

Institut fur Informatik and Praktische Mathematik

Christian-Albrechts-Universitat Kiel

Olshausenstraße 40-60

D - 2300 Kiel 1

Tel. (0431) 880 - 4461

MIMOLA REPORT

Revision 1 and

MIMOLA SOFTWARE SYSTEM USER MANUAL

CONTENTS

 Page

1. INTRODUCTION 1

2. APPLICATIONS 6

2.1 Non procedural Description of Hardware 6

2.2 Functional Description 8

2.3 Alcorithmic Description 10

2.4 Microprogramming Language 13

3 . SYNTAX 1 4

4. HARDWARE DATA STRUCTURE 18

4.1 Group, Module 18

4.2 Port, Input 18

4.3 Field 19

4.4 Connection 20

4.5 Data Structure Entries 20

5. DECLARATION 22

5.1 Declaration of Modules, Ports and Fields 22

5.1.1 Addition 22

5.1.2 Deletion 26

5.2 Standard Modulos 26

5.2.1 Random Access Memory 26

5.2.2 Reqister 27

5.2.3 Stack 27

5.2.4 Instruction 28

5.2.5 Hardwired Constant 29

_ II _

Page

5.2.6 Monadic operator 29

5.2.7 Dyadic Operator 29

5.2.8 Triadic Operator 30

5.2.9 Network 30

5.3 Declaration of Connections 30

5.3.1 Addition 30

5.3.2 Deletion 31

5.4 Data Paths Conventions 32

5.4.1 Statements 32

5.4.2 Destinations 33

5.4.3 Bit-to-Bit Assignment 33

5.4.4 Attributes 33

5.4.5 Distributors 35

5.4.6 Concatenation 35

6. ASSIGNMENTS 37

6.1 Identifier Assignment 37

6.2 Storage Map Assignment 37

6.3 Initial Value Assignment 38

6.4 Record Assignment 38

6.5 Example 38

7. PROGRAM 39

7.1 Fundamental Semantics 39

7.2 Labels 40

7.3 Functions 41

7.4 Identifiers 42

7.5 Operands 43

- III -

 Page

7.5.1 General Features 43

7.5.2 Constants 43

7.5.3 FOR Loop Control Variable 43

7.5.4 Dummy Source 44

7.6 Allocator Conventions 44

7.6.1 Default Replacement of Identifiers, Functions 44

 and Constants

7.6.2 Duplicates of Operators 45

7.6.3 Port Allocation 46

7.6.4 Default Bitnumbers 47

7.7 High Level Language Elements 48

 8. MACROS 49

 8.1 Use of Macros 49

 8.1.1 Standard Macros '49

 8.1.2 User Defined Macros 49

 8.1.3 Software and Hardware Replacements 50

 8.2 Macro Declarations 51

 8.2.1 Syntax 51

 8.2.2 Parameters 52

 8.2.2.1 Macroparameters 52

 8.2.2.2 Numbering of Names 53

 8.2.2.3 Special Labels 54

 8.3 Controlled Application of Macros 54

 8.3.1 RECMAC 54

 8.3.2 Blocks 55

 8.3.3 Order of Macros 55
8.4 Application Rules 55

- IV -
 Page

8.4.1 The Test 55

8.4.2 The Application 56

8.5 Standard Macros 56

8.5.1 GOTO 57

8.5.2 FOR Loop 57

8.5.2.1 Setup 57

8.5.2.2 Condition Test 58

8.5.2.3 Updating and Return 58

8.5.3 WHILE Loop 59

8.5.4 Conditions 59

8.5.4.1 Conditional Statement Blocks 59

8.5.4.2 Conditional Operands 60

8.5.4.3 Conditional Functions 61

8.5.5 CASE Statements 61

8.5.6 Subroutines 62

9. CONTROL LANGUAGE 64

9.1 General 64

9.2 Command Description 68

9.2.1 General Commands 68

9.2.2 Macro Commands 71

9.2.3 Compiler Commands 71

9.2.4 Commands Referencing the Data Base 73

9.2.5 Allocator Commands 76

9.2.6 Statistical Analyser Commands 77

9.3 Example 77

 - V -
 Page

10. EXAMPLES 79

10.1 Output Listing Examples 79

10.2 Computation of a Bessel Function 82

REFERENCES 88

APPENDICES:

A Syntax Diagrams of MIMOLA 89

B LR(1) Grammar of MIMOLA 101

C Additional Rules 105

D Control Language Commands 107

E Hardware Data Structure Listing Format 108

F Symbol Table 109

 - 1 -

1. INTRODUCTION

This Revision 1 replaces the original report (1). The syntax of MIMOLA

has been slightly changed and extended. The hardware declaration and

assignment parts have been redesigned. A MACRO feature has been added. A

description of the hardware database and the control language of the MSS

(MIMOLA Software System) has been added (2,3,4).

MIMOLA is a computer hardware description language (CHDL) and a programming

language. It has been developed for the following applications:

a. Nonprocedural description of hardware (especially computer hardware),

for declarations (e.g. appl. b.-d.), for education and documentation

b. Functional description of digital systems, procedural, for top-down

design, education and documentation

c. Algorithmic description of digital processors for optimizing top

down hardware design

d. High-level or intermediate microprogramming language for p-code

generation

e. Modelling of algorithms or machine instructions on a state

transition level for measurements and comparisons.

Other applications are possible. It is not the task of this REPORT to

show how problems can be solved using MIMOLA. In chapter 2 some examples

are explained to show the effectivity of MIMOLA. More details can be found

in (5,6) or will be published.

At this point we will summarize some features of MIMOLA to give a

frame for the details in the following chapters.

 - 2 -

1. The hardware is mainly described on the register transfer

level. Lower levels (e.g. the gate level) can be described, but the

notation will not be optimal for this purpose. All modules that are

of interest. in the construction of computers today and in the near

future, have been included in MIMOLA as language primitives.

Language extensions to new modules can be made by macro definitions

or syntax extensions. Thus MIMOLA supports mainly modular and

structured hardware solutions with a small number of different

modules and simple interfaces, but admits also sophisticated special

structures for unusual problems.

2. The functional description level is strictly the state

transition level of a synchronous automaton. This is normally

called the microprogramming level. Thus a very close connection

between programs and hardware is achieved.

3. Parallelism or concurrency can be expressed in the range

of one state transition. Besides this constraint the limits

of parallel execution are given by the hardware

features only. The execution of parallel or spatial sequential

operations is asynchronous , as long as no states are changed.

Thus concurrent statements need not be order-invariant (as e.g.

in ISPS (7)).

This means that all set and store operations are executed

synchronously, thus avoiding racing problems. All other operations

are thought to be executed by networks with only one permanent state.

Asynchronous feedbacks are prevented by the syntax of MIMOLA.

 - 3 -

In some cases operations are too complex to be executed by

a network with a reasonable amount of hardware. A compromise can

be found by admitting the modules to have internal states not

visible to the outside. The activity of "impure" modules has tc

be controlled by additional signals. It is assumed that the control

unit generates an execution sequence as in a data flow graph.

Thus no synchronization problems will arise.

4. Asynchronous parallelism including more than one state transition

have been excluded as a language primitive. Further investigations are

necessary to find a general solution for expressions of this kind on the

register transfer level.

Asynchronous parallelism on the processor level can be expressed by

distinct MIMOLA programs with appropriate synchronization macros. As long as

no method exists to distribute algorithms on more than one processor

automatically, our design methods are sufficient to desiqn and optimize one

processor at a time.

5. For the use of MIMOLA as a high level programming language a macro

facility has been included. Thus expressions are allowed that cannot be

directly or uniquely be built in hardware.

Standard macros like IF.. THEN ..., CASE, FOR.... CALL are parts of

the syntax. The semantics is assumed to he near to the usual one. The

 - 4 -

MIMOLA to his ideas or to a special HLL.

Additional user macros can be used to extend the language, to

introduce unusual constructions (e.g. synchronization primitives).

Thus experiments with different macro-replacements are possible.

6. Data types have been included only as far as they concern the

hardware. This is due to our main applications b. and c. Words of

different sizes, fields of words and concatenations of words or

fields are the only data structures in MIMOLA that can directly be

translated into hardware.

Array element references are included as a standard macro. Field

declarations can be used for PASCAL RECORD-fields. Distinctions between

different scalar data types can be expressed by different memory module

names and different operator functions. Different memory names can also

be used to express a difference between local and global variables.

This represents no limitation for the hardware design space, since

modules with different names can be easily merged by an edit process.

7. As CAD systems tend to become too large and inefficient, a

LR(1) grammar (Appendix B) has been chosen with additional

restrictions to simplify the syntax analysis.

These features could not be found in any other language. This

is the only reason for the definition of a new language. It was

originally written for our own research. But since our

- 5 -

MSS is written in PASCAL, it can be run on many installations. This may

encourage other groups to use MIMOLA together with MSS.

2. APPLICATIONS

MIMOLA was designed as a tool. Therefore examples for the applications

listed in Chapter 1 are given. They are partly selfexplaining. For details

refer to the appropriate chapters in this report.

2.1. Nonprocedural Description of Hardware

The simple processor in fig. 2.1 can be expressed by the DECLARATION

in example 2.1.1

Fig. 2.1 Simple Processor

-

Example 2.1.1 : Declaration of the Processor in Fig. 2.1

Besides some additional informations, the description in example 2.1.1

has no value of its own, because Fig. 2.1 gives a clearer view of the

structure. In the MIMOLA design systems hardware descriptions are used as an

input form for computer aided designs and transformations. The DECLARATION

can be used to show that the processor in Fig. 2.1 is able to execute a given

set of functions. The MSS would give an error output otherwise. It can also

be used to translate algorithms to microprograms for this processor.

Another way of hardware description is of more interest: the

definition of upper limits in the design space (Example 2.1.2).

The meaning is: one memory SM with a maximum of 6 ports is the

only memory. No more than three dyadic operators are allowed, B3

with a limited function set. All other recources are not limited.

This uncomplete description is the normal way to interact with

the MSS process.

2.2. Functional Description

A computer can well be characterized by a description of its

machine instruction set. Only a part of the hardware is visible in

this description. The hidden part is of no direct importance to

the function the user of the computer sees. This "functional

description" can be formalized by a CHDL. Due to our familiarity

with programming languages procedural descriptiors are more

natural to express sequential microprogram steps or state

transitions than nonprocedural ones. The description level depends

on our purpose.

- 9 -

Example 2.2.1 shows a high level description of a MOTOROLA

M6800 microprocessor instruction. It is sufficient for an

ASSEMBLER programmer to understand the function of the

"store accumulator A indexed in memory, address m". In a

design process this description opens the greatest design

space.

Example 2.2.2 gives more details about the instruction format and the

program counter RPC behaviour.

In Example 2.2.3 the instruction is resolved in 5 microstatements. This

might be the execution sequence of the M6800 and a description of all

instructions of the M6800 in this manner would lead to a structure very

close to this microprocessor.

- 10 -

It can be seen from these examples, how useful a functional

description of a computer in MIMOLA may be in documentation and

education. But every level can also be used as an input to the

MSS to find different hardware structures. These will meet the

requirements correctly and can be optimized with different

constraints and goals.

2.3 Algorithmic Description

It has been shown in 2.2 that different description levels are

possible with one language. without passing a sharp border we can

increase the level of example 2.2.1. User problems seldom bother with

details like data storage in registers. Normally transformations are

applied on variables or more general data structures. The translation

to register load and store operations is a necessity due to the lack

of more powerful or simply suitable instructions.

If we want to design optimal structures from the users view, we

must start on the users level. Problems can only be solved by

computers using algorithms. Therefore a description on the

"algorithmic level" is the main application of MIMOLA. Example

2.3.1 shows a short program in three different languages. The

postfix-notation of MIMOLA may be unusual, but the correspondences

can be found easily. The differences to example 2.2.1 are only

gradual. But the point of view differs:

Example 2.2.1 describes the real function of the hardware. The

only uncertainty is the probability of occurance. All functions

can be listed completely.

- 11 -

- 12 -

Example 2.3.1 shows a possible function. We can estimate the

probability but we cannot give a limited list of all algorithms.

This is an additional degree of uncertainty. It can partly be

overcome by using large samples to be able to calculate "precise"

mean values. Due to the lack of knowledge about user behaviour and

therefore the difficulty of giving an exact task description of

the design object, "precise" is very relative.

Large program samples ask for a descriptive language with

high-level language features. This is an unusual demand for

CHDL's but had to be met by MIMOLA.

A set of algorithmic descriptions define an automaton or

hardware structure. The microinstructions of these programs cause

state transitions of this automaton. Different automatons can be

found by transforming these programs. On the other hand, manual

changes of this automaton (by declarations, see 2.1) can cause

transformations of the programs to preserve the ability of

execution.

Thus the hardware can be tailored to meet constraints and a

proof is given at the same time about the correct execution of

the programs on this hardware. Since the programs form the task

description, the correctness of the solution can be proven.

To find an optimum, the variations of the hardware are not

done arbitrarily. As the design space is too large to-try all

possibilities, occurence probabilities are calculated for all

resources (e.g. modules, connections, instruction word fields) to guide

the variations.

This is a very short description of our design method. It is implemented

to a large extend in the MSS (MIMOLA Software System). The use of

functional descriptions (Chapter 2.2) is a special case of the method. A

better description is (6).

2.4 Microprogramming Language

A welcome byproduct is the possibility to use MIMOLA as a high-level

microprogramming language. This is due to the fact that the state transition

level is a basic language feature and is preserved during all

transformations. For all MIMOLA programs an automaton or hardware structure

exists that can execute the microstatements of the programs without further

transformation. As already mentioned in 2.3 a change of the automaton causes

a program transformation. A complete declaration of a computer structure (see

chapter 2.1) can be seen as a change of this kind. Thus the MSS will respond

with transformed programs executable on this structure. Since these programs

describe state transitions, they contain the microcode in a special form.

Some decoding and software tasks like storage management have to be added to

change the MSS to a microprogram compiler. This application is under

investigation.

- 13 -

- 14 -

3. SYNTAX

The syntax of MIMOLA is defined in two ways. The user can refer to the

syntax diagrams in Appendix A. The syntax analyzer of the MSS (MIMOLA

Software System) takes a production system in Backus notation, listed in

Appendix B. It is an LR(1)grammar.

 Additional rules are listed in Appendix C. They are used

by a preprocessor in front of the syntax analyzer.

Part 1 is necessary to guarantee correct hardware functions.

Part 2 is additionally required to suppress meaningless programs.

 A violation of theses rules does not necessarily lead to

 hardware errors.

assignment language, declaration language, macro language, program language.

The grammars of these languages differ only slightly. The differences are

marked in the syntax diagrams and the list of rules and will be explained in

the following chapters.

A MIMOLA string may contain a sequence of different language parts. Fig.

3.1 shows the endsymbols.

- 15 -

State Control key Endsymbol
Assignment ASSIGN ENDASSIGN
Declaration ADDMODUL / ,
 ADDCONNECTION
Macro MACRO ENDMACRO
Program PROGRAM END /
 ENDSUB

Different language parts may be nested either by writing a $-sign into the

current source string or by using preprogrammed breakpoints (see chapter

9.1). Both conditions cause MSS to expect a (nested) new command key.

Example 3.1 gives valid combinations of control commands.

- 16 -

The set of allowed control commands depends on the context. It

is not allowed to put two or more identical control commands in

one nesting hierarchy (e.g. a PROGRAM part may not contain a

PROGRAM command).

Assignment parts provide means to define software equivalences

with no direct influence on the hardware. They are tools for

program structuring and microcode generation, syntax analysis

starts after "ASSIGN". A correct assignment part can be reduced

to the assign-axiom, when the endsymbol "ENDASSIGN" has been

found. If equivalences are not changed by other assignments, they

are valid until exit from MSS.

Declaration-parts are used for unprocedural definitions or

changes of hardware structures. For correct parts a syntactical

reduction to the declaration-axiom is possible, when the

endsymbol "; " has been found. Hardware structures are valid

until exit from MSS if they are not changed by

- 17 -

ADDMODUL and ADDCONNECTION commands or deleted with DELMODUL and

DELCONNECTION commands.

The program parts contain the algorithmic or functional descriptions.

Program parts generate hardware descriptions and statistical analyses if

applied to the MSS. Program parts may be subdivided in main program

parts, enclosed in BEGIN ... END, and subroutines enclosed in SUBROUTINE

... ENDSUB. The syntax analysis is separately applied if these parts are

disjunctive. Nested subroutines are analysed together with the enclosing

program.

4. HARDWARE DATA STRUCTURE

The MSS stores all information about the available hardware

together with the statistical information in a hardware data

structure (hds). The structure is similar to the network model of

data bases.

Most of the entities are hierarchically ordered:

- 18 -

4.1. Group, Module All modules with the same initial letter

form a group.

The MSS recognizes the following groups:
A monadic operator,
B dyadic operator,
C triadic operator,
D Do - Loop - variable storage,
F hardwired constant,
I microinstruction,
K stack,
N network,
R register,
S storage (RAM),
V non-stored result.

4.2 Port Input

 A module has at least one port. All input and output is

done

via ports. There are input ports, output ports and

bidirectional

ports: Portdirections may be specified by ' < ', ' > ' or '<

a fixed number of ports (e.g. dyadic operators have three: two for input and

one for output); others have a varying number of ports (e.g. random access

memories). There are certain limitations to the set of allowed portnames and

directions, depending on the group which the module belongs to:

- 79 -

A, R, V : no port-name (blanks),
F, I, D : no port-name, only output (>),
S, K : no restrictions,
B . >, <a, <b ,
C >, < a, <b, < c,
N >, <a, <b, <c, , <z.

The control language command NOLOWERLETTER changes the above lower case

letters to upper case letters.

Each port has up to four inputs or outputs: a function input, an address

input, a control input and a data input or output. They are selected by the

reserved attributes .FCT, .ADR, .CON and .DAT. The latter is assumed by

default.

4.3. Field

Inputs and outputs have fields. These may be ranges of bitnumbers or

attributes which stand for unassigned ranges of bits (called

bitattributes). Any attribute which is not a predefined attribute, is

considered to be a bitattribute. The bitrange of a bitattribute can be

defined in the ADDMODUL declaration.

Input fields can be viewed as multiplexers if there is more than one

connection for a field. In this case the field has an associated

multiplexer address input field which the user can select with the .MPX

attribute.

- 20 -

4.4. Connection

Connections in their most general form are concatenated subranges of data

fields of outputs. Connections are the hds representation of bundles of wires

connected to a destination. For example the block diagram of Fig. 4.4.1 is

transformed into the nodes of Fig. 4.4.2.

Fig. 4.4.1 Hardware Block Diagram

The hds description of connections contains independent ranges for source- and

destination bits. See chapters 5.3. and 5.4. for additional information.

4.5. Data Structure Entries

The following is a list of some of the entries in the just described

hierarchical part of the hds:

 - 21 -

group : boolean value indicates whether or not a
 module of this group has been declared in the
 declaration or not.
module : number of possible duplicates,
 pointer to joint distribution table,
 number of additional ports allowed,
 frequency of use,
 distribution of concurrent uses of ports of this
 module.
port : frequency of use,
 pointer to entry in joint distribution table
 (S and K only),
 list of functions,
 default function,
 boolean value indicating the right to add more
 functions to the list of functions.
field : frequency of use,
 pointer to entry in joint distribution table
 (uinstruction only)
 symbolic value (microinstruction only)
connection: frequency of use,
 multiplexer address,
 inhibit flag from $DELCONNECTION command.

Other tables in the MSS are:

1. Second order joint distributions for the
use of modules and storage ports.

2. Second order joint distributions for the use of the
microinstruction fields.
- All the above tables are.listed by $PRINTHARDWARE and
$TYPEHARDWARE.

3. Frequency of function uses, listed by $PRINTFUNCTIONS and
%TYPEFUNCTIONS.

4. Overlapping status for bitattributes.
5. Label

table.
6. Identifier table (not yet implemented).

_ 22 _

5. DECLARATION

5.1. Declaration of Modules, Ports and

5.1.1. Addition

- 24 -

Duplicates have the same functions and field. extend parameters of

the output port and the same trace option as the original module.

Fields are not copied.

b) MOREPORTS(ui) /NOMOREPORTS MOREPORT means: this module can have

ui more ports than declared. If ui is omitted, a default value of 26

is assumed. Maximum value of ui is 26. NOMOREPORTS is equivalent to

MOREPORTS (O). If no MOREPORT attribute is present, a default value

of O is used for modules declared in an ADDMODUL declaration and 26

otherwise. ui is decremented for each created port. If the present

number of ports of a storage S or stack K is insufficient, the

compiler generates a new one if the moreport entry is greater than

zero. The first character of the alphabetically last portname will be

incremented by one in order to generate a new name. c) MOREFCT /

NOMOREFCT

If functions for a port have been declared in ADDMODUL, the list

is assumed to be complete. Addition of more functions by appearance

in the program part is possible, if the user uses the MOREFCT

option. If functions have not been declared, the addition of

functions is allowed. If the user wants to stop the addition of

functions for such ports, he may use the NOMOREFCT attribute. The

list of functions influences the final statistics in two aspects: 1.

The computation of microinstruction bits

 - 25 -

2. Predeclared duplicates of operators may have different

 function sets. The allocator uses a specific 'duplicate'

only if the specified function is allowed for that port;

that means either the function must be present or the addi

tion is allowed.

d) AUTO/NOAUTO

The automatic execution of functions may be switched on and off with

AUTO and NOAUTO. .LOAD for register and storage destinations and .PUSH for

stack destinations are executed by default. This option only influences

counts of functions.

e) AUTOFCT (function)

This attribute defines the function which should be executed by

default when that particular port is referenced. Unimplemented at this

time.

f) INPUTMAX (ui)

This attribute limits the number of inputs to a multiplexer (field).

Preceding attributes .DAT, .ADR, .FCT, .CON, .MPX and bitattributes may

be used to select the field. If there are preceding bitnumbers/names, the

limitation will apply to these bits, otherwise they will be default

limits for all newly created fields. If no INPUTMAX is present, a number

of 4096 will be used.

ADDMODUL

B.FCT.BIT(3:0). NOMOREFIELDS.INPUTMAX(1);

Example 5.1.2

Automatic compiler stimulation for multiplexers which have reached

- 26 -

g) TIME (ui)

This attribute defines maximum delay times for fields. If

no field is specified, it is valid for all fields of an input

or output; otherwise it is valid for one field. Default value

is 1.

Field dependent run-time estimation is not yet implemented.

5.2 Standard Modules

5.2.1 Random Access Memory

 S "name" (<operand>)

 In software this means the value of a variable or the contents

of a memory cell with the effective address <operand> . The word

length is determined by the data type. This cell can be read

as a source or altered as a destination.

In hardware S represents a data output or input port of a

word-oriented RAM. The operand is connected to the address lines of

the RAM.

Parts of memory words can be addressed by attributes:

S "name" (<operand>) <attribute>

The allocator tries to find a suitable port if "name" does not

contain a portname.

 _ 27 _

5.2.2 Register

R "name"

defines a register. Every register is a module of its own with data input
and output. In contradiction to memories S, it t . >. stores only one word. The
modules must be identified by names. ~i. . Names can be declared in the
declaration part.

Registers are unnecessary from the viewpoint of algorithms. Therefore they

should be avoided on level 0 of MIMOLA. Exceptions are registers with special

functions, e.g. the program counter RP, I/O-registers.

Some registers can perform functions:

R "name" (<function>) The functions are executed synchronously to

the <esb> clock (see chapter 7.1.3). Only the function .LOAD is a

standard function, if R is a destination.

Functions can be coded by the value of an operand:

R "name" (<operand>)

The code must be declared.

Functions can be made depending on operands:

R "name" (<function> (<operand>))

By this e.g. the number of shifts can be made variable.

5.2.3 Stack

K "name"

defines a stack. An algorithm can use more than one stack. Therefore every

stack must be named. This can be done as in the case of registers. The

standard depth of a stack is infinite. A finite depth can be declares. The

expression K "name" addresses

 _ 28 _

the top of the stack while reading and the next free cell when

writing. By

K "name" (<operand>) all data in the stack can be

addressed.<Operand>= 0 addresses the top of the stack while reading

or writing. Positive values point down the stack. Writing into the

stack should be avoided. Using an <operand> , no stack function is

executed.

The only standard function .PUSH is executed automatically, if K

is a destination. All other functions can be declared in a

declaration part or be appearance in the program, as long as no

other declaration has appeared. Possible functions are:

 .PUSH, .POP, .NOPUSH, .NOPOP, .CLEAR, .POINT

Only the function .POINT must be explained. Sometimes the stack

pointer must be examined to estimate the load of the stack.

K "name" (.POINT) addresses the stackpointer. By this the

value of the address of the top of the stack can be read or

changed. The bottom of the stack has the address (b.

5.2.4 Instruction

I is the current instruction word and is an abbreviation of S

(RP). There is resemblance to the "instruction register" in

conventional structures, but I is no register and therefore no

"instruction fetch phase" is needed. Such a phase can be programmed,

if conventional cumputer structures shall be exactly simulated. By

I. <attribute>

every part of I can be addressed. These parts may be functions,

addresses, constants etc. Thus the microprogram can be inserted

into the expression.

- 29 -

As long as the precise partitioning of the microprogram word is not

fixed, the implementation by the instruction word can be expressed by:
I (<identifier>) and
I (<function identifier>)

5.2.5 Hardwired Constant

F "name"

is a single hardwired constant. The storage of several constants in a ROM

can be expressed by

F "name" (<operand>) The operand addresses the ROM. Single

constants and the contents of the ROM must be declared. Hardwired constants

are one possibility to implement constants (see chapter 7.5.2).

 - 30 -

Standard operations for all applicable data types are,

output type equal to input types:

 + - * / -a+b .AND .OR .XOR .NAND .NOR

Boolean output:
<_ >_ < > >_ <>

Other features are the same as in chapter 5.2.6.

5.2.8 Triadic Operator

C "name" (<function>)
C has 3 input ports named a, b and c. The assignment to the

operands is an extrapolation from that in chapter 5.2.7.

No standard functions are declared. Other features are the

same as those in chapter 5.2.6.

5.2.9 Network

N "name" (<function>)
denotes a network with any number of inputs, named a, b, ... A, B

... from the left to right. Operands are assigned in the same

order.

Functions are expressions of used input names and operators
 (AND)

 + (OR)

 - (NOT).

No brackets are allowed.

It is assumed that every control unit of a computer has

an instruction pointer unit (8). This unit performs the

switching in the case of conditional instructions and is

therefore equivalent to the operator td. The range of

functions can be altered by declarations.

5.3 Declaration of Connections

5.3.1 Addition
 Connections are added by the $ ADDCONNECTION command,

followed by a list of connections. The general form is

- 31 -

- 32 -

Example 5.3.2 : DELCONNECTION Va <- Rb ,

5.4 Data Paths Conventions

The standard declaration for data paths is: All inputs and outputs of all

modules are connected via multiplexer. The number of paths can be limited by

declarations (chapter 5.1.1) .

5.4.1 Statements

In the case of

<statement> _ <operand> | <source>

no data are transferred outside the source module. Generally statements

specify data paths.

<destination>::= <operand>

specifies a connection between the data output of <operand> and the data

input of <destination> , which must be a memory. The <operand> itself can

include the connection of several

 - 33 -

The assignment of the input and output ports is always given by

the position of the operands. The postfix-notation gives a simple

unique picture of all data paths. The switches for different data

paths are assumed to be multiplexers,assigned to the inputs of the

modules. It is possible to declare busstructures.

5.4.2 Destinations

All destinations are assumed to be edge triggered. This

means: the contents of a memory cell can be read and changed in

the same <esb>

5.4.3 Bit-to-Bit Assignment

Normally, when equal data types are coupled, bits with equal

bit-position are connected. The rightmost bit is always the

least significant bit. Its bit-position number is zero.

If data types with unequal word length are coupled, the

connection is always right justified. There is no truncation, if

the word length has not yet been specified.

Free input lines are set to zero, free output lines remain open

ended. Information can be lost. Correct type transformations must be

made by operators.

5.4.4 Attributes

All data paths can be split up into single bits, bitgroups or

bytes (8 bits).A constant selection can be made by attributes,

- 34 -

is a direct assignment. The expression may be composed of

several parts, separated by commas. See also Appendix A. The

meaning of these parts is:

<unsigned integer> <unsigned integer>

is a range of bits/bytes.

<unsigned integer > is the bit/byte-position

number of a single bit/byte. Allowed names are:

 BIT, BYTE;, MASK; BYTEMASK+

BIT and MASK address bits.

BYTE and BYTEffASK address bytes.

BIT and BYTE effect the position of the bits/bytes. All

selected bits/bytes are packed tight to the right bound of

the data path.

MASK and BYTEMASK do not effect the position of the bits/bytes.

The rules of chapter 5.4.3. have to be obeyed.

Two examples show the result of attributes to bit connections:

- 35 -

5.4.5 Distributors

V "name" marks a point on a data path. By

<operand> = V "name" this point is defined and can be

referenced in the same <esb>. V means no storage of data!

The main application of V is the identification of inter-

mediate results, which are used in different expressions in the

same <esb> . In hardware this simply means the parallel con

nection of several inputs to one output. V can be named. If

V is used in the declaration part it denotes a bus-structure

(see chapter 5.3.1).

5.4.6 Concatenation

<operand> * <source>

means the concatenation of all bits of the data output of

 <operand> with those of <source> . The result forms a new

data path, whose width is that of the sum of both elements.

The source forms the lower significant part of the word.

Example 5.4.2 shows this relation.

- 36 -

With V as <source> , even complicated connections can

be made.

 - 37 -

6. ASSIGNMENTS

The assignment part has little or no relevance to the design of

the hardware. It is needed only when micro programs shall be

generated. The assignment part is bounded by ASSIGNMENT

ENDASSIGN The assignment statement a:= b; means: b is assigned to

a. a and b may be lists. There are four kinds of assignments:

6.1. Identifier Assignment

<identifierlist> :_ <constant>

<identifierlist> is a list of scalar or array identifiers

separated by ' , ' . All identifiers in the list get the value

<constant>
.

6.2. Storage Map Assignment

<module> ._ <identifierlist>

This is an implicit assignment of the identifiers to the next free

storage cell of <module> , which is assumed to be a stack K or a

storage S. <module> may contain a start address or a constant range.

The right most identifier gets the lowest value.

- 38 -

6.3 Initial Value Assignment

<modules> :_ <constant> This assignment has influence only for

simulations and will normally be regarded as a comment. It means: all

or the specified part of the modules cells are assumed to hold an

initial value of <constant>.

6.4 Record Assignment

 <attribute> :_ <attribute list>

The attributes of the attribute list do not overlap each other

and as a whole are equal to <attribute>.

- 39 -

7. PROGRAM

7.1 Fundamental Semantics

MIMOLA is to be understood as a programming language and as a

language to describe hardware or synchronous automata functions on a

gate control level. Therefore we must notice the software and the

hardware meaning of language details.

The fundamental nonterminal symbol of the syntax is the

<elementary statement block> , short <esb> . It is composed by all

those <statement> 's, which are executed in parallel. The execution

of statements can depend on conditions.

The hardware meaning is: one <esb> describes completely one state

transition of all synchronous automata that are large and powerful

enough to accept all <esb> 's of the programs. To reduce the length

of the programs there exist some fundamental semantics:

7.1.1 All storage cells that contribute to the state of the automaton

are not changed except for those explicitly mentioned in the <esb>

and except for the program counter RP.

7.1.2 Unless otherwise determined the program is assumed to be

stored in a memory (see 5.2.4) with the program counter RP as a

pointer. RP is assumed to be set to the label of the next

 <esb> in the program, when no other assignments are made.

RP is affected by: GOTO, CALL, RETURN, DO, OD.

- 40 -

7.1.3 All statements of one <esb> are executed within one clock

period. Reading of, switching of and operations on data are assumed to

be network functions needing no clock. The clock changes the

information of the destinations,executes the functions of registers

and stacks and terminates the action of the statements by setting RP.

The clock is one edge of a clock puls and is synchronous for all

statements of one <esb> The clock is not periodic. Its interval

depends on the slowest statement in every <esb>

7.1.4 All resources and data paths that occur in one <esb> must be

available in parallel. The syntax makes no limitations as to the

number of resources or paths. The number can be limited by

declarations as a part of the definition of a special automaton. The

set of possible resources is defined by the standard declarations in

chapter 5.2.

7.1.5 Unless otherwise determined it is assumed that there

exists a control module. It must generate the clock, decode the

current program word to control the resources and data paths and

it must take into account the conditions. There exist no

sequential steps within any <esb> controlled by hard-wired or

firmware microprograms. The level of MIMOLA is therefore the

microprogramming level.

- 41 -

direct assignment between labels and memory addresses of microinstructions is

made by the MSS on the lowest level of MIMOLA or by the program loader.

Seven characters are significant for the label name.

During the design process the MIMOLA programs are often compiled from one

level n to the next lower level n+1. Every compilation divides several < esb>'s

into smaller ones. The label number space is extended by joining unsigned

integers at every change of the level. Thus the level can be evaluated from the

label structure.

7.3 Functions

The standard functions have been described in chapter 5.2. Special

functions have to be declared. It is assumed that the compiler knows the

code to control the modules.

Normally the function code is part of the instruction word I. This can be

expressed by

 <function> = I (<function identifier >)

In hardware it is possible to make a function depend on

conditions. This can be expressed by

IF <operand> THEN <function> ELSE <function> FI

 - 42 -

Multiple applications of the same function to registers and
stacks can be expressed by

<function> _ <function> (<operand>)
It has to be regarded that the multiple function must be executed
synchronously during one clock period. Chapter 7.1.3 has to be
obeyed. The result of <operand> must be of type < unsigned integer >

Example 7.3.1:
S(a)= V -> A(IF V -> A(<O) THEN - ELSE +
FI),
K1(.POP(3)),
R1(.SHIFTL(S(a)))

7.4 Identifiers
Identifiers are representatives of constants. After compiling

there should exist a list of the values of all identifiers. There are
two kinds of assignments:

7.4.1 Identifiers can be assigned a value in the assignment
part. These identifiers can be operands. Their values are
known
to the programmer.

7.4.2 Identifiers can be assigned a value by their appearance
in a program. Identifiers forming the addresses of memory
cells are typical examples. In this case the value of the
identifier is the address, not the contents of the memory
cell.

The only standard data structure is the array. Elements of
arrays can be addressed by

<array identifier> _ <identifier>[<operand>
[,<operand>)0*] There

exists no fixed scheme for the evaluation of effective addresses of
array elements. If array indices shall be compiled, array dimensions
must be fixed in the assignment part and an evaluation algorithm
must be declared in the macro definition part.

- 43

- 44 -

7.5.4 Dummy Source

X is a dummy source. It is needed, if an operand has no

influence but must be present to fit the syntax.

Example 7.5.1

S(a) / X -> B(-a) "dyadic operator executing a monadic

 operation"

IF a THEN X ELSE ... FI "dummy statement"

a / b -> BV(X).EQUAL "operator without function input"

7.6 Allocator Conventions

7.6.1 Default Replacement of Identifiers, Functions and

 Constants

Any constant, identifier or function, which is not removed by a

macro, is substituted by a reference to a field of the

microinstruction I. The symbolic name of this field depends on the

destination. The first letter reflects the type of the input: A for

address inputs, C for control inputs, D for data inputs and F for

- 45 -

- 46 -

- 47 -

7.6.4 Default Bitnumbers

If no bitnumbers/names are present in a description of a connection, the

allocator inserts default ones according to the following rules:

1. If I is the source, chapter 7.6.1 applied.
2. If there is no field at the source or destination, the

attribute .WORD is used.
3. If there is a field present, the field's bitnumbers will be

converted into attributes.
4. If there are several fields present, bitnumbers/names, which are not

overlapping (see chapter 6.4) are concatenated in the following
sequence: .WORD fixea bitnumbers .INT .REAL .BOOL user-defined bitnames
in the order of their appearance in the program Example 7.6.1

Assume:
S<A.DAT contains no field,
S<A.ADR contains fields BYTE () , WORD and USER-ATRB,
BALD > .DAT contains the non-overlapping fields OVFL and WORD.

 - 48 -

7.7 High Level Language Elements

Many algorithms use repetitions, conditional branches,

condition dependent execution of simple or compound actions,

functions and subroutines (procedures) to get economic and

structured programs. Therefore special language elements have been

incorporated in the HLL's and for the same reason in MIMOLA. The

MIMOLA elements are: GOTO, FOR FROM BY TO WHILE DO OD, WHILE DO

OD, IF THEN ELSE FI, CASE OF THEN FI ELSE ESAC, CALL, SUB, RETURN.

These elements differ in many senses from the elements in the

previous chapters. The semantics are a little bit different in

different languages and should not be fixed in MIMOLA to avoid a

restriction of the design space. There exists no unique hardware

equivalent of these elements. Thus a direct entry into the

hardware data structure is impossible. The designer has to define

algorithms that may replace the HLL-elements. These algorithms may

use special hardware structures, designed to execute the actions

of these elements, or may use the same hardware as the rest of the

program. In both cases the HLL-elements can be interpreted as

macros. Therefore we will treat these elements in chapter 8.5

together with suggested macro replacements.

- 49 -

8. MACROS

8.1 Use of Macros

8.1.1 Standard Macros

High-level language elements, e.g. FOR FROM ..., do not

generate a unique hardware replacement. These "standard macros"

have to be replaced by other language elements. This can be done by

the macro facility of MSS. The declaration of these macros has to

be done by the programmer or the designer. The designer can

experiment with different declarations and gains a great design

space. Chapter 8.5 explains the standard macros in more details.

The macros are identified by their "name" and may have para-

meters of different types. Since this macro is reduced to

<operand> and <operand> is used in many syntax rules,

user-defined macros are very flexible.

User-defined macros can be used as abbreviations for frequent

program constructions. Thus the program text can be kept short and

clear. The expansion will be defined prior to the application of the

macro. ("Application" in this context means the

 - 50 -

act of replacing a fitting program string by the declared

substitute).

Another use is the introduction of new HLL constructs which are

not standard. The programmer may have a certain idea of the

semantics, but wants to postpone the decision on, the best

implementation. Examples are synchronization primitives. Semaphore

operations can be introduced by

My (semaphore), Mp (semaphore),

monitor calls by

Monitor (entry,
parameters) .

8.1.3 Software and Hardware Replacements

During the design process situations may occur where it is

desirable or necessary to replace certain program constructs. It

may be the replacement of a complex operator module, e.g. a

floating point adder, by a sequentialalgorithm using only simple

operators. Another example is the introduction of a special

hardware module instead of a software structure that is used

frequently in order to increase the execution speed.

To meet these requirements, very flexible macro facilities

have been implemented in MSS. Independent of standard or user

defined macros nearly all possible program structures can be

replaced by others.

This powerful tool must be handled very carefully. The

- 51 -

The result of this declaration is: expression-1 will be replaced

by expression-2 as often as it is found in the original program.

Expression-3 will be inserted ahead of the elementary statement

block, where a replacement takes place.

expression-1 must be reducable to a nonterminal symbol except

100,101,102,105,106 (see Appendix F) by a syntax rule of the program

part (see Appendix B).

expression-2 must be syntactically correct together with its

context in its new place.

expression-3 must be one or more esb's. The labels of these

esb's must not have more than two characters (excl."L").

expression-2 and expression-3 may use parameters that have to

be introduced in expression-1. The names of these parameters are

valid only inside the defining macro.

 - 52 -

8.2.2 Parameters

The range of application of a macro can be increased by

parameters. In MIMOLA three different parameter types can be

used in macros: macroparameters, the "?" and special labels.

8.2.2.1 Macroparameters

&"name"' is a free parameter which can be used in a macro

declaration. During the syntax check of the macro declaration,

<operand> , <storage> , <register> , or <stack> are tested

instead of the parameter, because &"name" is no syntactical symbol.

The correspondence to one of the four nonterminals is not

remembered. Thus a parameter fits all terminals and nonterminal&

during the application of the macro.

If none of the four possibilities can be used to meet the syntax

in the declaration, a macro parameter can be bound to a definite

terminal or nonterminal, represented by its number in in Appendix F,

by

&"name". <unsigned integer> This assignment will also

be used during the application of a macro to a program string.

If a parameter is used several times in expression-1, the

assignments must be equal. In expression-2 and expression-3,

different assignments can be used. During the application the

assignment.corresponding to the place of the parameter in the

declaration.is valid.

- 53 -

- 54 -

Thus the digits changing most often are placed directly behind the "name".

This increases the significance of the generated names in the case of a

truncation (after 8 characters at the moment) of "name"s on the right side.

8.3 Controlled Application of Macros

8.3.1 RECMAC

Macros are applied during the syntax analysis process. This process

sequentially scans the program string. If a macro becomes applicable to an

already scanned string by a macro replacement, this cannot be detected in

the same pass. By the key "RECMAC" in the declaration those macros can be

marked, which shall be used in another pass. The key "ONLYRMAC" will

- 55 -

inhibit all macros declared with "MACRO". See e.g. example 8.8 .

8.3.3 Order of Macros

The application of macros is influenced by the order of their

declaration.

1. During the declaration of a macro Mi all prior declared matching

macros, not containing esb's, are inserted into Mi.

2. The macros are tested in the reverse order of their declaration.

This is important if two different macros fit in the same esb before the

application of the first fitting macro but not after it.

In both cases the block ranges are observed.

8.4 Application Rules

8.4.1 The Test

A macro fits a string in a program, if the syntax tree of expression-1

of the macro declaration is equivalent to the syntax tree of the string.

This equivalence is tested every time a rule is applied by the syntax

analyzer. The equivalence of macro parameters has been explained in

- 56 -

must be identical. Different attributes for equal fields are not

equivalent. If a port is declared in a macro, only this port

fits.

Local distributors V "name" (see chapter 5.4.5) will be

replaced by their definition prior to the test.

8.4.2 The Application

In the case of a positive test, the program string is re-

placed by expression-2. The new esb's in expression-3 are

inserted on top of the currently analyzed esb. No further test

is made in the expanded parts in this pass.

Labels of inserted esb's are automatically numbered as in the

case of a "?" (see chapter 8.2.2..2) to avoid double defined

label errors. The labels of the current and the first inserted

esb are exchanged. Thus the correct pointers to labels are

reconstructed.

8.5 Standard Macros .

The HLL elements of MIMOLA can be interpreted as macros.. The

replacement is not unique and depends on the exact semantics of

the element that is used in an algorithm and on the existing or

proposed hardware. The given example declarations are only

possible solutions. They have been included to describe the HLL

elements, to give ideas for macro declarations and to serve as

examples for correct macros.

- 57 -

- 58 -

Example 8.5

If different forms of setup statements exist in a program, it may be

necessary to. distinguish between different forms of condition tests. In

this case user defined macros for DO and OD must be used.

8.5.2.3 Updating and Return

At the end of a FOR loop the control variable must be updated and a jump

to the head of the loop occurs. The syntax of

- 59 -

8.5.4.1 Conditional Statement Block

The execution of statement blocks can be condition dependend. The

syntax is:

The semantics is the same as in other HLL's. The hardware realization of

conditional executions is normally a part of the control module of a

computer. Therefore no generally applicable macro can be given. In our

example 8.8 an IF THEN ELSE construction is split into two esb's, one

executing the THEN part, the other the ELSE part. The second macro seems to

be senseless, but if we observe chapter 8.3.3 we can

- 60 -

see that in this way the application of the first macro to already

split IF THEN ELSE constructions is prevented.

Example 8.8

8.5.4.2 Conditional Operands

If the THEN and ELSE; parts of a conditional statement block differ

only in one of the operands, this can be directly shown by applying the

condition to the operand itself. The syntax is

Example 8.9 shows an application. The semantics and the hardware are the

same for both statements.

Example 8.9 Conditional Operand

- 61 -

8.5.4.3 Conditional Functions

The same reason as in chapter 8.5.4.2 holds for condi-

8.5.6 Subroutines

The semantics of subroutines and procedures vary strongly between

different languages. Therefore only very general language elements have

been incorporated in MIMOLA.

Three general actions can be distinguished: the call, the parameter

handling and the return to the calling program.

are statements for subroutine or procedure calls without and with

parameters. Possible actions are e.g. save program status, jump to

subroutine head. The identifier points to the subroutine code. <operand>

is an actual parameter.

- 63 -

Example 8.12 is a simple subroutine mechanism. The return address is

pushed onto stack Kcall. The parameter values are pushed onto stack Kop in

the calling sequence and stored in memory locations by SUB. The parameter

lists must be of equal length. The example mainly demonstrates a

possibility to handle calls with different numbers of parameters.

 - 64 -

9. CONTROL LANGUAGE

9.1 General

The control language is used to start different language parts, to cause

typeouts and to set options. Commands may be input from any of the three

input channels: the INP(ut)-file, the LIB(rary)-file and the terminal. The first

command is read from the INP-file. Changing the input stream permanently is

done with the INSERT command. A breakpoint facility is supplied for temporary

command input from the terminal. Nonrecursive nesting of control commands is

possible because a new control command is expected if there is a $-sign in the

parameter string of the last command.

Breakpoints allow interaction by the terminal operator. A breakpoint is

inserted by the user with a $BREAK command or by the MSS under the

following conditions:

1. a declaration part has been completely analysed,

2. the DISPLAY option is true and an <esb> has been analysed,

3, the SELF option is false and the hardware is not sufficient to

execute the current <esb> ,

4. a DEBUG test is true,

5. a WAIT condition is acknowledged with a $-sign,

6. an internal error has been found. Breakpoints (except case 6.) are

ignored if the BATCH option is true. At breakpoints the operator may inform

himself of most of the MSS data structures, including structures which

- 65 -

are useful during the program analysis (e.g. the analyser stack, the current

connection etc.).

When the MSS expects a control command, all special characters preceding

a command (except - and @) are ignored. Therefore a $-character may always

precede control commands for clarity. Prompt characters, sent to the terminal

whenever the computer expects an input, may be sent back.

Strings enclosed in "" are treated as comments.

Because multiple successive commands may be input at breakpoints, a

special command is required which returns control to the original language part.

This is done by the RESUME command. In order to reduce necessary writing,

any special character except (blank), - and @ preceding (end-of-line) is treated as

a RESUME command. On some installations the prompt character sent to the

terminal automatically may be used as the RESUME command.

 Nesting of control commands may either result from a

 construction or a breakpoint. Normally, nesting does not

go beyond level 3:

 level 1: normal control flow

 level 2: a) $ -constructions within MIMOLA language parts

 b) breakpoints

 level 3: breakpoint in level 2 case a).

If after a long MSS run an important breakpoint has been

reached, the user may increment the current level by typing

BREAK if he wants to be safe against a single, erroneously

typed RESUME.

- 66 -

Decrementing the nesting level will cause the continuation of

analysis at the next lower level. For breakpoints this will also

reset the input stream to the old input channel, except if an INSERT

command has been written. If the current level is maintained after

the execution of a command, a new control command is expected.

RESUME, CORRECT and GO will decrement the current nesting level.

Nesting levels >1 are also decremented if the input stream is not

the terminal or after an INSERT command. Therefore no level 2

command is expected after e.g. a $ FACTOR command in the INP-file.

The same command from the terminal requires a RESUME in order to

leave level 2 because of the multiple successive command feature for

the terminal. No control command is expected after a level 2 INSERT.

A level 1 insert, however, may not be decremented because this would

cause an EXIT to the operating system. Fig. 9.1 shows a flow diagram

for control commands.

In order to exclude nestings which may cause MSS errors, the set

of allowable control commands depends on the context. The user can

get a list of allowed commands with the KEY command.

- 67 -

 - 68 -

9.2 Command Description
9.2.1 General Commands
PROGRAM Start of a program part. Ends with END or
 ENDSUB.
ASSIGN Start of an assignment part. Ends with
 ENDASSIGN.
LIST Copy source input to OUT-file. Normally
 only in the case of errors the last two
 source lines are copied to the .OUT-file
 If the user wants to have a better over-
 view of the locations of errors or if he
 wants to document the complete source to-
 gether with the hds listing, he should
 use this command.
DISPLAY (default) If the DISPLAY option is on, the MSS shows
/ each completed <esb> at the terminal and
NODISPLAY ,inserts a breakpoint. The commands can be
 used to switch the option on and
 off.
WAIT In the wait mode the MSS asks the terminal
/ operator to type in an acknowledgment
NOWAIT (default) character after the writing of error
 messages to the terminal. The MSS expects
 a control command if a $ -sign is input.
BATCH The BATCH command includes the NODISPLAY,
 NOWAIT and SELF commands and additionally
 will cause breakpoints to be ignored.
 No messages will be written to the
 OUTPUT-file (the terminal) if the MSS
 runs in the BATCH mode. The allocator
 will not ask for new microprogram fields
 if the number of fields is restricted and
 not sufficient. See chapter on allocator
 conventions.

- 69 -

 - 70 -

RESET Sets all hds frequencies to zero and
 starts reading from the beginning of the
 INP-file again. This command is used to
 obtain a second pass over the entire
 program after e.g. certain connections
 have been marked with DELCONNECTION
 (see below). This allows a better opti-
 mization by the allocator.
PRINTSTACK / The analyser stack is dumped into the
TYPESTACK OUT-file or to the terminal. PRINTSTACK
 is executed automatically when syntax
 errors are encountered. The dump contains
 the internal numbers of the base symbols
 and names, numbers and some special charac-
 ters. If the basic symbol is a reserved
 word, this is also written. A right arrow
 points to the symbol the analyser looks
 at. The user has to use the symbol table
 in Appendix F for recoding the basic
 symbols. All non-terminal symbols have
 codes >= 100. All terminals, which consist
 of only one character, use their ASCII
 number as code.
DEBUG <character> This command is used for debugging
 MSS. <character> is added to a
 test set. The MSS contains tests which
 will produce a certain action if a
 certain character is included in the test
 set. Initially the test set is empty.
 Some of the actions are:

 - 71 -

 character action
 1 list intermediate connec-
 tion descriptors
 4 set breakpoints within allo-
 cator execution
 7 include connections to
 CONTROL inputs
 set breakpoints within
 compiler execution
DEBUGOFF <character> <character> is subtracted from the
 test set.
DECLARE, ENDDECLARE Ignored, provided for compatibility
 with older MSS versions.
9.2.2 Macro Commands
MACRO Start of macro definition. Ends with
 ENDMACRO.
RECMACRO Same as MACRO except only RECMAC
 macros are inserted if the command
ONLYRMAC has been given.
BLOCK Defines the beginning of a range of
 macro definitions. The following macros
 are valid only until a corresponding
BLOCKEND has been found. These commands are
 intended for the easy substitution
 of variable declarations of high-
 level block-oriented languages.
9.2.3 Compiler Commands
NOGENERATE This option disables the internal
 storage of a syntax tree and disables
 all actions which rely on this tree.
 With the NOGENERATE option no macro
 can be inserted, <esb>' s cannot
 be splitted and no GEN-file can be

- 72 -

generated. The allocator and
statisti-
cal analyser, however, are
unaffected.
This option saves core and time.
ESB If a connection error (insufficient
hardware) occured in an <esb> ,
the compiler will insert a break-
point at the end of the esb if
the SELF option (see below) is
false.
The user then may use ESB to get a
listing of the current esb at his
terminal. He may use
CON to show the connection errors.
CORRECT will start the splitting of <esb>'s
containing connection errors,

 - 73 -

 temporary cell if one reference causes
 a connection error. MINHLP reduces the
 number of temporary cells in some
 cases.
NFULBUF With this option the compiler buffers
 operands after CASE and IF only if it
 is necessary. In the default case
 these operands may be-buffered in
 order to free hardware for the
 following statements.
9.2.4 Commands Referencing the Data Base
ADDMODUL This command declares modules, ports,
 fields and functions.
 See chapter 5.1.1 for full explanation.
DELMODUL Deletes modules. cf. chapter 5.1.2 .
ADDCONNECTION Create connections . cf. chapter 5.3.1 .
DELCONNECTION Mark connection as not usable.
 cf. chapter 5.3.2 .
PRINTHARDWARE, PH Dump the hds into the OUT-file.
 Appendix E shows the format of this
 listing.
 It contains the following information:
 1. frequency of module uses
 This information is required in order
 to select all the modules which shall
 be deleted in the next design step.
 2. frequency distribution of the
 number of ports required in <esb>'s
 It is counted, how many times parallel
 execution of an <esb> requires n
 (O<-n<_9) ports of a storage module.
 The number of concurrent uses of
 different ports of the same module
 determines the number of independent
 ports in the final design.
 3. frequency of use of a parti-
 cular port
 This information determines the uti-
 lization factor of particular ports.

- 74 -

If function, address and data input
are used, the data input has priority
over the other inputs.

PRINTFUNCTIONS, PF List used and predeclared functions
TYPEFUNCTIONS, TF together with the frequency of
 their use and the names of ports,
 which can execute them. Listing
 goes to the OUT-file for PRINT-
 FUNCTIONS and PF,and to the terminal
 for TYPEFUNCTIONS and TF.
9.2.5 Allocator Commands
NOLOWERLETTERS This option causes the allocator to
 use upper case letters instead of lower
 case letters as portnames of B, C
 and N modules.
FIRSTPORT This option causes the allocator to
 use the alphabetically first free
 port of an S or R module while
 looking for a suitable port. In the
 default case, the allocator tries
 to find a port where the required
 connection already exists.
CURHSTAC The allocator lists the currently
 valid intermediate connection
 describing structure at the terminal.

 9.2.6 Statistical Analyser Commands
The analyser counts all uses of
hardware
with a factor f = fac * fact * fac3
.
Default value of all factors is
one. The
following commands set the
factors to
other values:
FACTOR <n> Set fac to n.
FACTOR2 <n> Set fact to n.
FACTOR3 <n> Set fac3 to n.
n must be decimal. Changing of
the
factors takes place at the
beginning
of the <esb> following the
control
command.
NOFACTOR Disable all following FACTOR, FACTOR2
and FACTOR3 commands. This
command is
useful if unweighted
informations are
desired.
JOINT Compute relative joint distributions
of module and storage port uses
and
of microinstruction field uses.
Computation starts with the first
completed <esb> after this
command.
This option requires about 12.8
Kbytes
on the heap. Listing is
requested
with the PRINTHARDWARE
command.
9.3 Example
The following example shows how a small program is
analysed and how the LIB-file may be used to contain
common module declarations, assignments and macro definitions.
It is important to see how the input stream is switched
between the various input channels. Note that breakpoints
for terminal interaction are automatically inserted after
the module declaration (because BATCH is false), and after
<esb>'s are analysed (because DISPLAY is true by default).

78

- 79 -

10. EXAMPLES

10.1 Output Listing Examples

The following short program is used to show the format of the

output files

Fig. 10.1.2

One memory port was missing in the original esb's. Register

RHLP-101 is used as a substitute. The dump routine appends the

names of the used ports to the module names.

_ 80 _

The COD-file contains symbolic

Enable fields are not considered at present. Therefore the

first esb only needs an address field for storage port SA>A.

This field is named ASAA by default and is set to zero.

Estimated run time is two units : one unit until data from SA

is valid and one is required as data set up and hold time for

RHLP and for the reading of the next microinstruction. The

second esb requires three time units because the data from

SA>A(2) have to propagate through B1. The write cycle for SA<B

is assumed to be one time unit because a constant address is

used. The second esb uses three microinstruction fields, two

for addresses and one for the function code of B1.

The OUT-file contains the hds listing

- 81 -

_ 82 _

Fig. 10.1.4

Compare this listing with the general form in Appendix E and

with the description of %PRINTHARDWARE in chapter 9.2.4.

10 2 Computation of a Bessel Function

The following FORTRAN subroutine from the IBM scientific

subroutine package computes the J-Bessel function

- 83 -

- 85 -

distributors can be inserted.

Fig. 10.2.3 shows module declarations which introduce a limit to

the allowable hardware. Macros are declared in order to use a

compare unit with simultaneously accessible comparison results

(e.g. SN 7485) instead of a compare unit with a function input.

- 86 -

- 87 -

 _ 88 -

REFERENCES
(1) G. Zimmermann, Report on the Computer Architecture Design
 Language MIMOLA, Bericht Nr. 4/77 des Instituts fur In-
 formatik and Praktische Mathematik, Kiel, 1977
(2) P. Marwedel, The MIMOLA Design System: Detailed Description
 of the Software System, 16th Design Automation Conference
 Proceedings, 1979
(3) U. Zimmermann, Ein Compiler zur Sequentialisierung von
 MIMOLA-Programmen, Diploma-Thesis, Kiel, 1979
(4) R. Hollenbach, Ein Macro Prozessor fur das MIMOLA Software
 System (preliminary title), Diploma-Thesis (in prepa-
 ration), Kiel, 1979
(5) G. Zimmermann, Eine Methode zum Entwurf von Digitalrechnern
 mit der Programmiersprache MIMOLA, Informatik Fachbe-
 richte 5, 465-478, Berlin, 1976
(6).G
.

Zimmermann, The MIMOLA Design System: A Computer

 Aided Digital Processor Design Method, 16th Design
 Automation Conference Proceedings, 1979
(7) M.R. Barbacci, G.E. Barnes, R.G. Lattell, D.P. Siewiorek,
 The ISPS Computer Description Language, technical report,
 Computer Science Department, Carnegie-Mellon Univer-
 sity, Pittsburgh, P.A.,1977
(8) S. Wendt, Models and Structures for Microprogramming,
 EUROMICRO Symp. Microprocessing and Microprogramming,
 Venice, 1976

- 89 -

- 90 -

- 91 -

- 92 -

- 94 -

- 95 -

- 96 -

- 97 -

- 98 -

- 99 -

- 100 -

- 101 -

- 102 -

- 103 -

- 104 -

- 105 -

APPENDIX C

Additional Rules Part 1

These rules are necessary for a correct hardware operation.

1.1 In one <esb> the contents of a storage cell may change by

one assignment (as a destination) or by one function only. A

function parallel to an assignment is allowed, if it doe: not alter

the contents of the cell.

1.2 GOTO, CALL, RETURN, DO, OD alter the contents of the

program counter RP. Rule 1.1 must be obeyed.

1.3 In conditional statements rule 1.1 must be obeyed in all

statements, which depend on nondisjunctive conditions.

1.4 Distributors must be defined before they are used.

Additional Rules Part 2

These rules are necessary for meaningful programs.

2.1 No arithmetic type transformations or checks are made in

arithmetic expressions.

2.2 The operands (conditions) after IF, WHILE must be of

the type boolean (1 bit).

2.3 Loops must be complete. Minimal loops must contain:

 FOR DO OD or

 WHILE DO OD

2.4 The identifier in D (<identifier>) must be the

control variable of the current or of one outer FOR - loop.

2.5 The FOR - loop, which is referenced by D (<unsigned

integer >), must exist.

- 106 -

- 107 -

108

- 109 -

- 110 -

- 111 -

- 113 -

