will be named RHLP_xxXX, where xxx

is a number of three digits.

If an A or B-operator is used more than once in an esb, the
compiler tries to duplicate the existing A- or B-operator.
The new name will be oldname character. 'Character' will be
incremented from A to Z. The underscore character '_' will
overlay the first blank character of the old name or the

7th character if 'oldname' has 7 or more characters.



Duplicates have the same functions and field. extend parameters of
the output port and the same trace option as the original module.

Fields are not copied.

b) MOREPORTS (ui ) /NOMOREPORTS MOREPORT means: this module can have
ul more ports than declared. If ui is omitted, a default value of 26
is assumed. Maximum value of ui is 26. NOMOREPORTS is equivalent to
MOREPORTS (O). If no MOREPORT attribute is present, a default value
of O is used for modules declared in an ADDMODUL declaration and 26
otherwise. ui is decremented for each created port. If the present
number of ports of a storage S or stack K is insufficient, the
compiler generates a new one if the moreport entry is greater than
zero. The first character of the alphabetically last portname will be
incremented by one in order to generate a new name. c) MOREFCT /
NOMOREFCT

If functions for a port have been declared in ADDMODUL, the list
is assumed to be complete. Addition of more functions by appearance
in the program part is possible, if the user uses the MOREFCT
option. If functions have not been declared, the addition of
functions is allowed. If the user wants to stop the addition of
functions for such ports, he may use the NOMOREFCT attribute. The
list of functions influences the final statistics in two aspects: 1.

The computation of microinstruction bits

np = El—ld{numher of functions of this port,]]

all ports
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2. Predeclared duplicates of operators may have different

function sets. The allocator uses a specific 'duplicate'

only if the specified function is allowed for that port;
that means either the function must be present or the addi

tion is allowed.

d) AUTO/NOAUTO

The automatic execution of functions may be switched on and off with
AUTO and NOAUTO. .LOAD for register and storage destinations and .PUSH for
stack destinations are executed by default. This option only influences

counts of functions.

e) AUTOFCT ( function )

This attribute defines the function which should be executed by
default when that particular port is referenced. Unimplemented at this

time.

f) INPUTMAX (ui)

This attribute limits the number of inputs to a multiplexer (field).
Preceding attributes .DAT, .ADR, .FCT, .CON, .MPX and bitattributes may
be used to select the field. If there are preceding bitnumbers/names, the
limitation will apply to these bits, otherwise they will be default
limits for all newly created fields. If no INPUTMAX is present, a number

of 4096 will be used.

ADDMODUL

B.FCT.BIT{(3:0). NOMOREFIELDS . INPUTMAX (1) ;

Example 5.1.2



g) TIME (ui)

This attribute defines maximum delay times for fields. If
no field is specified, it is valid for all fields of an input
or output; otherwise it is valid for one field. Default value

is 1.

Field dependent run-time estimation is not vet implemented.

5.1.2 Deletion
]
Modules may be deleted by [$ | DELMODUL <modulenames .
]
Connections from portes of this module are not automatically

deleted. Instead, their source modulename will print as

IDELETED.

5.2 Standard Modules

5.2.1 Random Access Memory

S "name" ( <operand> )
In software this means the value of a variable or the contents
of a memory cell with the effective address <operand> . The word
length is determined by the data type. This cell can be read
as a source or altered as a destination.

In hardware S represents a data output or input port of a
word-oriented RAM. The operand is connected to the address lines of

the RAM.

Parts of memory words can be addressed by attributes:

S "name" ( <operand> ) <attribute>
The allocator tries to find a suitable port if "name" does not

contain a portname.



5.2.2 Register
R "name"

defines a register. Every register is a module of its own with data input
and output. In contradiction to memories S, it t.».stores only one word. The
modules must be identified by names. ~i. . Names can be declared in the

declaration part.

Registers are unnecessary from the viewpoint of algorithms. Therefore they
should be avoided on level O of MIMOLA. Exceptions are registers with special

functions, e.g. the program counter RP, I/O-registers.

Some registers can perform functions:
R "name" ( <function> ) The functions are executed synchronously to
the <esb> clock (see chapter 7.1.3). Only the function .LOAD is a

standard function, if R is a destination.

Functions can be coded by the value of an operand:

R "name" ( <operand> )

The code must be declared.
Functions can be made depending on operands:
R "name" ( <function> ( <operand> ) )

By this e.g. the number of shifts can be made variable.

5.2.3 Stack

K "name"
defines a stack. An algorithm can use more than one stack. Therefore every
stack must be named. This can be done as in the case of registers. The
standard depth of a stack is infinite. A finite depth can be declares. The

expression K "name" addresses
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the top of the stack while reading and the next free cell when
writing. By

K "name" ( <operand> ) all data in the stack can be

addressed.<Operand>= 0 addresses the top of the stack while reading
or writing. Positive values point down the stack. Writing into the
stack should be avoided. Using an <operand> , no stack function is
executed.

The only standard function .PUSH is executed automatically, if K
is a destination. All other functions can be declared in a
declaration part or be appearance in the program, as long as no
other declaration has appeared. Possible functions are:

.PUSH, .POP, .NOPUSH, .NOPOP, .CLEAR, .POINT

Only the function .POINT must be explained. Sometimes the stack

pointer must be examined to estimate the load of the stack.
K "name" ( .POINT ) addresses the stackpointer. By this the
value of the address of the top of the stack can be read or

changed. The bottom of the stack has the address (b.

5.2.4 Instruction

I is the current instruction word and is an abbreviation of §
(RP) . There is resemblance to the "instruction register" in
conventional structures, but I is no register and therefore no

"instruction fetch phase" is needed. Such a phase can be programmed,

if conventional cumputer structures shall be exactly simulated. By

I. <attribute>
every part of I can be addressed. These parts may be functions,

addresses, constants etc. Thus the microprogram can be inserted
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As long as the precise partitioning of the microprogram word is not

fixed, the implementation by the instruction word can be expressed by:
I ( <identifier> ) and
I ( <function identifier> )

5.2.5 Hardwired Constant
F "name"

is a single hardwired constant. The storage of several constants in a ROM
can be expressed by

F "name" (<operand> ) The operand addresses the ROM. Single
constants and the contents of the ROM must be declared. Hardwired constants

are one possibility to implement constants (see chapter 7.5.2).

5.2.6 Monadic Operator
A "npame" ( =function= }

denotes an operator with one data input and one data output. It
performs a monadic operation on one operand standing left of it.
Standard operations for all applicable data types are,
putput type egual to input type:
- - BOT . BBS . INCR .DECR
boolean cutputi
.BICGN 3" <= @ <= == @ =@

By
A "name” { =operand= }

the function code can be replaced by an operand, if this code
has been defined. This is a possibility to control operations
by=-passing the control module.lf it is used at all, great care
must be applied. Attributes can be applied.

5.2.7 Dyadic Operator
B "pame" [ <functiocn> )

denotes an operator with two data inputs a and b and one output.
it performs dyadic operations on the two operands standing left
of it. & and b are standard names and can be used to express
functions. The assignment to the ports of the operator is
explained in chapter 5.4.1 .




Standard operations for all applicable data types are,
output type equal to input types:
+ - / -—atb .AND .OR  .XOR .NAND .NOR

Boolean output:

< > < >>_ <>

Other féatures are the same as in chapter 5.2.6.

5.2.8 Triadic Operator
C "name" ( <function> )

C has 3 input ports named a, b and c. The assignment to the
operands is an extrapolation from that in chapter 5.2.7.
No standard functions are declared. Other features are the

same as those in chapter 5.2.6.

5.2.9 Network
N "name" ( <function> )

denotes a network with any number of inputs, named a, b, ... A, B
from the left to right. Operands are assigned in the same

order.

Functions are expressions of used input names and operators
(AND )
+ (OR )
- (NOT ) .
No brackets are allowed.
It is assumed that every control unit of a computer has
an instruction pointer unit (8). This unit performs the
switching in the case of conditional instructions and is
therefore equivalent to the operator td. The range of

functions can be altered by declarations.

5.3 Declaration of Connections

5.3.1 Addition
Connections are added by the $ ADDCONNECTION command,

FATlAuaAd hsr 2 ldic+r Af ~AAannantinnc Tha ~anavral fAarm o
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1
l 1 } ADDCONNECTION <connection:> {, <connnections }
o

-
wconnections: ;= <destination> <=- <sources {f <SOUL e ]
o

The meaning is: all sources are connected to the destination;
the left most source gets the highest multiplexer address while
the right most source gets the lowest one.

The lowest multiplexer address is zero if no scurces are
connected by appearance in the program. The character # may
by used to define concatenated sources. The "= ' character

of the left-arrow must be separatea from a preceding module
name with atleast one blank. Otherwise it will be treated as a
port direction character. V's used in ADDCONNECTION declare

a name for a bundle of wires which can always be used in the

PROGRAM part.

ADDCOWNECTTON
Va <- Ra/Rb/Stmp> B ,
BALD = a == Va,
Vi == 5M = B/Ra/Rint,
BALU= b == Vi,
COVF=a == Wa. BIT(31)},00VF<b <- Vh.BIT(31),

COVE < <= BALU.BIT(31) ,COVF=.FCT =- I.FCOVF:
Example 5.3.1

5.3.2 Deletion

1
Deletion of connections is started by the [$} DELCONNECTION
D

command. General syntax is the same as in 5.3.171. Deleted connections
remain in the hardware data structure; they are marked as non-

usable and are not counted as multiplexer inputs.



Example 5.3.2 : DELCONNECTION Va <- Rb

i

5.4 Data Paths Conventions

The standard declaration for data paths is: All inputs and outputs of all

modules are connected via multiplexer. The number of paths can be limited by

declarations (chapter 5.1.1)

5.4.1 Statements
In the case of

<statement> _ <operand> | <source>

no data are transferred outside the source module. Generally statements

specify data paths.

<destination>::= <operand>

specifies a connection between the data output of <operand> and the data

input of <destination> , which must be a memory. The <operand> itself can

include the connection of several

<operand> / <operand> =-» <=p-operator>

i ]

1 1
operand operand

4 !

b

b=operator

Fig. 5.1



The assignment of the input and output ports is always given by
the position of the operands. The postfix-notation gives a simple
unique picture of all data paths. The switches for different data
paths are assumed to be multiplexers,assigned to the inputs of the

modules. It is possible to declare busstructures.

5.4.2 Destinations

All destinations are assumed to be edge triggered. This
means: the contents of a memory cell can be read and changed in

the same <esb>

5.4.3 Bit-to-Bit Assignment

Normally, when equal data types are coupled, bits with equal
bit-position are connected. The rightmost bit is always the
least significant bit. Its bit-position number is zero.
If data types with unequal word length are coupled, the
connection is always right Jjustified. There is no truncation, if
the word length has not yet been specified.
Free input lines are set to zero, free output lines remain open
ended. Information can be lost. Correct type transformations must be

made by operators.

5.4.4 Attributes
All data paths can be split up into single bits, bitgroups or

2 TR PN U N RS U i g T R P



is a direct assignment. The expression may be composed of
several parts, separated by commas. See also Appendix A. The

meaning of these parts is:

<unsigned integer> <unsigned integer>
is a range of bits/bytes.
<unsigned integer > is the bit/byte-position
number of a single bit/byte. Allowed names are:
BIT, BYTE;, MASK; BYTEMASK+
BIT and MASK address bits.
BYTE and BYTEffASK address bytes.
BIT and BYTE effect the position of the bits/bytes. All
selected bits/bytes are packed tight to the right bound of
the data path.
MASK and BYTEMASK do not effect the position of the bits/bytes.

The rules of chapter 5.4.3. have to be obeyed.

Two examples show the result of attributes to bit connections:

Example 5.4.%:

S5{a) .BIT(7:5, 2)=>Al = ) "Fig. 5.2"
Ela) .MASK(T:5, 2)-=a&{ - ) "Pig. 5.3"
5 5
76343 21¢ 76543210
'[ '[ l I . T T
@ape L
L . | (B BN
76543218 TEESE 432718
A A
Fig. 5.2 Fig. 5.3

+jnﬂt vet implemented
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5.4.5 Distributors

V "name" marks a point on a data path. By

<operand> = V "name" this point is defined and can be

referenced in the same <esb>. V means no storage of data!

The main application of V iS the identification of inter-
mediate results, which are used in different expressions in the
same <esb> . In hardware this simply means the parallel con
nection of several inputs to one output. V can be named. If

V is used in the declaration part it denotes a bus-structure

(see chapter 5.3.1).

5.4.6 Concatenation

<operand> * <source>

means the concatenation of all bits of the data output of

<operand> with those of <source> . The result forms a new
data path, whose width is that of the sum of both elements.
The source forms the lower significant part of the word.

Example 5.4.2 shows this relation.

Example 5.4.2:

S(a) /R1 => B(+) % R2 ->A(-) "Fig. 5.4"
S R1 R2
3 219




With V as <source> , even complicated connections can

be made.



6. ASSIGNMENTS

The assignment part has little or no relevance to the design of
the hardware. It is needed only when micro programs shall be
generated. The assignment part is bounded by ASSIGNMENT
ENDASSIGN The assignment statement a:= b; means: b is assigned to

a. a and b may be lists. There are four kinds of assignments:

6.1. Identifier Assignment

<identifierlist> : <constant>
<identifierlist> is a list of scalar or array identifiers
separated by ' , ' . All identifiers in the list get the value
<constant>

6.2. Storage Map Assignment

<module> . <identifierlist>

This is an implicit assignment of the identifiers to the next free
storage cell of <module> , which is assumed to be a stack K or a
storage S. <module> may contain a start address or a constant range.

The right most identifier gets the lowest value.
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6.3 Initial Value Assignment

<modules> : <constant> This assignment has influence only for
simulations and will normally be regarded as a comment. It means: all
or the specified part of the modules cells are assumed to hold an

initial value of <constant>.

6.4 Record Assignment

<attribute> : <attribute list>
The attributes of the attribute list do not overlap each other

and as a whole are equal to <attribute>.

6.5 Example
ASSIGNMENT
a,b,c.d: = @; “identifier assignment”
Jek,1 1= 1
S{1@@:@) := top, last, ar [5@:@] : “"storage map"
“"equiv. to: ar:= @; last:=51; top:= 52;"
B1,85(5@:8) t= @ "initial value"
-A:= .B.C.D ; "record assignment"
+Bi= ,E.F. H
JINT :=.SIGN.VALUE;

ENDASEIGN
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7. PROGRAM

7.1 Fundamental Semantics

MIMOLA is to be understood as a programming language and as a
language to describe hardware or synchronous automata functions on a
gate control level. Therefore we must notice the software and the

hardware meaning of language details.

The fundamental nonterminal symbol of the syntax is the

<elementary statement block> , short <esb> . It is composed by all

those <statement> 's, which are executed in parallel. The execution
of statements can depend on conditions.

The hardware meaning is: one <esb> describes completely one state
transition of all synchronous automata that are large and powerful
enough to accept all <esb> 's of the programs. To reduce the length

of the programs there exist some fundamental semantics:

7.1.1 A11 storage cells that contribute to the state of the automaton

are not changed except for those explicitly mentioned in the <esb>

and except for the program counter RP.

7.1.2 Unless otherwise determined the program is assumed to be

stored in a memory (see 5.2.4) with the program counter RPas a

pointer. RPis assumed to be set to the label of the next
<esb> in the program, when no other assignments are made.

RPis affected hv: aoTO CAT.T.. RETITRN no on



7.1.3 All statements of one <esb> are executed within one clock
period. Reading of, switching of and operations on data are assumed to
be network functions needing no clock. The clock changes the
information of the destinations,executes the functions of registers
and stacks and terminates the action of the statements by setting RP.
The clock is one edge of a clock puls and is synchronous for all
statements of one <esb> The clock is not periodic. Its interval

depends on the slowest statement in every <esb>

7.1.4 All resources and data paths that occur in one <esb> must be
available in parallel. The syntax makes no limitations as to the

number of resources or paths. The number can be limited by

declarations as a part of the definition of a special automaton. The
set of possible resources is defined by the standard declarations in

chapter 5.2.

7.1.5 Unless otherwise determined it is assumed that there

exists a control module. It must generate the clock, decode the

current program word to control the resources and data paths and
it must take into account the conditions. There exist no
sequential steps within any <esb> controlled by hard-wired or
firmware microprograms. The level of MIMOLA is therefore the

microprogramming level.

7.2 Labels
L "name* {. cunsigned ihteger:];
Every =esb> begins with a label. It can be uged as a line

number, 45 an «esbs addresa or as a program counter value. The
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direct assignment between labels and memory addresses of microinstructions is

made by the MSS on the lowest level of MIMOLA or by the program loader.

Seven characters are significant for the label name.

During the design process the MIMOLA programs are often compiled from one

level n to the next lower level n+l. Every compilation divides several < esb>'s

into smaller ones. The label number space is extended by joining unsigned

integers at every change of the level.

label structure.

Example 7.2.1 :

Level: @ 1

La La.1<La.1.1
Lb La.2 \\\\\~

La.t1.2
Lc - La.3 La.2.1
ee. Lb.1 La.3.1
Lb.2 La.3.2
7.3 Functions

The standard functions have been described in chapter 5.2.

functions have to be declared.

code to control the modules.

Thus the level can be evaluated from the

Special

It is assumed that the compiler knows the

Normally the function code is part of the instruction word I. This can be

expressed by

<function> =

In hardware it is possible to make a function depend on

I

(

<function identifier >

conditions. This can be expressed by

IR <anarand> THEN <functinan> RT.QR <functinan> FT



Multiple applications of the same function to registers and

stacks can be expressed by

<function> _ <function> ( <operand> )
It has to be regarded that the multiple function must be executed
synchronously during one clock period. Chapter 7.1.3 has to be

obeyed. The result of <operand> must be of type < unsigned integer >

Example 7.3.1:
S(a)=V -> A(IF V -> A(<O) THEN - ELSE +
FI),

7.4 Identifiers

Identifiers are representatives of constants. After compiling

there should exist a list of the values of all identifiers. There are

two kinds of assignments:

7.4.1 Identifiers can be assigned a value in the assignment
part. These identifiers can be operands. Their values are
known

to the programmer.

7.4.2 Identifiers can be assigned a value by their appearance
in a program. Identifiers forming the addresses of memory
cells are typical examples. In this case the value of the
identifier is the address, not the contents of the memory
cell.

The only standard data structure is the array. Elements of

arrays can be addressed by
<array identifier> ~ <identifier>[ <operand>

[,<operand>)0*] There
exists no fixed scheme for the evaluation of effective addresses of
array elements. If array indices shall be compiled, array dimensions
must be fixed in the assignment part and an evaluation algorithm

must be declared in the macro definition part.
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7.5 Operands

7.5.1 General Features

Every point on a data path having unigue sources can be an
operand.

A switching between operands depending on a condition can be
expressed by

{ IF =operand> THEN <=gperand> ELSE <operand> FI

This congtruct is equivalent to a multiplexer in hardware.

The root of an operand is the source. Most of the possible

sources have been treated in chapters 5.2 and 7.4

7.5.2 Constants
Standard constants are all sorts of decimal, hexadecimal and

binary numbers. Their use in a program implies no hardware gso=

lution for their real source:

hardwired: F chapter 5.2
part of instruction word I chapter 5.2
stored in memory S chapter 5.2

Part of the instruction word is default, another choice must be
declared by macros. If this choice is clear from the beginning,

no constant should be used.

7.5.3 FOR Loop Control Variable
Independent of a hardware or software scolution of the
FOR loop, the control variable value can be accessed by _D .
In the case of nested loops, the control variable of outer loops
is addressed by

0 { <unsigned integers )



The number controls the distance to the outer logp. The identity
O i ) = D specifies the begin of counting.
Ancther possibility to access the control variable iz

D | <identifier=

The identifier must be the contrel variable of the current or of

an outer loop.

7.5.4 Dummy Source

X 1is a dummy source. It is needed, if an operand has no

influence but must be present to fit the syntax.

Example 7.5.1

S(a) / X -> B(-a) "dyadic operator executing a monadic
operation"
IF a THEN X ELSE ... FI "dummy statement"

a / b -> BV(X).EQUAL "operator without function input"

7.6 Allocator Conventions

7.6.1Default Replacement of Identifiers, Functions and
Constants
Any constant, identifier or function, which is not removed by a
macro, is substituted by a reference to a field of the
microinstruction I. The symbolic name of this field depends on the
destination. The first letter reflects the type of the input: A for

address inputs, C for control inputs, D for data inputs and F for
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on the left. If the field addressed by thig string is already
get to ancther symbolic wvalue, a '& "' is added on the right .
and the following character will be incremented from 'A° to
'z' until & free field has been found. The resulting string
is truncated toc an implementation-dependent ngmber of
significant characters (e.g. 8,12 or 18). Thefefure leng names
should be avolded, especially for modules which may be dupli-
cated.

For example, the operand SM>B (@) will create a connection

SM>B. ADR =- L.ASME and assign @ to ASMB.

1f the WOMOREFIELDS attribute has been written for 1 and
the resulting fieldname is not alrsady a fieldname of I,
the allocator will inhibit the new field if the MSS runs in
the batch mode. If the MS5 runs in terminal mode, it will ask
the operator if he allows the new field. The user may allow
the field by typing ‘¥’ , inhibit the field by typing 'N',
or he may rename it by typing a name not starting with "'
or '¥'. Asking will stop for a particular destination after the
user typed 'N' for that field. At least one field for a desti=
nation is always allowed.

The symbolic values of the fields created in this way may be
put out in each <esb> if the [t]; CODE command is used.

In this case the COD-flle contains a symbolic microprogram.

7.6.2 Duplicates of Operators

Refer to 5.1.1 a) and 5.1.1 <)
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T.6.3 Port Allocation

The omission of port names for stacks and storages indicates
that the allocator shall select suitable ports. The allocator
then will first try to find a port where the sddress connection
already exists and is usable. If no such port exists, the user
may select between taking the first free port by giving the
BFIRSTPORT command and optimizing data connections (default).
In the second case the allocator tries to find a port where
the required data connection already exists and can be used.
If there is more than one port with the required data connection,
the cne with the most freguently used connection is taken.
In case of egqual freguencies, the alphabetically first port is
taken. This optimization is essential for the design process
because it tries to create few freguently used connections
instead of scattering uses over the set of all possible con-
nections. The designer's part of the optimization process is to
delete some unfrequently used connections (whose usefulpess
could not be foreseen by scanning only once over the entire
program) with the FDELCONNECTION command. A second pass over
the program, started by $ RESET, will avoid these connections,
when this feature has been implemented.

The allocator will create new ports 1f the current number
is not sufficient and if creation is allowed. Creation is
allowed either if the MOREPORT entry is greater than zero or if
no stack or storage has been declared. If no new port is allowed
and the current number is not sufficient, the compiler will split

the «e2gb>
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7.6.4 Default Bitnumbers

If no bitnumbers/names are present in a description of a connection, the

allocator inserts default ones according to the following rules:

1. If I is the source, chapter 7.6.1 applied.

2. If there is no field at the source or destination, the
attribute .WORD is used.

3. If there is a field present, the field's bitnumbers will be
converted into attributes.

4. If there are several fields present, bitnumbers/names, which are not
overlapping (see chapter 6.4 ) are concatenated in the following
sequence: .WORD fixea bitnumbers .INT .REAL .BOOL user-defined bitnames
in the order of their appearance in the program Example 7.6.1

Assume:
S<A.DAT contains no field,
S<A.ADR contains fields BYTE () , WORD and USER-ATRB,

BALD > .DAT contains the non-overlapping fields OVFL and WORD.

Then
S<A (... =>BALU (x)):= @
will expand as
S<A.DAT.WORD <~ I.DSA
S<A.ADR.WORD < -~ BALU> . OVFL % BALU> .WORD
There is no truncation for bitnames, only for bitnumbers!



7.7 High Level Language Elements

Many algorithms use repetitions, conditional branches,
condition dependent execution of simple or compound actions,
functions and subroutines (procedures) to get economic and
structured programs. Therefore special language elements have been
incorporated in the HLL's and for the same reason in MIMOLA. The
MIMOLA elements are: GOTO, FOR FROM BY TO WHILE DO OD, WHILE DO
0D, IF THEN ELSE FI, CASE OF THEN FI ELSE ESAC, CALL, SUB, RETURN.

These elements differ in many senses from the elements in the
previous chapters. The semantics are a little bit different in
different languages and should not be fixed in MIMOLA to avoid a
restriction of the design space. There exists no unique hardware
equivalent of these elements. Thus a direct entry into the
hardware data structure is impossible. The designer has to define
algorithms that may replace the HLL-elements. These algorithms may
use special hardware structures, designed to execute the actions
of these elements, or may use the same hardware as the rest of the
program. In both cases the HLL-elements can be interpreted as
macros. Therefore we will treat these elements in chapter 8.5

together with suggested macro replacements.
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8. MACROS

8.1 Use of Macros

8.1.1 Standard Macros

High-level language elements, e.g. FOR FROM ..., do not
generate a unique hardware replacement. These "standard macros"
have to be replaced by other language elements. This can be done by
the macro facility of MSS. The declaration of these macros has to
be done by the programmer or the designer. The designer can
experiment with different declarations and gains a great design

space. Chapter 8.5 explains the standard macros in more details.

8.1.2 User-Defined Macros
The letter "M" iz reserved for user-defined macros.
<gperand> ::= M "nama" I { =operand=> |{destinatiﬂnh
|<function> | , <operands | <destination>

j=function> } i }
@

The macros are identified by their "name" and may have para-
meters of different types. Since this macro is reduced to
<operand> and <operand> is used in many syntax rules,
user-defined macros are very flexible.
User-defined macros can be used as abbreviations for frequent
program constructions. Thus the program text can be kept short and
clear. The expansion will be defined prior to the application of the

macro. ("Application" in this context means the



act of replacing a fitting program string by the declared
substitute) .

Another use 1is the introduction of new HLL constructs which are
not standard. The programmer may have a certain idea of the
semantics, but wants to postpone the decision on, the best
implementation. Examples are synchronization primitives. Semaphore
operations can be introduced by

My (semaphore), Mp (semaphore),

monitor calls by

Monitor (entry,
parameters)

8.1.3 Software and Hardware Replacements

During the design process situations may occur where it is
desirable or necessary to replace certain program constructs. It
may be the replacement of a complex operator module, e.g. a
floating point adder, by a sequentialalgorithm using only simple
operators. Another example is the introduction of a special
hardware module instead of a software structure that is used
frequently in order to increase the execution speed.

To meet these requirements, very flexible macro facilities
have been implemented in MSS. Independent of standard or user
defined macros nearly all possible program structures can be

replaced by others.

Thic nawarfiil +Anl miict ha handlad sravsr ~Aavrafiallss Tha



_51_

B.2 Macro Declarations

4.2.1 Syntax

A macro deeclaration has the normal form

§ MACRO ;
axpression=1 && expression-2 &a{exprussiﬂn-E ]0
ENDMACED
The control key MACRO may be replaced by RECMACRD (see

chapter 8.3).

The result of this declaration is: expression-1 will be replaced
by expression-2 as often as it is found in the original program.
Expression-3 will be inserted ahead of the elementary statement
block, where a replacement takes place.

expression-1 must be reducable to a nonterminal symbol except
100,101,102,105,106 (see Appendix F) by a syntax rule of the program
part (see Appendix B).

expression-2 must be syntactically correct together with its
context in its new place.

expression-3 must be one or more esb's. The labels of these
esb's must not have more than two characters (excl."L").

expression-2 and expression-3 may use parameters that have to
be introduced in expression-1. The names of these parameters are

valid only inside the defining macro.



8.2.2 Parameters
The range of application of a macro can be increased by
parameters. In MIMOLA three different parameter types can be

used in macros: macroparameters, the "?" and special labels.

8.2.2.1 Macroparameters

&"name"' is a free parameter which can be used in a macro
declaration. During the syntax check of the macro declaration,

<operand> , <storage> , <register> , or <stack> are tested
instead of the parameter, because &"name" is no syntactical symbol.
The correspondence to one of the four nonterminals is not
remembered. Thus a parameter fits all terminals and nonterminalé&
during the application of the macro.

If none of the four possibilities can be used to meet the syntax
in the declaration, a macro parameter can be bound to a definite
terminal or nonterminal, represented by its number in in Appendix F,
by

&"name". <unsigned integer> This assignment will also
be used during the application of a macro to a program string.

If a parameter is used several times in expression-1, the
assignments must be equal. In expression-2 and expression-3,
different assignments can be used. During the application the
assignment.corresponding to the place of the parameter in the

declaration.is valid.
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MACRO

sarrayvname. 129 sindex ] .
L1 parrayname/sindex ->8(+)

ENDMACRO

PROGRAM

"'slaa [3] ):= Sibb [ S(b] /R1-B(+) ] 1,

is a special parameter for functions.

A further degree of freedom can be added to parameters

by attaching

"name" will be attached without blanks to the string that
replaces the parameter. Examples 8.4 and 8.5 in chapter 8.5.2

show an application.

8.2.2.2 Humbering of Names

“names"” of elements, used in expression-2 or expression=3
of a macro declaration can be automatically varied to make a
distinction between consecutive applications of the eslement.
A" following a "name" (no portname!) will be replaced by a
number (5 digits), built from a number (3 digits) representing
the macro and a number (2 digits) that is a count of the
uses of this macro. The numbers are concatenated and reversed.
E.g. in the 23. application of macro no. 14,

Wn? will expand to vn3241g .
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Thus the digits changing most often are placed directly behind the "name".
This increases the significance of the generated names in the case of a

truncation (after 8 characters at the moment) of "name"s on the right side.

B.2.2.3 Special Labels

Labels as parameters cannot always be handled with macro
parameters. Therefore some necessary special constructions have
been included:

L@ is the label of the curremt esb ,

Labt is the label of the esb that contains
the corresponding DO of the current nesting level,

L&OD1 i= the label of the esb following
the esb that contains the corresponding OD of the current
nesting level.

LeDpd and L&OD1 can also be used in program parts and will
be replaced by the fitting labels. Examples B.5 and 8.6 show

typical applications.

8.3 Controlled Application of Macros

8.3.1 RECMAC

Macros are applied during the syntax analysis process. This process
sequentially scans the program string. If a macro becomes applicable to an
already scanned string by a macro replacement, this cannot be detected in
the same pass. By the key "RECMAC" in the declaration those macros can be

marked, which shall be used in another pass. The key "ONLYRMAC" will



- 55 —

inhibit all macros declared with "MACRO". See e.g. example 8.8

§.3.2 Blocks

The range of macros can be controlled by nested blocking.
Block delimiters are

# BLOCKE and @ BLOCKEND .

One global block is default without delimiters.

8.3.3 Order of Macros

The application of macros is influenced by the order of their
declaration.

1. During the declaration of a macro Mi all prior declared matching
macros, not containing esb's, are inserted into Mi.

2. The macros are tested in the reverse order of their declaration.
This is important if two different macros fit in the same esb before the

application of the first fitting macro but not after it.

In both cases the block ranges are observed.

8.4 Application Rules

8.4.1 The Test

A macro fits a string in a program, if the syntax tree of expression-1
of the macro declaration is equivalent to the syntax tree of the string.
This equivalence is tested every time a rule is applied by the syntax

analyzer. The equivalence of macro parameters has been explained in



must be identical. Different attributes for equal fields are not
equivalent. If a port is declared in a macro, only this port
fits.

Local distributors V "name" (see chapter 5.4.5) will be

replaced by their definition prior to the test.

8.4.2 The Application

In the case of a positive test, the program string is re-
placed by expression-2. The new esb's in expression-3 are
inserted on top of the currently analyzed esb. No further test
is made in the expanded parts in this pass.

Labels of inserted esb's are automatically numbered as in the
case of a "?" (see chapter 8.2.2..2) to avoid double defined
label errors. The labels of the current and the first inserted
esb are exchanged. Thus the correct pointers to labels are

reconstructed.

8.5 Standard Macros

The HLL elements of MIMOLA can be interpreted as macros.. The
replacement is not unique and depends on the exact semantics of
the element that is used in an algorithm and on the existing or
proposed hardware. The given example declarations are only
possible solutions. They have been included to describe the HLL
elements, to give ideas for macro declarations and to serve as

examples for correct macros.
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8.5.1 GOTO
This unconditional jump can be replaced by
# MACRO

GOTO &1lb.115 && RP:= &lb.115
ENDMACRO

Example 8.3

8.5.2 FOR Loop
A FOR loop consists of three parts:
setup, condition test and control variable updating and

return.

8.5.2.1 Setup

A complete setup statement is
1 1 1
FOR FROM b BY TO 4
a [rroun] (v c] [roa]

a is the control variable. It can be referenced by D(a), not
by itself, to show its storage requirements.

Missing b or ¢ are assumed to be 1.

Missing 4 implies the ommission of the upper/lower

limit test.

A macro declaration using cells in an addressable memory
Sm is presented in Example 8.4. Many other possibilities exist
e.g. using stacks to store the parameters. For incomplete

setups, slightly varied macros must be written.

# MACRO
FOR &id.129  FROM &opf BY &opb  TO &opt
&& Sm (8id.129_p):= &opf,

Sm (&id.129_1) := &opb,
Sm (&id.129_2):= &opt
ENDMACRO

Example 8.4
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8.5.2.2 Condition Test

The FOR loop condition test must follow the setup in
another statement. The syntax is

<label> |WHILE e ]; Dofa)

A macro declaration fitting to example 8.4 iz example

B.5.
# MACRO
£1b.115 WHILE & opw DO (&4id.129) sstatementblock.1@7;

A& alb.115 IFsopw [
Sm (&id.129_9)/
Em (&i1&.129_1}/
Sm (&id.12%_2) —>=0C {.LOOP)~->B(.AND)
THEN & statementblock.107
ELSE GOTO LeOD1 FI;

ENDMACRD

Example 8.5
If different forms of setup statements exist in a program, it may be
necessary to. distinguish between different forms of condition tests. In

this case user defined macros for DO and OD must be used.

8.5.2.3 Updating and Return
At the end of a FOR loop the control variable must be updated and a jump

to the head of the loop occurs. The syntax of

this statement is
oDia)

In correspondence to examples B.4 and 8.5, a macre declara-
tion ig:

§ MACRO

OD{&aid. 129}
Ei Sm(&id.129 @) := Sm (&id.129%_@)
JEmiaid. 129 7)1 ==B{+),

GOTD  L&DO
ENDMALC RO

Example 8.6
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8.5.3 WHILE loop
The syntax of the WHILE loop head and tail is:
<label> WHILE <operand> DO
oD
A macro declaration is given in example 8.7.
8 MACRO
&1b.115 WHILE &opa DO &statementblock.1¢7;
&& &lb.115 IF &opa THEN &statementblock.1¢7
ELSE GOTO L&OD1
FI;
ENDMACRO
8 MACRO
oD

&& GOTO L&DO
ENDMACRO

Example 8.7
8.5.4 Conditions

8.5.4.1 Conditional Statement Block

The execution of statement blocks can be condition dependend. The

syntax is:

IF <operand> THEH <statementblock:>
1
{ELEE <gtatementblock> I
@

FI

The semantics is the same as in other HLL's. The hardware realization of
conditional executions is normally a part of the control module of a
computer. Therefore no generally applicable macro can be given. In our
example 8.8 an IF THEN ELSE construction is split into two esb's, one
executing the THEN part, the other the ELSE part. The second macro seems to

be senseless, but if we observe chapter 8.3.3 we can
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see that in this way the application of the first macro to already

split IF THEN ELSE constructions is prevented.

WTHE FIRST MACRC WILL W01 BE INSERTED INTO THE SECOND,BECAUSE IT WILL
IKSER]T & <RSEX. .

ThE SECOND MACKC WILL B CHECKED AND REPLACED FIARST.

THEREFORE THE FIRST MACRO CANNOT BE IKSERTED EENSELESE.M

fRECMACRED IF kopb.113 THEMN &=bthen. 107 ELSE &sbelse. 107 FI

1] 1F &cpb.11Z2 THEN kabthen. 107 FI

LT Lit IF #opb.11% THEN X ELSE &sbelse.l07 FI ;
ENDMACRD
$HECMACRD IF &onp.113 THER ¥ ELSE f&sbhelse. 107 FI
&4 IF &opb.113% THEN ¥ ELSE &sbelse. 107 FI
FUTIKACRL

Example 8.8

8.5.4.2 Conditional Operands

If the THEN and ELSE; parts of a conditional statement block differ
only in one of the operands, this can be directly shown by applying the

condition to the operand itself. The syntax is

operand ::= (IF <operand> THEN <operand>

ELSE * <operand> FI)

Example 8.9 shows an application. The semantics and the hardware are the
same for both statements.
IP S{cond) THEN R1:= S{a)/R2-=Bi+)
ELSE R1:= §(b)/R2-=B(+) FI
is eguivalent to

Bl:= S5((IF Si(cond) THEN a ELSE b FI |} }/RI-=B(+)

Example 8.9 Conditional Operand
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8.5.4.3 Conditional Functions

The same reason as in chapter 8.5.4.2 holds for condi-
tional functions. The syntax is

<function> ::= IF <gperand> THEN <function:>

ELSE <function= FEI

Ela) -=A(IF S{a) —=A( =="{) THEN + ELSE - FI)

Example 8.10 Absolute Value of a

B.5.5 CASE Statements
The CRSE s=tatement is a convenient tool to express multiple

choices. The syntax is

CASE =operand> OF

[{identifierb =gigned integer>

{,{identifier? <signed integer> ]‘
#*
THEN <=statement block> FI I

11
|ELSE <statement block> }

ESAC
The macro of example 8.11 is a simple solution of the complex

CASE statement. The generated esk's with only one case can

be further expanded by another macro.

ZRECMACRO CASE bop OF Eel 179

&8 CASE &OD OF

L% Lca CLASE Lop OF &l 17@ ESAC ;
ENDMACRO

"THIS MACRC REDUCES CASE STATEMENTS TO CASE STATEMENTS WITH
A SINGLE CASE LINE AMD IS NOT SUITABLE FOR CASES INCLUDING
ELSE."™

ExamElE B.11



8.5.6 Subroutines

The semantics of subroutines and procedures vary strongly between
different languages. Therefore only very general language elements have
been incorporated in MIMOLA.

Three general actions can be distinguished: the call, the parameter

handling and the return to the calling program.

CALL =identifier>

*
CALL <identifier>(<cperand:> ,{{nperand} } }
@

are statements for subroutine or procedure calls without and with
parameters. Possible actions are e.g. save program status, jump to
subroutine head. The identifier points to the subroutine code. <operand>
is an actual parameter.

SUB

L]
SUB( <operands[, <operand>] )

are statements that "indicate necessary action at the start
of the subroutine, e.g. copy the actual parameters.

=pperand> is a formal parameter.
RETUEM

is the usual statement to restore the old program status
and jump back to the calling program. If values must be

returned, user macroes should be defined.

Subroutines are separated from other program parts by
the header
SUBROUTINE < jdentifier>
and the tail

ENDSUB



- 63 -

Example 8.12 is a simple subroutine mechanism. The return address is
pushed onto stack Kcall. The parameter values are pushed onto stack Kop in
the calling sequence and stored in memory locations by SUB. The parameter
lists must be of equal length. The example mainly demonstrates a

possibility to handle calls with different numbers of parameters.

"WITHOUT PARRMETERS"
ZMACRO  CALL &id.129
(¥ RP:= &id.129,
Kcall(.PUSH):= RP =-> A(.INCR}
ENDMACRO
"WITH PARAMETERS"
"SEQUENCE OF MACROS IS5 ESSENTIAL, BECAUSE THE LAST MACRO
CAN BE INSERTED INTO THE FIRST TWO MACROS®
ZMACRO  CALL &id.129 ([ X )
L& RP:= £id.129,
Keall (.PUSH) := RF -> A (.INCR)

ENDMACRO

ZMACRO  CALL &id.129 ( X , &op. 113
5a CALL &id.129 ( X
BE LCA Kop(.PUSH) := &op;
ENDMACRD

EMRCRO CALL &id.129 { top.113
[ CALL a&id.129% ( X
LT LCA Kop(.PUSH) := &kop ;
ENDMACROD

"SEQUENCE OF DECLARATION IS ESSENTIAL!"™
EMACRO SUB [ X )

BE X
EHDMACRD
ZMACRO SUB { X, aop.113
BE sSUB X
T LsU &op := Kop (.POP)}
ENMDMACRD
EMACRO SUB [ aop.113
BL SURB [ X
BE Ls0 [ Bop:= Hop(.POF) ;
ENDMACRO
EMACRD RETURN
L& RP:= Keall (.POD) ENDMACRD

Example B.12
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9. CONTROL LANGUAGE

9.1 General

The control language is used to start different language parts, to cause
typeouts and to set options. Commands may be input from any of the three
input channels: the INP(ut)-file, the LIB(rary)-file and the terminal. The first
command is read from the INP-file. Changing the input stream permanently is
done with the INSERT command. A breakpoint facility is supplied for temporary
command input from the terminal. Nonrecursive nesting of control commands is
possible because a new control command is expected if there is a $-sign in the
parameter string of the last command.

Breakpoints allow interaction by the terminal operator. A breakpoint is
inserted by the user with a $BREAK command or by the MSS under the

following conditions:

1. a declaration part has been completely analysed,

2. the DISPLAY option is true and an <esb> has been analysed,
3, the SELF option is false and the hardware is not sufficient to

execute the current <esb> ,

4. a DEBUG test is true,

5. a WAIT condition is acknowledged with a $-sign,
6. an internal error has been found. Breakpoints (except case 6.) are
ignored if the BATCH option is true. At breakpoints the operator may inform

himself of most of the MSS data structures, including structures which
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are useful during the program analysis (e.g. the analyser stack, the current
connection etc.).

When the MSS expects a control command, all special characters preceding
a command (except - and @ ) are ignored. Therefore a $-character may always
precede control commands for clarity. Prompt characters, sent to the terminal

whenever the computer expects an input, may be sent back.

Strings enclosed in " ...." are treated as comments.

Because multiple successive commands may be input at breakpoints, a
special command is required which returns control to the original language part.
This is done by the RESUME command. In order to reduce necessary writing,
any special character except (blank), - and @ preceding (end-of-line) is treated as
a RESUME command. On some installations the prompt character sent to the
terminal automatically may be used as the RESUME command.

Nesting of control commands may either result from a

construction or a breakpoint. Normally, nesting does not
go beyond level 3:

level 1: normal control flow

level 2: a) $ -constructions within MIMOLA language parts

b) breakpoints

level 3: breakpoint in level 2 case a).

If after a long MSS run an important breakpoint has been
reached, the user may increment the current level by typing
BREAK if he wants to be safe against a single, erroneously

typed RESUME.



Decrementing the nesting level will cause the continuation of
analysis at the next lower level. For breakpoints this will also
reset the input stream to the old input channel, except if an INSERT
command has been written. If the current level is maintained after
the execution of a command, a new control command is expected.

RESUME, CORRECT and GO will decrement the current nesting level.
Nesting levels >1 are also decremented if the input stream is not
the terminal or after an INSERT command. Therefore no level 2
command is expected after e.g. a $ FACTOR command in the INP-file.
The same command from the terminal requires a RESUME in order to
leave level 2 because of the multiple successive command feature for
the terminal. No control command is expected after a level 2 INSERT.
A level 1 insert, however, may not be decremented because this would
cause an EXIT to the operating system. Fig. 9.1 shows a flow diagram

for control commands.

In order to exclude nestings which may cause MSS errors, the set
of allowable control commands depends on the context. The user can

get a list of allowed commands with the KEY command.
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read
control
command

exit
condition
?

contro

command

condition
7

BATCH &
end-of-
program,

raead
symbol

Process
A symbhol

—

Abbreviations:
§ = breakpoint in symbol processing routine (cf. DEBUG-omd. )
exit condition = EXIT-cmd. or (RESUME-cmd. and (n=1) )
n = pesting level of interpreter

control command condition = not {
RESUME-cmd. or GO-cmd. or CORRECT-cmd. or |
(n>1) and (not terminal input or INSERT-cmd. )})

last symbol = no symbol expected after command (e.g. BREAK]
or last symbol for this command (e.g. END for
a PROGRAM command)

Fig. 9.1 Control language interpreter flow chart



9.2 Command Description
9.2.1 General Commands

PROGRAM
ASSIGN

LIST

DISPLAY (default)
/
NODISPLAY

WAIT
/
NOWAIT (default)

BATCH

Start of a program part. Ends with END or
ENDSUB.

Start of an assignment part. Ends with
ENDASSIGN.

Copy source input to OUT-file. Normally
only in the case of errors the last two
source lines are copied to the .0OUT-file
If the user wants to have a better over-
view of the locations of errors or if he
wants to document the complete source to-
gether with the hds listing, he should
use this command.

If the DISPLAY option is on, the MSS shows
each completed <esb> at the terminal and
,inserts a breakpoint. The commands can be
used to switch the option on and

off.

In the wait mode the MSS asks the terminal
operator to type in an acknowledgment
character after the writing of error
messages to the terminal. The MSS expects
a control command if a $ -sign is input.
The BATCH command includes the NODISPLAY,
NOWAIT and SELF commands and additionally
will cause breakpoints to be ignored.

No messages will be written to the
OUTPUT-file (the terminal) if the MSS
runs in the BATCH mode. The allocator
will not ask for new microprogram fields
if the number of fields is restricted and
not sufficient. See chapter on allocator
conventions.



ONLY
WITH (default)

BREAK

-69 -

At the end of the first PROCRAM part, the

MSS5 inserts a ?PRINTHARDHARE command and then
returns to the operating system. Although
intended for batch tasks, this opticn may

be set for other tasks if no terminal inter-
action is desired. The INPUT- and OUTPUT=-
files are still reguired. The INPUT-file

may be empty.

The command ONLY allows a fast syntax check.
All semantic actions are disabled (including
the additional rules of Appendix C).

BREAK se¢ts a breakpeint for terminal inter-
action. A contreol key is expected from the
termipal (cf. BATCH). After the breakpoint
has been left with RESUME, control is
returned to the original input stream.

RESUME = (string of special characters except iblank}) ,

IKSERT "name"

1

k {EY |
o

EXIT

EX

before (end-of-line)):

leave the current control command inter-
preter nesting lewvel.

If "name” starts with L, I or T the
input stream is switched to the library,

the INP-file or the terminal, respectively.
Otherwise the library is reset to its begin-
ning and scanned for the string !"name™.
When this string has been found, the input
stream is set to the library. The
'=construction allows the user to build

a library of commonly used macros. Insertion
stops with the next INSERT command .

Type the list of currently possible commands.
Return to operating system.

Fast return to operating system (no run-
time statistics etc.)



RESET

PRINTSTACK /
TYPESTACK

DEBUG <character>

Sets all hds frequencies to zero and
starts reading from the beginning of the
INP-file again. This command is used to
obtain a second pass over the entire
program after e.g. certain connections
have been marked with DELCONNECTION

(see below). This allows a better opti-
mization by the allocator.

The analyser stack is dumped into the
OUT-file or to the terminal. PRINTSTACK
is executed automatically when syntax
errors are encountered. The dump contains
the internal numbers of the base symbols
and names, numbers and some special charac-
ters. If the basic symbol is a reserved
word, this is also written. A right arrow
points to the symbol the analyser looks
at. The user has to use the symbol table
in Appendix F for recoding the basic
symbols. All non-terminal symbols have
codes >= 100. All terminals, which consist
of only one character, use their ASCII
number as code.

This command is used for debugging

MSS. <character> is added to a

test set. The MSScontains tests which
will produce a certain action if a
certain character is included in the test
set. Initially the test set is empty.
Some of the actions are:



DEBUGOFF <character>
DECLARE, ENDDECLARE

9.2.2 Macro Commands
MACRO

RECMACRO
ONLYRMAC
BLOCK

BLOCKEND

9.2.3 Compiler Commands
NOGENERATE
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character action

1 list intermediate connec-

tion descriptors

4 set breakpoints within allo-
cator execution

7 include connections to
CONTROL inputs

set breakpoints within

compiler execution

<character> is subtracted from the
test set.

Ignored, provided for compatibility
with older MSS versions.

Start of macro definition. Ends with
ENDMACRO.

Same as MACRO except only RECMAC
macros are inserted if the command
has been given.

Defines the beginning of a range of
macro definitions. The following macros
are valid only until a corresponding
has been found. These commands are
intended for the easy substitution

of variable declarations of high-

level block-oriented languages.

This option disables the internal

storage of a syntax tree and disables

all actions which rely on this tree.

With the NOGENERATE option no macro
can be inserted, <esb>' s cannot

be splitted and no GEN-file can be



generated. The allocator and

statisti-

cal analyser, however, are

unaffected.

This option saves core and time.

ESB If a connection error (insufficient
hardware) occured in an <esb> ,

the compiler will insert a break-

point at the end of the esb if

the SELF option (see below) is

false.

The user then may use ESB to get a
listing of the current esb at his
terminal. He may use

CON to show the connection errors.
CORRECT will start the splitting of <esb>'s
containing connection errors,

GO will cause the <esb> to be ignored.

USING {S | R ] The compiler needs temporary cells in
! which it stores intermediate operands.

In the default case, the compiler uses

registers RHLP for this purpose.

After a USING S command the compiler

uses cells of a random access memory

named SHLP. The source program may

already contain SHLP references.

Often a mapping of SHLP to commonly

used register-files is possible.

The compiler indicates an error if

the number of ports of SHLP is restric-

ted in a way that splitting is

impossible.

MINHLP If MINHLP is true, temporary cells
replace only the reference which
caused a connection error. In the
default case the compiler replaces
all references to an operand by a



NFULBUF

9.2.4 Commands
ADDMODUL

DELMODUL
ADDCONNECTION
DELCONNECTION

PRINTHARDWARE,
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temporary cell if one reference causes
a connection error. MINHLP reduces the
number of temporary cells in some
cases.

With this option the compiler buffers
operands after CASE and IF only if it
is necessary. In the default case
these operands may be-buffered in
order to free hardware for the
following statements.

Referencing the Data Base

This command declares modules, ports,
fields and functions.

See chapter 5.1.1 for full explanation.
Deletes modules. cf. chapter 5.1.2 .
Create connections . cf. chapter 5.3.1
Mark connection as not usable.

cf. chapter 5.3.2 .

PH Dump the hds into the OUT-file.
Appendix E shows the format of this
listing.

It contains the following information:
1. frequency of module uses

This information is required in order
to select all the modules which shall
be deleted in the next design step.

2. frequency distribution of the
number of ports required in <esb>'s

It is counted, how many times parallel
execution of an <esb> requires n
(0<-n<_9) ports of a storage module.
The number of concurrent uses of
different ports of the same module
determines the number of independent
ports in the final design.

3. frequency of use of a parti-

cular port

This information determines the uti-
lization factor of particular ports.
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4. frequency of connection usage
Connections are basic cost factors and
the freguency of their use is needed
in an economic design.

5. joint freguency distributicn of
concurrent module and port uses
Often a hardware unit may be substi-
tuted by another hardware unit, .9 .
an ineromenter by an arithmetic fune=
tion box (horizontal migration)}. The
joint distribution indicates whether
the substitution of two Or more units
by a single unit would significantly
increase the number of <esb='s. The
same is true of ports of storages and
stacks. For example, two ports with
different direction,which are rarely
uged concurrently, may be substituted
by & single bidirectional port.

6. Estimation of run-time
It is assumed that addressing of
storage ports, propagation through
operators, microinstruction reading
and the write cycle of storage ports
each require one unit of time. Over=
lapping is considered correctly.

Manual setting of weighting factors
for the <esgb> is important for
this computation. <f. chapter 9.2.6 .

7. joint fregquency distribution of
concurrent apinstruction fileld uses
{ef. chapter 9.2.6 : JOINT command)
This distribution is reguired if one
wants to reduce pinstruction word
length by replacing certain fields
by references to other fields.

8. average number m and standard
deviation = of used pinstruction
fields and bits

ugsed pinstruction bits # weighting factor
weighted number of p instructions

m=

all
pinstructions

2 _ [used pinstruction hibﬂﬁz = welghting factor
s z: ‘weighted number of pinstructions
all

ninstructions

The gpinstruction ig badly used if
m is much less than the wordlength or
if s/m > 0.5, .



TYPEHARDWARE ,

TYPEMODUL, modu laname

9. the number of enable bits
Thizs number is incremented by one for
every port having
LOAD as a function.

10. the number of function select
bits

fs =3 [1a" (number of functions in the
all function list)
ports

r:n] means the smallest integer greater
or equal to n.

1ld{n) for n-@

] for n=@

11. the number of multiplexer
address bits

19" (o) =

ma =¥1r 14" (number of multiplexer
a inputs)
multi=
plexers

12. the sum of multiplexer inputs

mi -z number of multiplexer inputs

all
malti=
plexers

13. the number of connections

cc-zi 1
3l

connections

Ttems 9 to 13. are essential for
computing the cost of a design.

same as PRINTHARDWARE , excepb output
goes ko the terminal.

The hds entries for one module, inclu-
ding port, input/output, field and
connection entries are ocutput to the

terminal.

*
TRACE -:mudulename:.vl, < madulename = | H

o
The allocator will print sources for

the specified module ports each <esb>
Only one scurce is printed for port.



If function, address and data input
are used, the data input has priority
over the other inputs.
¥
HOTRACE =modulenamss {, =modu lename = :  [(default]
Q

Contrarv of TRACE.

PRINTFUNCTIONS, PF List used and predeclared functions

TYPEFUNCTIONS, TF together with the frequency of
their use and the names of ports,
which can execute them. Listing
goes to the OUT-file for PRINT-
FUNCTIONS and PF,and to the terminal
for TYPEFUNCTIONS and TF.

9.2.5 Allocator Commands

NOLOWERLETTERS This option causes the allocator to
use upper case letters instead of lower
case letters as portnames of B, C
and N modules.

FIRSTPORT This option causes the allocator to
use the alphabetically first free
port of an S or R module while
looking for a suitable port. In the
default case, the allocator tries
to find a port where the required
connection already exists.

CURHSTAC The allocator lists the currently
valid intermediate connection
describing structure at the terminal.

CODE Write a symbolic pinstruction code
intoc the COD-file. The form of the
output isiRP= <program counter wvalue:
<label name:> TIMEs<run=time>

[ﬁsymbnlic pinstruction field name: =

: *
<symbolic wvalue> , }D



9.2.6 Statistical Analyser Commands
The analyser counts all uses of
hardware

with a factor f = fac * fact * fac3

Default value of all factors is

one. The

following commands set the

factors to

other values:

FACTOR <n> Set fac to n.

FACTOR2 <n> Set fact to n.

FACTORS <n> Set fac3 to n.

n must be decimal. Changing of

the

factors takes place at the

beginning

of the <esb> following the

control

command.

NOFACTOR Disable all following FACTOR, FACTOR2
and FACTOR3 commands. This

command is

useful if unweighted

informations are

desired.

JOINT Compute relative joint distributions

of module and storage port uses

and

of microinstruction field uses.

Computation starts with the first

completed <esb> after this

command.

This option requires about 12.8

Kbytes

on the heap. Listing is

requested

with the PRINTHARDWARE

command.

9.3 Example

The following example shows how a small program is
analysed and how the LIB-file may be used to contain
common module declarations, assignments and macro definitions.
It is important to see how the input stream is switched
between the various input channels. Note that breakpoints
for terminal interaction are automatically inserted after
the module declaration (because BATCH is false), and after
<esb>'s are analysed (because DISPLAY is true by default).
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Inp-file LIp-file terminal
-input |-output
INSERT LIB
$ADDMODUL
MONITOR LEVEL 1 ADDMODUL
SHAIN. MOREPORT (10) ;
MONMITOR LEVEL 2 EXPECTS KEY!
TH SMAIMN
MONITOR LEVEL 2 TH
(hds listing of SMAIN)
MONITOR LEVEL 2 EXPECTS KEY!
!
MONITOR LEVEL 2 RESUME
FASEIGN a,b,crm=@;|
MONITOR LEVEL 1 ASSIGH
EHDASSIGH
£ INSERT IKP
MONITOR LEVEL 1 INSERT
FPROGRAM
MONITOR LEVEL 1 PROGRAM
begin
Ly SMATW(a):=hb;
Lg.1 SMAIN<A{a):=b;
MONITOR LEVEL 2 EXPECTE KEY!
/BELF
MOMITOR LEVEL 2 SELF
MONITOR LEVEL 2 EXPECTE KEY!
4
MONITOR LEVEL 2 RESUME
¥ INSERT GOTO
MONITOR LEVEL 2 INSERT
§ ADDMODUL T searched
. for ! GOTO
! CALL from
- beginning
1 GOTO of file
§ MACRO
MONITOR LEVEL 2 MACRO
GOTC &lb.115  &&
RP:= &lb ENDMACRO
£ INSERT INP
[ MONITOR LEVEL £ INSERT
L1 IF SMARIM{a) .
BIT({1) THEW
GOTO L@ FI:
L1.71 IF SMAIN=B{a).BIT(1)
THEM RP:= L@ FIL;
MONITOR LEVEL 2 EXPECTS EKEY!
#
MONITOR LEVEL 2 RESUME
END
<CHARARCTER STRING ACCEPTED>
MONITOR LEVEL 1 EXPECTS EKEY!
PH
MONITOR LEVEL 1 PH
MONITOR LEVEL 1 EXPECTS EKEY!
s

(exit to operating svstem)

MONITOR LEVEL 1 RESUME
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10. EXAMPLES

10.1 Output Listing Examples

The following short program is used to show the format of the

output files

ALDMODULE
SAXA,SA<B;
CODE JUINT
FROGEAM
BEGIN
LO SAC1):=3A(0)/SA(2)=2B1(+);
L2 IF SA{R1}-3A1({.INCH).BIT(3)
THEN R1:=5&(1), SA(1):=zR1, GOTO LO
ELSE R1:=5A(3), R2:=3A(E) FI, R3:=F1;
ERD

Fig. 10.1.1

The GEN—-file demonstrates how the original esb's have
been splitted in order to be executable on the hardware :
"MIMOLA VERSION 2.2 OF M.&H 29, 1979 RKULES 84 & 116 "

"EXECUTION DATE : O8/16/79 16:33:5&8"
INSERT LIBRARYX

FPROGRAM
BEGIN
L.
RHLE_101:=8A3A(0);
Lo.2
SA<B{ 1) r=RHLP_101/5A2A(2)=>B1(+);
L2.1
K3:=F1,
RHLF_101:=3A>A(R1)~->A1(.IKCR);
L2.2
IF RHLP_101.BIT(3)
THEN
R1:=S434(1),
SA<B( 1) :=R1,
QoTOo LO.1
ELSE
R1:=2A3A{3) FI
1
Lz.3
R2:=SA>A(L)
END

Fig. 10.1.2

One memory port was missing in the original esb's. Register
RHLP-101 is used as a substitute. The dump routine appends the

names of the used ports to the module names.
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The COD-file contains symbolic

——————— e 1 Lo TIME= 2

B3 =0 '

R Z Lo TIME= 3

BSAA =2 LFB1 =+ REAE =1 '
________ FC= 3 L2 TIME= 3

Fhi =. IKCH ]

_______ - PC= § Lz TIME= 2

544 =1 LASRAEE =3 ,ABAE =1 ,
R - £ L2 TIME= 2

E3AA = .

Fig. 10.1.3

Enable fields are not considered at present. Therefore the
first esb only needs an address field for storage port SA>A.
This field is named ASAA by default and is set to zero.
Estimated run time is two units : one unit until data from SA
is valid and one is required as data set up and hold time for
RHLP and for the reading of the next microinstruction. The
second esb requires three time units because the data from
SA>A (2) have to propagate through Bl. The write cycle for SA<B
is assumed to be one time unit because a constant address is
used. The second esb uses three microinstruction fields, two

for addresses and one for the function code of BIl.

The OUT-file contains the hds listing

MIMOLA VERSJON 2.2 OF MAR 29, 1979 RULES 84 & 116
EXECUTION DATE : 05/16/79 16:33:55
K<k eu® CHARACTERSTRING ACCEPTED ####5555

1 HELP-STORAGES USED AND 1 ESBS CREATED

i HELP-STORAGES USED AND 2 ESBS CREATED

L2 2]
£33
(X 24

2 ESES READ ( 2 WEIGHTED)
3 ESBS CREATET ( 3 WEIGHTED)
5 ESBS TOTAL ( 5 WEIGHTED)

1 HELP~STORAGECELLS (OR REGISTERS) USED IN PROGRAM
ESTIKATED RUN TIME: 12
®##¥ CROUP : &

A

( 0: 0) MOREPORT:-2 DUPLICATIBLE :26 FREQ : 1= 20.00%
PORTUSINGS , CUTPUT : 0 : 41 X
INPUT : O : 4 1 1D 4
< ( 0: 0) .AUTO(NONE ) .STATUS(#08000000) FREQ: 1= 20.00%
DATA WORD ADR  D-BITS MODULE PORT S-BITS FREQ
0 WORD SA A WORD 1 = 20.0%
> ( 0: 0) . AUTO(NONE }.STATUS{#44020000) FREQ: 1 = 20.00%
DATA WORD FREQ: 1
FUNCTION WORD LDR  D-BITS MODULE PORT S-BITS FREQ

0 WORD I FA1 1= 20.0%
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"RE GROLE : B
Es

1 a: 0) MOREPOET:=3 DUPLICATIBLE :26€ FREQ : 1= 20.00%
PORTUSINGE , OCTPUT ¢ O : ax o1 1X
IKFUT : 0 ¢ LL - 5
¥ I - b 0} - AUTO[NOKE 1.ETATOS{#UBBDO100)} FREQ: T=  20.00%
DLTE WORD FRED: 1
FUNETION WORD ADR D-EITS MOBULE PORT Z-BITE® FREQ
& WORL 4 FE4 1 = 20.0
@ 1] 3. AUTO KORE . ETATUE MOECOQOO0) FREG: 1 20.00%
DATA WiRD MDR D=EITSH NODOLE FORT S=EJT3 FREQ
o WORD RHLP_ 101 WORD 1= 20,01
L -] Y] G AUTO( HONE F-STATUS( #0EOOODO0) FREQ: 1 20.008
TATA WORD ADE D-BITS rPODULE PORT 5-BITS FREQ
0 WORD =4 A WihD 18 20.0%
8% GROUF : F
F1 | 0 0} MOREPORT:=1 DUPLICATIBLE : 0 FREG 1 T 20.00%
FORTUSINGS , QUTFUT @ O : bx 11 X
IKFOT : D : B
¥ L E 0. ADTO{NOKE 1. STATUS(#u4000000) FREQ: 1T« 20.00%
DATA WORD FREG! 1
a88 GROUP : I
I | o 0} WOREPORT:-1 DUPLICATIBLE 1 0 FRED : E «  100.00%
PORTUSINGE |, DUTEUT = 1 ¢ LY
INFUT = @ : 5X
¥ { o: 0} AUTS{ RONE ¥ STATUS( whhod0000) FREQ: 5 = tob.00%
LATA ASAA 4 FREQ: 5
PATA ASRAREL FEEQ: 1
DRTA FE1 FREQ: 1
DATA REAB FREQ: 2
DATA Fa1 FREQ: 1
DATA ASKREE FREQ: o
wEE GROUE : W
RHLF_101 i L E 0] MOREPORT:-2 DUPLICATIBLE : O FREQ 3 s ED.OOF
FORTUSIKGE , QUTRPUT t O L S 1% i
IKPUT : 0 3 31 E3 ]
< i [ F O] . APTO( LOAD ). ETATUS[4B8A200000) FREQ: 2 = BD.OOE
bATA WORD ADR D-BITE HADULE POET S=BITE FREQ
0 WORED A1 WORD 1 s 20.0%
1 wOED Sa & WoERD 1 s 20.08
> N O} ARTOININE 1L.ETATUS( 0450000000 FREQ: 1= 20.008
DATA RORD FREQ: 1
k1 | o O} MOREPORT :=2 DUPLICATIBLE : © FREQ & 2 s B0, 00
PGRTUSINGS , QUTFUT : 0 3 1 24
IKFUT : 0 X 1 : 11
3 | : O} AUTL RORE ) ETETUS] w&h0Q0000) FREQ: | &0.00%
DETA WOHRD FREQ: Z
£ | o: O) . AUTD] (LOAL ] .STATUS{#EE200004] FREQ: 1 & 20.00%
DETA WORD ADR D-BITS MODOLE PORT 5-BITE FREQ
0 WORD A WaRD 1z 20.0%
RE [ [} G} HOREFOET:=1 DUPLICATIBLE ¢ @ FREQ 1 1= E0.00%
FORTUSINGS QUTFOT = O = =1 ]
INFCT D = [T B 1¥
[ { a: 0} AUTO] LoD V.8TATES{ ead2op000) FREG: 1 = 0.0
DATA WIRD AR D=BITS HOTUILE FORT Z=BITE FREQ
[ WORD -1 E WOED 1= #0.08
3 i i 5 Q) MOREPORT =1 DUPLICATIELE : @ FREG : 1 e 29.007%
PORTUSIRGS , OUTPUT : 0 sX
IRPUT : 0 : BE 1 7
‘ [ 0L @1 JAUTOL  LOAD ). STATUS(#8B2000320) FRED: e 20.001
CATR WORD ADE D-BITS HODULE PORT 5=3IT: FREQ
O WORD 1 OkD 1oe FD.O%
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*e# GAOUF : S

SA { LY C) MOREPORT:-2 DUPLICATIBLE : ¢ FREQ : 5 = 100.00%
PORTUSINGS , QUIPUT 10 5%
INPUT : C : 3x 1 2x
Sk ( 4: 0) cAUTO(NONE ). STATUS(#55000000) FREQ: 5= 100.00%
LATA WORD FREQ: <
ADDRESS WORD ADR D-BITS MODULE FORT 5-BITS FREQ
0 WORD 1 ASAAEA 1= 20.C%
1 WORD R1 WORD 1= 20.0%1
2 WORD 1 ASAA 4 = 80.0%
< E { 1 C).AUTO( .LOAD Y.STATUS(#88200000) FREQ: 2= 40.00%
DATA WORL ADR  D-BITS MODULE PCRT S-BITS FREG
0 WORD R1 WORD T = 20.0%
WORD B1 WORD 1= 20.0%
ADDKESS WORD ADR D-BITS MODULE PORT S-BITS FREQ
0 WORD 1 ASAB 2 = 4C.0%
JCINTMODULE A PPEARANCES N
== o

SA>A SA<E E1t R1 B S Rz R3
I 100.00 ¢.00 100.00 100.00 40.00 20.00 40.00 20.00 20.0C 20.920
FO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C.0C 0.00 0.00
Sa 100.00 0.00 100.00 100.00 £0.00 20.00 40.00 20.0C 20.00 20.90¢
SA>hA 100.00 C.00 100.00 100.00 40.0¢ 20.00 40.00 20.00 20.0C 2¢.00
SA<E 40.00 c.00 40.00 40.00 40.00 - 20.00 20.00 .00 G.0C 0.0¢
B1 20.00 C.00 20.00 20.00 2C.00 2C.0C 0.0¢ 0.00 €.00 0.00
R1 40.00 0.00 40.00 40.00 25.00 0.00 40.00 20.00 .0C 20.00
M 20.00 2.00 20.00 20.00 2.00 0.00 20.00 2C.00 .00 20.0C
k2 20.00 €.00 20.00 20.00 0.0¢C 0.00 0.0C 0.0C 20.00 c.00
k3 20.00 G.0C 20.0C 20.00 9.Co 0.00 20.00 20.¢0 0.0¢ 20.00
F1 20.00 Cc.00 20.00 20.00 c.o0 C.co 20.00 20.00 0.0C 20.0C
JOINT AFPEARANCE OF MICROINSTR.FIELDS
ASAR B ASAB FA1 ASAAEA

ASAA 80.0¢ 20.00 40.00 0.00 2C.0¢

FB1 20.00 2¢.00 20.00 0.00 0.00

ASAE 40.00 C.20 40.00 0.00 2c.c¢

FA1 0.CC c.ot C.0C 20.00 0.0C

ASAAGA 20.00 .00 20.00 C. ;. 0C

AVERAGE NUMBER OF FIXED BITS : +0.0CGQE~00, STD. DEVIATION : +0.000E+00

AVERAGE NUMBER OF VAR FIELDS : +1.T99E+00, STD. DEVIATION : +9.797E-01
£

# OF ENABLE EITS : 5
# OF FCT1-SEL BITS: c
# OF MFX-ADR BITS: 4
# OF MPXER INPUTS: 7
# OF CCRNECTIONS : 1€

Fig. 10.1.4
Compare this listing with the general form in Appendix E and

with the description of %PRINTHARDWARE in chapter 9.2.4.

10 2 Computation of a Bessel Function

The following FORTRAN subroutine from the IBM scientific

subroutine package computes the J-Bessel function
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SUBROUTINE BESJ(X,N,BdJ,D,IER}

BJ=0.0

IF (N} 10,20,20

1Ef=1

RETURN

IF {X) 30,30,31

1ER=2

RETURK

IF (¥=-15.) 32,32,34
NTEET=20.+10. %) -X%}% /3
GOTO 36

KTEST=00.+X/2

IF (N-NTEST) ko,38,38
IER=4

RETURN

IER=0

HN1=N+1

BPREV=.0

COMPUTE STARTING WALUE OF M
IF (¥X-5.) 50,560,680
MAzX+E.

GOTO 70

Ma=1.4%X+60./X
ME=N+IFIX{ X} lie?
MZERO=MA

IF (MA-MB) 80,90,90
MZIEROsMBE

SET UFFER LIMIT OF M
MEAX=NTEST

DO 190 M=MZERO,MMAX,3
SET F(M),F(k=1}
FM1=1.0E=28

FM=.0

ALFHA=.O

IF (M={M4/2)%2) 120,110,120
JT==1

GOTO 130

JT=1

M2=M-2

Do 160 K=1,M2

ME=M=K

EME=2 . %FLOAT(MK) *FM1/X-FH
FM=zFM1

FM1=EME

IF (ME=-N-1) 150,140,150
BJ=BME

JT==JT

S=1+dT
ALPHA=ALPHA+BMKES
EME=2 . ®*FM1/X~FM

IF (N) 1RD, 170,180
BJ=zEMEK

ALPHA=ALFHA+BME
BJ=BJ/ALPHA

1F {ABS{BJ-EFREV)-ABS{D*EJ) )200,200,190
HFHEV=RJ

1ER=3

RETUHN

END



"MIMOLA VERSION Z.2 OF MAR 29, 1979 RULES 84 & 116 "

"EXECUTION DATE : 05/16/79 16:12:05%

distributors can be i

nserted.
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Fig. 10.2.3 shows module declarations which introduce a limit to

the allowable hardware. Macros are declared in order to use a

compare unit with simultaneously accessible comparison results

(e.g. SN 7485) instead of a compare unit with a function input.

ADDMODULE

Bc.BIT(O)LT.BIT(1)LE.BIT(2)EQ.BIT(3)GE.BIT(4)GT,
Ba, Bd,Bm.DUPLICATE(2),Bs.DUPLICATE(1),

Si<A,Si>B,8i<>C, Sr<A,Sr>B,Sr<>C, SH

MACRO Be(< ) &%

MACRO Be(<=) &&
MACKO Be(= ) &&
MACRO Be(>=) &&
MACRO Be(> ) &&
USING S

INSERT INP

Fig 10.2.3

Be(X).LT
Be(X).LE
Be(X).EQ
Be(X).GE
Be(X).GT

ENDMACRO
ENDMACRO
ENDMACRO
ENDMACRO
ENDMACRO

LP<A, SHLP>B,SHLP<>C;

This declaration causes the MSS to generate the
following program :

INSERT LIBRARY
PROGRAM

Lsub.1
Lz1.1

L31.1

SUBROUTINE besj
sub (x,n,bj,d,ier);

Sr<A(bj):=0,

if Si>B(n)/0->Be(X)
then
Si<A(ier):=z1,
return fi

if Sr>B(x)/0->Be(X)
then
Si<A(ier):=2,
return fi

LLT

.LE

if Sr>B(x)/15->Be(X).LE

then

Si<A{ntest):=20./10./Sr>B(x)=->Bm(#*r)->Ba(+r)/Sr>B(x)/Sr>B(x)->Bm_A

(%r)/3.~->Bd(/r)
else

~->Bs(-~r)

Si<A(ntest):=90./Sr>B(x)/Sr>C(two)->Bd(/r)->Bal+r) fi



L36.1

Lag.1

LuG. 2
LLD.3

Lz

Lea.1

_RFACTOR
Lz81.1

LzbL.2

EFACTOR
Lt2L.1

L12i.z2
Lig1.3
L121.4

L121.%

L181.1
LiEL.2

L181.3
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if BirxBimd/SLsCintest)=2Ba{X).0E
th

en
SicA(ler):=k,
return i
Si<A(ier)z=0,
B<Cimn1}:=5i%Bin}-34{ . IRCR] ,
Sr<Albprev)is0.,
SHLPCA[ider Dt iadralin ) /SrBla) =0 AL IFIR ) F-2Bd(/ 1 =2BR(+);

BicAimb) i aSHLFB] Sden 101 )/ 2=nBa{s);
if SraB{x)/E.-3Be(¥).LT
th

&n
L&itltul}=I$F>B{:JIE.~>blf+r}
elaeg
Sich(ma)z=bD. /SedBlix)=2Bd{/r) 1. 0 5r B2 ) - 2Bm{ ¥ ) =2Ba{er]) i

v
P

it Ei>E(ma) /Sr>Blmb)->Be(¥).LT
then
Si<h{mzere)i=5i>C{mb )

else
Si<A{mzers)i=iiri(mb) fi

Bi<A({mmax):=581>BintestlaV,
fn: n from SirCimzerc) by 3 to W;

de (m) Sr<A(fmi)inl1.E=28,

EpcCifm)ial,

fer ¥ to Dip)s3rsBltvelsBaia),

if Dim) sV 2-0Bd (/) AV 0Bl 0 ) =3Be (X} . ED

then
Biehiithee=1
alae

SlChk(jthoel £i

Srckialfadi=0;
(31

do (k) Si<hime)ieD{m!/Bik)=>Ba{-d:¥,

SHLPCA(Lden10%) talim) /D k) =>Ba{=),

Srchibmk) =2/ V-2A( FLOAT ) =>bm{ *r )/ SroB{fei)-2Ba_A({*r)}/Sr>Cixl=2Bd(/r)s
SirB{Im]-2Bs_Al-rls\1,

SHLP¢COiden 108) t=2/V-2Al . FLOAT ) =2Bm{®pr )/ SpoB{fm1 dadBe_A{®r)/SraC{x)-2Rd
LAr1/EAYBfe) -2Es_A(-r),

BAi»C{jt)->h_Al.COMPL):

Sr<h{fm) i=Br>B{fim1],
SedCi{fm1) :uSHLP>H{10en102) ;

Sech{z):aSr2B(a)=24(.INCRI=V2,
SHLF<A(iden103) taS,r2B(m)-30¢ . INCR);

Srihielfal:eSr>Blalfa)/SHLPE( iden 102} /SHLP>Cl1den 103 ) -2Ba(#r)-2Bal+r)

ift:HLE)B{Lden101}f51>E£n}=>l[-ﬂEfﬁ}n)Bﬂ#H?.Eﬁ
en
SPCRibS) i eSHLPYC] 1deniBd) i

od (k13
$FACTOR = 4

SELFCA(10en101) il /5ra3{fat )=3Bo(*r)/SriClx)=2Bd{/r);

Srchibmk) t=ESHLP>B( ider 101 )/ Sr>E{fR)~->B8]-P)} sV,
SHLP<A(iden101) 1 =5HLPBliden 100 )/ 3rob{fn) =2Bal=r};

Srchlalla)r=SrrBlalla )/ SHLPAE{iden 101 )=2Bal+r),
if BixB{n}/C=»Be(X}.EQ
then
Sr<C{b))t=EHLF>Biidan101) Fid




LZ1.1
L2t1.2

L21.3

Ligoa

La2z.1
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Ep»BE(bi)sEraC{alphal-2Bdl/r);

SrxE{53 )/ 5e>C(bprev)->Ba(®r)-3A[ .ABE)=V1,
EMLP<Al{ideni01 )i aSr2Ble 2 3/ Sr2Clbprev ) =2 Bm(¥r} -2 A0 . ARS)

SraB(4)/5r2Ci0 ) =2En(®r)=>A].ABS)=V2,
if SHLPE(iden101)}/V2=2Ball).LE
ther
return Fi

Ar<h{bprev) ta3r>B(Ed],
od (m);
$FACTOR = 1

sich{ieriz=d,
retdfng
ERDSUE
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APPENDIX A

Program Part Syntax Diagrams

program _axiom

PROGRAM

BEGIN

t- : END [
element.statem.block J subroutine

subroutine

subroutine

—-@BROUTINE} identifier J—{NDSUB

element.statem.block

elementary statement block

-»i label statement block

( identifier )
|
WHILE | operand ————@

statement block

conditional stotement block >
[:: statement
case statement




conditional s

tatement block

operond THEN
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stotement block

network

stotement

ELSE

stotement block

= destination —-®—~-a perand

—

oparand

—.(ﬁum:}—-- label

B

identifier

operand

STOP

b0

~O-

identifier

J

identifiar

operand

-

J

[

operand

BY

'(P

oparand
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caose stotement

B geny W g

coze line

~©
'@—‘ stotement block :&QAC—)——O-
O

cose line
; o7
naign.integ. THEN statement block
identifier [~
labal
"nome" -
» =
wnsigned integer —O~—l
destination

operand @ ] 1 O-

gttribute

operand ) }e

function oparand




operond

SOUIce
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== operand

= operand

o-operator

—={ operand

-O-

operand

_@__

= operand

b-operotor

(D

operand

-@- operand

©;

cd-oparotor e

- operand

operond

DT =T

()

aperand

L J

attribute

]

operand

operand

destination

function

-
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a-gparator

function )]
e | 0

operand

attribute .O

b-operator

0 — 0 function ]L

attribute —C)

cperond

c-operator

° 1 o function 3
= L

ottribute —é

operand

network

function

function

function identifier

operond ]-Q‘I'EH} function ELSE

function

function ident, *@-—-

attribute

O
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function identifier

- "character I™ =+—{ "chorocter II"}

= unsigned integer

i

8

identifisr

FANE I \

"

lower case letter" letter™

|

"digit"

arroy identifier

" 2ol

—=| identifier operond

constant

tunsigned integer

unsigned int.

unsign.int.




unsigned integer
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"digit", A,..., D

(o)

@
_.@

N/

'digit"

o \
—/

attribute

—‘( "attr.ident." ;8)

( ) ™unsign.int.

*{ . H "attr.ident." }

_unsign.int

unsign.int.
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Declorotion Port Syntox Diagrams

addmodule axiom

module

()
o/

declorotion destinotion

oddconnection axiom

"(FEIJJMEGTIG}. declorotion dest.p™ ¢-

module
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declaretion destination

attribute

!

Q|9

unsign,. int, —O-— unsign.int.

function

unsign.int. '-O'. unsign.int.

r function

[ function
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attribute

'“< "attr.ident." ) -

( unsign.int.

"attr.ident."”

unsign.int.

=< . ’-—-( "attr.ident." >—
unsign.int. éb
’

Assignment Part Syntax

! identifier

1y
1"

constant

array ident.

’

OO

"’< ASSIGN ,L

array identif. |

module = identifier

module := constant

©
< ENDASSIGN >'—>
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Pretranslator Syntax

"string" :r = "letter” | "letter" | "digit” }.
)
*digit® =@ | ..o ]‘I
"letter"” :: = ["upper case letter” | "lower case letter®}
"upper case letter":: = [a| .. |z }] -
"lower case letter”:: = a| .. |z ] _11@]1
“name" 11 = [ "string® }1 {<1! = | == | <"string®
o | >"string" | ;::r"string" }
“character I° se={w |/ =] ]| =]
"character II" :: = | "letter” | "character I" | +1| - . }]

Rezerved words are:
IF, F1, DO, OD, BY, TO, FOR, END, SUB, THEN, ELSE,
FROM, GOTO, CALL, STOP, BEGIN, WHILE, RETURN, ENDSUR,

ENDASSIGN, OF, CASE, ESAC, ENDMACRO, SUBRODUTINE

They may be written either with upper or lower case characters.
"attr.ident" is a string after '." or '} * which i neither a
reserved word nor a part of a function identifier.

"Identifier" i3 a string which is neither a reserved word nor
an""attr.ident” and which does not start with

Ay B, C, D, E. Fy I, K, L, M, W, R, &, T, ¥, X.

(Igentifiers starting with an upper case letter are not recom-

mended because the above list may expand in future.)

i

1
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: Syntax Rules in ENF-Notation

. Ry

Column 1 t p lndicaten rule applicatable to the proegram part

Column 2 :m - M " - " - npacro definitien part
Column 3 h - " " = " - hardware deglaratlon
Calumn & ra = M " - H assignment part
Column 6-8 : Internal rule s aumber

Column 10-23 : Lelt side of productilon

Column 29-8% ; Right sides af productions

p 1 <PROGRAM> ts <PGH EEAD: END

B £ <PROGHAM: ] <PGH BODYT> ENE

[ 3 ¢FROGRAM> HHE ] CSURROUTINE>

B b ¢PGH HEAD» tim EECIK

P 5 <PGH HEAD» tis <POM HEAD> <ESB»

P b <PGM BGDY» Iim <PGM HEAD> LEUBROUTINE>

=] 7 LFGM BODY: 1= <PGM BODY> CEUBROUTINE>

pa 4 <ESE> 1im <LABEL> <STMT ELOCE: ;

PR o ¢ESBE» ItE “WHILE Dl H

pm 10 <E3BE> il C{WHILE D> <3THT ELOCE> ;

Pm 11 <WHILE DO>» tis <LABEL> D0 { <IDENTIFIER> )

Pm 12 <WHILE DO iim CLABEL> WHILE <OPERAND> D

i 221 (aHILE DO» L ] <LABEL> WwHILE <OPERANL> DO ( <IDENTIFIER» )
B 13 <SUBROUTINE> :::= ¢3EA HEAD» ENDEUE

1 14 {ZBR READ> tia SUBROUTINE <IDEMTIFIER:

pm 16 ¢3BF HEAD> tim CEER HEAD> <ESB>

pm 16 ¢5TMT BLOCK» ::= {ETATEMENT»

pa 17 <5THT BLOCE> 1:1:= £COND STMT:

pm 18 <5TMT BLOCE> 1:= <5TMT BLOCE> , <ETATEMENT:

Pm 19 <5TMT BLOCK> ::=s ¢S5THT ELOCK> , <COND STHT:

om 20 <ETATEMENT> im CCESTINATIO> = COPERAND:

=11 22 <ETATEMENT: tia COFERAND>

=l 231 <STATEMENT» 1ia GOTO <LABEL>

pm 24 <STATEMENT> HEE) CALL «IDENTIFIER>

pm 25 ¢STATEMENT: 1= CALL ETMT> )

pm 26 <STATEHENT» HER EUR

pmn 27 “5TATEHMENT» 1im <5BR ENTER> }

pa 28 <STATEMENT:» HER | oD

=2 222 LETATEMENT» 1i= on [ «<IDENTIFIER> )}

[+ ] 2¢ {ETATEMENT: HEE RETUAN

pm 30 CSTATEMEMNT» HE- STCF

[ ] 11 <3TATEMENT> H FOm <IDENTIFIER>

1. 32 <BTATEMENT: H FOR <IDENTIFIER» FROM <OPERANDD

pm 3% CETATEMENT> H FOFR <ICENTIFIER> FROM <OPERAND:> BY <OPERAND>
pm 38 <STATEMENT> H FOR<IDESTIFIER>FROMSOFERANDFEY<OFERANC»TOLOPERAND >
pm 35 CETATEMENT> HH FoR ¢IDENTIFLEE» FEOM COPERRNDY ™ <OFERAND>
pm 36 <ETATEHENT: HH FoR <{IDENTIFIER> BY COPERAND>

o 37 <3ITATEHENT> HH FOR <IDENTIFIER> BEY <QFERANL> TQ <OPERAND>
pm 38 <STATEMERT> 4 FOR {IDENTIFLER> TO COFPERAND>

pa 3% <CALL STMT» it CALL <JDENTIFIER> | COFERAND

pR HO <CALL STMI> HH <CALL 3THT: ZOPERAND>

(=1 41 <5BR ENTER> rr SUE H (OPEAAND>

1] b2 <SBER EWTEH>» HH C3ER ENTER» | ¢OFERANDY

o b3 <COND STHT» HH IF CGFERAND> THEN £ETMT BLOCK> FI

<1 bk {COND STHT: HH IF <OPERAND> THEN <STHT BLOCK» ELSE <STHT BLOCE» FI
pm BS <(COME STHT> HH IF CHETWORE> THEN <3TMT BLOCKE» FI

=] 46 <COND STHT: R 17 <NETWORK> THEM <STMT BLOCK ELZE <STMT BLOCK: FI
pm 4T <DESTINMATIOx iis SETORAGE> :

pm 44 <DEETINATIO» ::s CREGISTER= i

pm 44 <DESTINATION 1:= SETACK §

pm 53 <OPERAND> S <50URCE>

pa 51 <OPERAND> HHE COFERAND: L <I0URCE >

pa 52 <CPERAMD> HHE COFERAND - > LA-OPERATOR>

pm 5% <CPERAND>» HHE COFERAND £ LOPERAND> - * CE-QPERATOR®




cJPERAND>
{OPERAND>
<CD.0OF HEAD®
<OPERAND>
LUPERAND>
COFERARD
CE0VRCEY
<S0URCE>

g CSOURCER

<EQURCE>
<SOURCE»
<B0URCE>
{E0URCE>
CECURCE>
<E0OURCE>»
CSOURCE>
CEOURCE>
CSOURCES
<LABEL>
<LABEL>
<3TORAGE>
c3TORAGE>
C3TORAGE>
<REGISTER>
<“REGLSTER>
<{REGISTER>
<REGISTERY
<REGLETER>
CSTACE>
CETACK>
<ETACE>
CHTACK>
LHETACK
cINSTRUCTIOS
CINSTRUCTIO
CINSTRUCTIO>
<ODISTRIBUTOR
«DISTRIBUTOR
{DISTRIBUTOR
<FIK CONST>
{FIX CONST>»
<FIX CONST>»
<CONTH VAR»
CCONTH VAR?
CCONTH VAR>
LCONTR VAR:
{A-CPERATOR>
{A=DPERATOR>
{h=OFERATOR>
Ch-CPERATOR:
Ch=-OFERATOR?
CE=CFERATOR>
CE=QPERATOR>
CE-QPERATOR:
{B-QPERATOR>
“B=CFERATOA?
CC-OFERATORY
CC-OFERATOR?
CC-OFERATCGR?
CC-0OFERATOR:
C0=0FEAATOR
CHETWOAR>
CHETWORK >
CFLENCTION>
LFUNCTICN
CFUNCIION>
C¢FCT INST P»

e

" oa

Wow oW oo

b oaw
i n

WO W W w

dnomm

=

o

W

[N T I R T [ | ]

oo omomon
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COPERANDY /<OPERAND>/ <OPERAND» - » <C-OPERATOR:
COFERAND: = {DISTHIBUTCOHR

{ IF <OPERAND> THEN <OFPERAND>
<CD.OF HEAD» ELEE LOFPERAND> FI

] "HAME"

<MACALL HEAZ> )

SCONSTART:

<IDENTIFIER>

<ARRAY ILEN>

CLABEL>»

E

<3TORAGE>

<REGISTER>

SETACKE>

<INSTRUCTIO>

¢DISTRIBUTOR

<FIX CONST>

CCONTR VAR>

L "HAME"™
<LABEL> Y. INTEGER"
2 GUPERAND> )

= "HAME™ [ COFERAND> 3

<ETORAGE> . CATTRIBUTE>

B "HAME"

R "NAME" { COUPERAND> 1

B "HNAME® { CFUNCTIONS }

E "MAME® { ¢FUNCTION: { <OPERAND> ) )
<REGISTER> . <ATTRIBUTE:

K "HNAME®

4 HHAME™ { COPERAND> ¥

K "HAMEY { {FUNCTION: ¥

K "HAME" [ CFOWCTION> (  <OPERAND> 1 )
CETACE> . <ATTRIBUTE>

I

1 ) <IDENTIFIERA: )

CINSTRUCTIO» <ATTRIBUTE>

v

v "HNAME™

<DISTRIBUTOR . CATTRIEUTE?

F "HAME™

F "HAME®™ {
LFIX CONSTX
o
i {
i} )

¢OPERAND» )
CATTRIEUTE>

"y.INTEGER" )}
<ITENTIFIERY }

FHAMEN {

[ {FUNCTION» )

<FUNCTION: 1

<CONTE VAR <ATTRIBUTE:

& {  <FUNCTION®>

A "HAME"  (  <FUNCTION> )
h{  <OPERAKD» )

A THAME® { LOPERAND® 1
<A=CPERATDR> . <ATTRIBUTE:
B CFUNCTION> 1

E *NAME® { CFUNCTION )
B COFERAND> I

B "HAME® {  <OPERAND>
EE-DPEHuTGE} . CATTRIBUTE:

[

C

o

"HAME" {
{C-0PERATOR> .
{OPERAND> - *
COPERAND> ! <
"FUNCT=ID"

IF <OPERAND> THEHW

CFCT INST P>
I |

£ SUFERAND>

¥
COFERAND> )
CATTRIEUTEX

K [
KETWORK>

CFUKCTION: K

<FUONCTICN» ELSE <FUNCTION» FI

"EUNCT=ID"™ i
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125
217

RPN
—~n
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JURAY N
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© o=
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8
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159
160
161

CFCT INST P>
<IDENTIFIER>
<IDENTIFIER>
<ARRAY IDEN>
<AR ID HEAD>
<AR ID HEAD>
<ATTRIBUTE>
<ATTRIBUTE>
<ATTR HEAD>
<ATTR HEAD>
CATTR HEAD>
<ATTR HEAD>
<ATTR HEAD>
CATTR HEAD>
<ATTR HEAD>
<ATTR HEAD>
<CONSTANT>
<CONSTANT>
<CONSTANT>
<FIX PCI CO>
<FIX POI CO>
<FIX POI CC>
<FIX POI CO>
<SIGNED INT>
<SIGNED INT>
<SIGN>
<SIGN>
<MACALL
<MACALL
<MACALL
<MACALL
<MACALL HEA>
<MACALL EEA>
<PROGRAM>
<STMT BLGCK>
<STMT BLOCK>
<CASE STM>
<CASE HEAD>
<CASE HEAD>
<CASE TAIL>
<CASE TAIL>
<CASE LINE>
<CASE LIST>
<CASE LIST>
<CASE LIST>
<CASE LIST>
<FUNCTION>
<STORAGE>
<STORAGE>
<STACK>
<ATTRIBUTE>
<ADDMOD AX>
<ADDMOD BCD>
<ALDMOD BCD>
<ADDCONN AX>
<CONN BODY>
<CONN BODY>
<CONNECTION>
<CONNECTICN>
<MODULE>
<MODULE>
<MODULE>
<MODULE>
<DCL DEST>
<DCL DEST>
<DCL DEST>
<DCL DEST>

HEA>
HEA>
HEA>
HEA>
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<FCT INST P>
"STRING EXP"
"LOWLETTSTR"
<AR ID HEAD>
<IDENTIFIER>
<AR ID HEAD>
"ATTRB-ID"
<ATTR HEAD>
"ATTRB-ID"
"ATTRE-ID"
"ATTRE-ID"
"ATTRB-ID"
<ATTR HEAD>
<ATTR HEAD>
<ATTR HEAD>
<ATTR HEAD>
<SIGNED INT>
<FIX POI CO>
<FIX POI CO>
<SIGNED INT>
<SIGNED INT>

"U.INTEGER"

<SIGN>
"U.INTEGER"
<SIGN>

M "NAME"

M "NAME"

M "NAME"
<MACALL HEA>
<MACALL HEA>
<MACALL HEA>
<PGM HEAD>
<CASE STM>
<STMT BLOCK>
<CASE HEAD>
CASE
<CASE
<CASE
<CASE LINE>
<CASE LIST>
<SIGNED INT>
<IDENTIFIER>
¢CASE LIST>

HEAD>
LINE>

[ L L L s

<ATTRIBUTE>

<OPERAND>
COPERAND>

"J.INTEGER"

"ATTRB-ID"

"U.INTEGER"
*U.INTEGER"
"0.INTEGER"

*

"ATTRB-ID"

"U.INTEGER"
"y.INTEGER"

<SIGNED INT>

"U.INTEGER"

"U.INTEGER"

"U.INTEGER"

<OPERAND>
<DESTINATIO>
<FUNCTION>
COPERAND>
<DESTINATIO>
CFUNCTION>

NDMACRO

<CASE 3TM>

CCASE TAIL>

<OPERAND> OF

<CASE LINE>
ESAC )
ELSE
THEN

#*

"U.INTEGER"
"U.INTEGER"

"U.INTEGER"
"U.INTEGER"

<STMT BLOCK> ESAC

<STMT BLOCK> FI

<SIGNED INT>

<CASE LIST> , <IDENTIFIER>
<FUNCTION> <FUNCTION>

S (  "U.INTEGER"

S "NAME"  (  “U.INTEGER"
K “NAME" (  "U.INTEGER"
CATTR HEAD> )  "ATTRB-ID"
<ADDMOD BOD> ;

<MODULE>

<ADDCMOD BOD> ,  <MODULE>
<CONN BOLY> ;

<CONNECTION>

<CONN BODY> ,  <CONNECTION>
<DCL DEST> < -  <MODULE>
<CONNECTION> /  <MODULE>
<DCL DEST>

<INSTRUCTIO>

CFIX CONST>

<MODULE> *  <MODULE>
<STORAGE>

<REGISTER>

<STACK>

<DISTRIEUTOR

"U.INTEGER" )

"U.INTEGER"
"U.INTEGER"

)
)



o g~ e die g e g« o di= ghe gfe Jie gie gia

LD D DR

162
163
164
219
220
165
166
167
168
169
181
182
183
170
171
172
173
1714
175
176
177
178
207
208
209
210
211
212
213
214
215

Note

<DCL
<DCL
<DCL

DEST>
DEST>
DEST>
<DCL DEST>
<DCL DEST>
<A-QPERATOR>
<A-QOPERATOR>
<B~OPERATOR>
<B~OPERATOR>
<C~-OPERATOR>
<C-OPERATOR>
<STORAGE>
<STORAGE>
<ASSIGN AX>
<ASSIGN LIS>
<ASSIGN LIS>
<ASSIGN ELM>
<ASSIGN ELM>
<ASSIGN ELM>
<ASSIGN ELM>
<REC ASSIGN>
<REC ASSIGN>
<IDF ASSIGN>
<IDF LIST>
<IDF LIST>
<IDF LIST>
<IDF LIST>
CMAP ASSIGN>
<INI ASSIGN>
<MODULES>
<MODULES>

LI I T T Y T T VO T T O T (T O T | O T £ T T < O | T I I I L T [ I 1 B T O 4}
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<A-QPERATOR>
<B-OPERATOR>
<C-OPERATOR>

N
N "NAME"
A
A "NAME"
B
):] "NAME"
C
C "NAME"
S
S "NAME"

<ASSIGN LIS> ENDASSIGN

CASSIGN ELM>

<ASSIGN LIS> <ASSIGN ELM> ;

<REC ASSIGN>
<IDF ASSIGN>
<INI ASSIGN>
<MAP ASSIGN>

"ATTRB-ID"

<REC ASSIGN>
<IDF LIST>

<IDENTIFIER>
<ARRAY IDEN>
<IDF LIST> ,
<IDF LIST> ,
<MODULE>

<MODULES>
<MODULE>

<MODULES> B

Rules > 205 not yet implemented

"WATTRB-ID"
¢CONSTANT>

<IDENTIFIER>
<ARRAY IDEN>
<IDF LIST>
<CONSTANT>

<MODULE>
(5/4/79)

"ATTRB-ID"
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APPENDIX C

Additional Rules Part 1

These rules are necessary for a correct hardware operation.

1.1 In one <esb> the contents of a storage cell may change by
one assignment (as a destination) or by one function only. A
function parallel to an assignment is allowed, if it doe: not alter
the contents of the cell.

1.2 GOTO, CALL, RETURN, DO, OD alter the contents of the
program counter RP. Rule 1.1 must be obeyed.

1.3 1In conditional statements rule 1.1 must be obeyed in all

statements, which depend on nondisjunctive conditions.

1.4 Distributors must be defined before they are used.

Additional Rules Part 2

These rules are necessary for meaningful programs.
2.1 No arithmetic type transformations or checks are made in
arithmetic expressions.
2.2 The operands (conditions) after IF, WHILE must be of
the type boolean (1 bit).
2.3 Loops must be complete. Minimal loops must contain:
FOR DO OD or
WHILE DO OD
2.4 The identifier in D ( <identifier> ) must be the
control variable of the current or of one outer FOR - loop.
2.5 The FOR - loop, which is referenced by D ( <unsigned

integer > ), must exist.
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2.6 The statements SUB and RETURN may be used in sub-
routines only.

2.7 The number of <operand> 's (parameters) in
corresponding CALL and SUB statements must be equal,

2.8 " " include comments.



APPENDIX D

Control Language Commands

ADDCONNECTION
ADDMODUL
ASSIGN

BATCH
BLOCE
BLOCKEND
BREAK

CODE

CON
CORRECT
CURHSTAC

DEBUG
DEBUGOFF
DECLARE
DELCONNECTION
DELMODUL
DISPLAY

ENDDECLARE
ESB

EX

EXIT
FACTOR
FACTORZ
FACTORI
FIRSTPORT

GO
INSERT
JOINT

. 1
fr)
LIST

MACRO
MINHLEP

NFULBUF
HNODISPLAY
HOFACTOR
HOLOWERLETTERE
NOTRACHE

HOWARIT

ONLY
UNLYRMAC

PF

PH

PROGEAM
FRINTFUNCTIONS
PRINTHARDWALERE
PRINTSTACK

RECMACRO
RESET
RESUME

TF

TH

™

TRACE
TYPEFUMCTIONS
TYFEHARDWARE
TYFPEMODUL
TYPESTACK

USING

WAIT
WITH

(special character
before end-of-line)
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Eymbol Table

1 IF o FI

L oD 4 BY

7 OF & FOR
10 SUB 11 THEN
13 FROM 4 Gomo
16 BTOP 17T CASE
19 BEGIN 20 WHILE
22 ENDSUE 2% ENDMACRO
25 SUBROUTINE 26

28 "attribute identifier"
11 "right"

3L "name"

3T "macro delimiter”
ho

k3 +

e .

61 =

= =
ESRIRosne
LR - = I = I ¥ |

31
94
100 <program>

03 <elementary stmb.block>]04

106 <subroutine head>
109 <oall statement>
112 <destination®

115 <label>

118 <stmck>

29 "atripng expression”
10 "fupetion identifier”
a5

38

b1}

Lk
T
]
62
&5
£8
T
Tl
7

— -

BEEREE
P T T - T — T - I SRRV

=
Ln

<program head>
<while do stetemert>
<gtatement block>

10

o7
110
113
(1]
119

<gubroutine enter>
<operand>
<etorages
<instruction>

3 IO

&m0

3 EWD

12 ELSE

15 CALL

16 ESAC

21 EETURN
24 ENDASSICH
27 "unsigned integer”
30 "lert”

33 "lower letter atring’
36

39 "waeveoparameter”
Lz =
Ls -
L&
60 <
63
BR B
69 E

T2 F

75 K

TN

814

BT

L
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93 ]

102 <program body>
105 <subroutine

108 <etatements

111
I1&
117
120

CEOUrCe>
“reglater>
<distributor>

<ponditional stmt.block>
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124
127
130
133
136
153%
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145
148
158
161
164
167
170

“fived constant> 122
<b-operator> 125
“lunetions 128

<array identirier> 131

<pttribute head> 134
<signed integer?® 137
<addconnection axiom> 140

=declaration destiont.>143

<gondit.operand head> |46
145
fmaere ¢all hend® 159

162
165
-1}
171

<mssignment list>
<igentifier assignm.>
wcase statement>
<pase lipe>
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<egntrel variable> 123
Le=gperator> | 26
sTanetion sngtruc.part>) 29
<erray identifler head>132
<oonstant> 135
“sign> 138
<connection body> &1
<addmodule body> L

147

150
<mpere declarst.sxiom> 60

163
($:1]
(LT

<assignaent element>
<map assignment>
“ease heads

comse Lists

<a-operators

CNELWOrE>

<identifiers»
<attribute

cfized point sonstants
<addmedule axicom>
<ecnnections

“meduler

<aeaigrment axion>
<record mesignment>
<ipitial value assigmm.>
<ease tail»
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