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1. INTRODUCTION 

This Revision 1 replaces the original report (1). The syntax of MIMOLA 

has been slightly changed and extended. The hardware declaration and 

assignment parts have been redesigned. A MACRO feature has been added. A 

description of the hardware database and the control language of the MSS 

(MIMOLA Software System) has been added (2,3,4). 

MIMOLA is a computer hardware description language (CHDL) and a programming 

language. It has been developed for the following applications: 

a. Nonprocedural description of hardware (especially computer hardware), 

for declarations (e.g. appl. b.-d.), for education and documentation 

b. Functional description of digital systems, procedural, for top-down 

design, education and documentation 

c. Algorithmic description of digital processors for optimizing top 

down hardware design 

d. High-level or intermediate microprogramming language for p-code 

generation 

e. Modelling of algorithms or machine instructions on a state 

transition level for measurements and comparisons. 

Other applications are possible. It is not the task of this REPORT to 

show how problems can be solved using MIMOLA. In chapter 2 some examples 

are explained to show the effectivity of MIMOLA. More details can be found 

in (5,6) or will be published. 

At this point we will summarize some features of MIMOLA to give a 

frame for the details in the following chapters. 
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1. The hardware is mainly described on the register transfer 

level. Lower levels (e.g. the gate level) can be described, but the 

notation will not be optimal for this purpose. All modules that are 

of interest. in the construction of computers today and in the near 

future, have been included in MIMOLA as language primitives. 

Language extensions to new modules can be made by macro definitions 

or syntax extensions. Thus MIMOLA supports mainly modular and 

structured hardware solutions with a small number of different 

modules and simple interfaces, but admits also sophisticated special 

structures for unusual problems. 

 
 

2. The functional description level is strictly the state 

transition level of a synchronous automaton. This is normally 

called the microprogramming level. Thus a very close connection 

between programs and hardware is achieved. 

 
 

3. Parallelism or concurrency can be expressed in the range 

of one state transition. Besides this constraint the limits 

of parallel execution are given by the hardware 

features only. The execution of parallel or spatial sequential 

operations is asynchronous , as long as no states are changed. 

Thus concurrent statements need not be order-invariant (as e.g. 

in ISPS ( 7 ) ). 

This means that all set and store operations are executed 

synchronously, thus avoiding racing problems. All other operations 

are thought to be executed by networks with only one permanent state. 

Asynchronous feedbacks are prevented by the syntax of MIMOLA. 
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In some cases operations are too complex to be executed by 

a network with a reasonable amount of hardware. A compromise can 

be found by admitting the modules to have internal states not 

visible to the outside. The activity of "impure" modules has tc 

be controlled by additional signals. It is assumed that the control 

unit generates an execution sequence as in a data flow graph. 

Thus no synchronization problems will arise. 

 
 
 

4. Asynchronous parallelism including more than one state transition 

have been excluded as a language primitive. Further investigations are 

necessary to find a general solution for expressions of this kind on the 

register transfer level. 

 
 
 

Asynchronous parallelism on the processor level can be expressed by 

distinct MIMOLA programs with appropriate synchronization macros. As long as 

no method exists to distribute algorithms on more than one processor 

automatically, our design methods are sufficient to desiqn and optimize one 

processor at a time. 

 
 
 

5. For the use of MIMOLA as a high level programming language a macro 

facility has been included. Thus expressions are allowed that cannot be 

directly or uniquely be built in hardware. 

Standard macros like IF.. THEN ..., CASE, FOR.... CALL are parts of 

the syntax. The semantics is assumed to he near to the usual one. The 
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MIMOLA to his ideas or to a special HLL. 

 
 

Additional user macros can be used to extend the language, to 

introduce unusual constructions (e.g. synchronization primitives). 

Thus experiments with different macro-replacements are possible. 

 
 

6. Data types have been included only as far as they concern the 

hardware. This is due to our main applications b. and c. Words of 

different sizes, fields of words and concatenations of words or 

fields are the only data structures in MIMOLA that can directly be 

translated into hardware. 

Array element references are included as a standard macro. Field 

declarations can be used for PASCAL RECORD-fields. Distinctions between 

different scalar data types can be expressed by different memory module 

names and different operator functions. Different memory names can also 

be used to express a difference between local and global variables. 

This represents no limitation for the hardware design space, since 

modules with different names can be easily merged by an edit process. 

 
 

7. As CAD systems tend to become too large and inefficient, a 

LR(1) grammar (Appendix B) has been chosen with additional 

restrictions to simplify the syntax analysis. 

 
 

These features could not be found in any other language. This 

is the only reason for the definition of a new language. It was 

originally written for our own research. But since our 
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MSS is written in PASCAL, it can be run on many installations. This may 

encourage other groups to use MIMOLA together with MSS. 



 
 

 

2. APPLICATIONS 

MIMOLA was designed as a tool. Therefore examples for the applications 

listed in Chapter 1 are given. They are partly selfexplaining. For details 

refer to the appropriate chapters in this report. 

2.1. Nonprocedural Description of Hardware 

The simple processor in fig. 2.1 can be expressed by the DECLARATION 

in example 2.1.1 

Fig. 2.1 Simple Processor 



 

 

- 

Example 2.1.1 : Declaration of the Processor in Fig. 2.1 

Besides some additional informations, the description in example 2.1.1 

has no value of its own, because Fig. 2.1 gives a clearer view of the 

structure. In the MIMOLA design systems hardware descriptions are used as an 

input form for computer aided designs and transformations. The DECLARATION 

can be used to show that the processor in Fig. 2.1 is able to execute a given 

set of functions. The MSS would give an error output otherwise. It can also 

be used to translate algorithms to microprograms for this processor. 



 

 

 

Another way of hardware description is of more interest: the 

definition of upper limits in the design space (Example 2.1.2). 

The meaning is: one memory SM with a maximum of 6 ports is the 

only memory. No more than three dyadic operators are allowed, B3 

with a limited function set. All other recources are not limited. 

This uncomplete description is the normal way to interact with 

the MSS process. 

2.2. Functional Description 

A computer can well be characterized by a description of its 

machine instruction set. Only a part of the hardware is visible in 

this description. The hidden part is of no direct importance to 

the function the user of the computer sees. This "functional 

description" can be formalized by a CHDL. Due to our familiarity 

with programming languages procedural descriptiors are more 

natural to express sequential microprogram steps or state 

transitions than nonprocedural ones. The description level depends 

on our purpose. 
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Example 2.2.1 shows a high level description of a MOTOROLA 

M6800 microprocessor instruction. It is sufficient for an 

ASSEMBLER programmer to understand the function of the 

"store accumulator A indexed in memory, address m". In a 

design process this description opens the greatest design 

space. 

Example 2.2.2 gives more details about the instruction format and the 

program counter RPC behaviour. 

In Example 2.2.3 the instruction is resolved in 5 microstatements. This 

might be the execution sequence of the M6800 and a description of all 

instructions of the M6800 in this manner would lead to a structure very 

close to this microprocessor. 
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It can be seen from these examples, how useful a functional 

description of a computer in MIMOLA may be in documentation and 

education. But every level can also be used as an input to the 

MSS to find different hardware structures. These will meet the 

requirements correctly and can be optimized with different 

constraints and goals. 

2.3 Algorithmic Description 

It has been shown in 2.2 that different description levels are 

possible with one language. without passing a sharp border we can 

increase the level of example 2.2.1. User problems seldom bother with 

details like data storage in registers. Normally transformations are 

applied on variables or more general data structures. The translation 

to register load and store operations is a necessity due to the lack 

of more powerful or simply suitable instructions. 

If we want to design optimal structures from the users view, we 

must start on the users level. Problems can only be solved by 

computers using algorithms. Therefore a description on the 

"algorithmic level" is the main application of MIMOLA. Example 

2.3.1 shows a short program in three different languages. The 

postfix-notation of MIMOLA may be unusual, but the correspondences 

can be found easily. The differences to example 2.2.1 are only 

gradual. But the point of view differs: 

Example 2.2.1 describes the real function of the hardware. The 

only uncertainty is the probability of occurance. All functions 

can be listed completely. 
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Example 2.3.1 shows a possible function. We can estimate the 

probability but we cannot give a limited list of all algorithms. 

This is an additional degree of uncertainty. It can partly be 

overcome by using large samples to be able to calculate "precise" 

mean values. Due to the lack of knowledge about user behaviour and 

therefore the difficulty of giving an exact task description of 

the design object, "precise" is very relative. 

Large program samples ask for a descriptive language with 

high-level language features. This is an unusual demand for 

CHDL's but had to be met by MIMOLA. 

A set of algorithmic descriptions define an automaton or 

hardware structure. The microinstructions of these programs cause 

state transitions of this automaton. Different automatons can be 

found by transforming these programs. On the other hand, manual 

changes of this automaton (by declarations, see 2.1) can cause 

transformations of the programs to preserve the ability of 

execution. 

Thus the hardware can be tailored to meet constraints and a 

proof is given at the same time about the correct execution of 

the programs on this hardware. Since the programs form the task 

description, the correctness of the solution can be proven. 

To find an optimum, the variations of the hardware are not 

done arbitrarily. As the design space is too large to-try all 

possibilities, occurence probabilities are calculated for all 



 

resources (e.g. modules, connections, instruction word fields) to guide 

the variations. 

This is a very short description of our design method. It is implemented 

to a large extend in the MSS (MIMOLA Software System). The use of 

functional descriptions (Chapter 2.2) is a special case of the method. A 

better description is (6). 

2.4 Microprogramming Language 

A welcome byproduct is the possibility to use MIMOLA as a high-level 

microprogramming language. This is due to the fact that the state transition 

level is a basic language feature and is preserved during all 

transformations. For all MIMOLA programs an automaton or hardware structure 

exists that can execute the microstatements of the programs without further 

transformation. As already mentioned in 2.3 a change of the automaton causes 

a program transformation. A complete declaration of a computer structure (see 

chapter 2.1 ) can be seen as a change of this kind. Thus the MSS will respond 

with transformed programs executable on this structure. Since these programs 

describe state transitions, they contain the microcode in a special form. 

Some decoding and software tasks like storage management have to be added to 

change the MSS to a microprogram compiler. This application is under 

investigation. 
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3. SYNTAX 

The syntax of MIMOLA is defined in two ways. The user can refer to the 

syntax diagrams in Appendix A. The syntax analyzer of the MSS (MIMOLA 

Software System) takes a production system in Backus notation, listed in 

Appendix B. It is an LR(1)grammar. 

 Additional rules are listed in Appendix C. They are used 

by a preprocessor in front of the syntax analyzer. 

Part 1 is necessary to guarantee correct hardware functions. 

Part 2 is additionally required to suppress meaningless programs. 

  A violation of theses rules does not necessarily lead to 

  hardware errors. 



 

 

assignment language, declaration language, macro language, program language. 

The grammars of these languages differ only slightly. The differences are 

marked in the syntax diagrams and the list of rules and will be explained in 

the following chapters. 

A MIMOLA string may contain a sequence of different language parts. Fig. 

3.1 shows the endsymbols. 

- 15 - 

State Control key Endsymbol 
Assignment ASSIGN ENDASSIGN 
Declaration ADDMODUL / , 
 ADDCONNECTION  
Macro MACRO ENDMACRO 
Program PROGRAM END / 
  ENDSUB 

 

Different language parts may be nested either by writing a $-sign into the 

current source string or by using preprogrammed breakpoints (see chapter 

9.1). Both conditions cause MSS to expect a (nested) new command key. 

Example 3.1 gives valid combinations of control commands. 
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The set of allowed control commands depends on the context. It 

is not allowed to put two or more identical control commands in 

one nesting hierarchy (e.g. a PROGRAM part may not contain a 

PROGRAM command). 

Assignment parts provide means to define software equivalences 

with no direct influence on the hardware. They are tools for 

program structuring and microcode generation, syntax analysis 

starts after "ASSIGN". A correct assignment part can be reduced 

to the assign-axiom, when the endsymbol "ENDASSIGN" has been 

found. If equivalences are not changed by other assignments, they 

are valid until exit from MSS. 
 
 

Declaration-parts are used for unprocedural definitions or 

changes of hardware structures. For correct parts a syntactical 

reduction to the declaration-axiom is possible, when the 

endsymbol "; " has been found. Hardware structures are valid 

until exit from MSS if they are not changed by 
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ADDMODUL and ADDCONNECTION commands or deleted with DELMODUL and 

DELCONNECTION commands. 

The program parts contain the algorithmic or functional descriptions. 

Program parts generate hardware descriptions and statistical analyses if 

applied to the MSS. Program parts may be subdivided in main program 

parts, enclosed in BEGIN ... END, and subroutines enclosed in SUBROUTINE 

... ENDSUB. The syntax analysis is separately applied if these parts are 

disjunctive. Nested subroutines are analysed together with the enclosing 

program. 



 

4. HARDWARE DATA STRUCTURE 

The MSS stores all information about the available hardware 

together with the statistical information in a hardware data 

structure (hds). The structure is similar to the network model of 

data bases. 

Most of the entities are hierarchically ordered: 

- 18 - 

4.1. Group, Module All modules with the same initial letter 

form a group. 

The MSS  recognizes the following groups: 
A monadic operator, 
B dyadic operator, 
C triadic operator, 
D Do - Loop - variable storage, 
F hardwired constant, 
I microinstruction, 
K stack, 
N network, 
R register, 
S storage (RAM), 
V non-stored result. 

 

4.2 Port Input 

 A module has at least one port. All input and output is  

done 

via ports. There are input ports, output ports and  

bidirectional 

ports: Portdirections may be specified by ' < ', ' > ' or '<  



a fixed number of ports (e.g. dyadic operators have three: two for input and 

one for output); others have a varying number of ports (e.g. random access 

memories). There are certain limitations to the set of allowed portnames and 

directions, depending on the group which the module belongs to: 

- 79 - 

A, R, V : no  port-name (blanks), 
F, I, D : no  port-name, only output (>), 
S, K : no  restrictions, 
B . >,  <a, <b , 
C >,  < a, <b, < c, 
N >,  <a, <b, <c, , <z. 
 

The control language command NOLOWERLETTER changes the above lower case 

letters to upper case letters. 

Each port has up to four inputs or outputs: a function input, an address 

input, a control input and a data input or output. They are selected by the 

reserved attributes .FCT, .ADR, .CON and .DAT. The latter is assumed by 

default. 

4.3. Field 

Inputs and outputs have fields. These may be ranges of bitnumbers or 

attributes which stand for unassigned ranges of bits (called 

bitattributes). Any attribute which is not a predefined attribute, is 

considered to be a bitattribute. The bitrange of a bitattribute can be 

defined in the ADDMODUL declaration. 

Input fields can be viewed as multiplexers if there is more than one 

connection for a field. In this case the field has an associated 

multiplexer address input field which the user can select with the .MPX 

attribute. 
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4.4. Connection 

Connections in their most general form are concatenated subranges of data 

fields of outputs. Connections are the hds representation of bundles of wires 

connected to a destination. For example the block diagram of Fig. 4.4.1 is 

transformed into the nodes of Fig. 4.4.2. 

Fig. 4.4.1 Hardware Block Diagram 

The hds description of connections contains independent ranges for source- and 

destination bits. See chapters 5.3. and 5.4. for additional information. 

4.5. Data Structure Entries 

The following is a list of some of the entries in the just described 

hierarchical part of the hds: 
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group : boolean value indicates whether or not a 
 module of this group has been declared in the 
 declaration or not. 
module : number of possible duplicates, 
 pointer to joint distribution table, 
 number of additional ports allowed, 
 frequency of use, 
 distribution of concurrent uses of ports of this 
 module. 
port : frequency of use, 
 pointer to entry in joint distribution table 
 (S and K only), 
 list of functions, 
 default function, 
 boolean value indicating the right to add more 
 functions to the list of functions. 
field : frequency of use, 
 pointer to entry in joint distribution table 
 (uinstruction only) 
 symbolic value (microinstruction only) 
connection: frequency of use, 
 multiplexer address, 
 inhibit flag from $DELCONNECTION command. 

 

Other tables in the MSS are: 
 

1. Second order joint distributions for the 
use of modules and storage ports. 

2. Second order joint distributions for the use of the 
microinstruction fields. 
- All the above tables are.listed by $PRINTHARDWARE and 
$TYPEHARDWARE. 

3. Frequency of function uses, listed by $PRINTFUNCTIONS and 
%TYPEFUNCTIONS. 

4. Overlapping status for bitattributes. 
5. Label 

table. 
6. Identifier table (not yet implemented). 
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5. DECLARATION 

5.1. Declaration of Modules, Ports and  

5.1.1. Addition 
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Duplicates have the same functions and field. extend parameters of 

the output port and the same trace option as the original module. 

Fields are not copied. 

 
 

b) MOREPORTS(ui ) /NOMOREPORTS MOREPORT means: this module can have 

ui more ports than declared. If ui is omitted, a default value of 26 

is assumed. Maximum value of ui is 26. NOMOREPORTS is equivalent to 

MOREPORTS (O). If no MOREPORT attribute is present, a default value 

of O is used for modules declared in an ADDMODUL declaration and 26 

otherwise. ui is decremented for each created port. If the present 

number of ports of a storage S or stack K is insufficient, the 

compiler generates a new one if the moreport entry is greater than 

zero. The first character of the alphabetically last portname will be 

incremented by one in order to generate a new name. c) MOREFCT / 

NOMOREFCT 

If functions for a port have been declared in ADDMODUL, the list 

is assumed to be complete. Addition of more functions by appearance 

in the program part is possible, if the user uses the MOREFCT 

option. If functions have not been declared, the addition of 

functions is allowed. If the user wants to stop the addition of 

functions for such ports, he may use the NOMOREFCT attribute. The 

list of functions influences the final statistics in two aspects: 1. 

The computation of microinstruction bits 
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2. Predeclared duplicates of operators may have different 

 function sets. The allocator uses a specific 'duplicate' 
 

only if the specified function is allowed for that port; 
 

that means either the function must be present or the addi 
 

tion is allowed. 
 
 
d) AUTO/NOAUTO 

The automatic execution of functions may be switched on and off with 

AUTO and NOAUTO. .LOAD for register and storage destinations and .PUSH for 

stack destinations are executed by default. This option only influences 

counts of functions. 

 
 
 
e) AUTOFCT ( function  ) 

This attribute defines the function which should be executed by 

default when that particular port is referenced. Unimplemented at this 

time. 

 
 
f) INPUTMAX (ui) 

This attribute limits the number of inputs to a multiplexer (field). 

Preceding attributes .DAT, .ADR, .FCT, .CON, .MPX and bitattributes may 

be used to select the field. If there are preceding bitnumbers/names, the 

limitation will apply to these bits, otherwise they will be default 

limits for all newly created fields. If no INPUTMAX is present, a number 

of 4096 will be used. 

 
 

ADDMODUL 
 

B.FCT.BIT(3:0). NOMOREFIELDS.INPUTMAX(1); 
 
 

Example 5.1.2 

Automatic compiler stimulation for multiplexers which have reached 



 

 

- 26 - 

g) TIME (ui) 

This attribute defines maximum delay times for fields. If 

no field is specified, it is valid for all fields of an input 

or output; otherwise it is valid for one field. Default value 

is 1. 

 
Field dependent run-time estimation is not yet implemented. 

5.2 Standard Modules 

 
 
5.2.1 Random Access Memory 

 S "name" ( <operand> ) 

 In software this means the value of a variable or the contents 

of a memory cell with the effective address <operand> . The word 

length is determined by the data type. This cell can be read 

as a source or altered as a destination. 

In hardware S represents a data output or input port of a 

word-oriented RAM. The operand is connected to the address lines of 

the RAM. 
 

Parts of memory words can be addressed by attributes: 
 

S "name" ( <operand> )  <attribute> 

The allocator tries to find a suitable port if "name" does not 

contain a portname. 
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5.2.2 Register 
 

R "name" 
 
defines a register. Every register is a module of its own with data input 
and output. In contradiction to memories S, it t . >. stores only one word. The 
modules must be identified by names. ~i. . Names can be declared in the 
declaration part. 

Registers are unnecessary from the viewpoint of algorithms. Therefore they 

should be avoided on level 0 of MIMOLA. Exceptions are registers with special 

functions, e.g. the program counter RP, I/O-registers. 
 

Some registers can perform functions: 

R "name" ( <function> ) The functions are executed synchronously to 

the <esb> clock (see chapter 7.1.3). Only the function .LOAD is a 

standard function, if R is a destination. 
 

Functions can be coded by the value of an operand: 
 

R "name" ( <operand> ) 
 

The code must be declared. 
 

Functions can be made depending on operands: 
 

R "name" ( <function> ( <operand> ) ) 
 

By this e.g. the number of shifts can be made variable. 
 
 
 
 
 

5.2.3 Stack 
 

K "name" 

defines a stack. An algorithm can use more than one stack. Therefore every 

stack must be named. This can be done as in the case of registers. The 

standard depth of a stack is infinite. A finite depth can be declares. The 

expression K "name" addresses 
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the top of the stack while reading and the next free cell when 

writing. By 

K "name" ( <operand> ) all data in the stack can be 

addressed.<Operand>= 0 addresses the top of the stack while reading 

or writing. Positive values point down the stack. Writing into the 

stack should be avoided. Using an <operand> , no stack function is 

executed. 

The only standard function .PUSH is executed automatically, if K 

is a destination. All other functions can be declared in a 

declaration part or be appearance in the program, as long as no 

other declaration has appeared. Possible functions are: 

 .PUSH, .POP, .NOPUSH, .NOPOP, .CLEAR, .POINT 

Only the function .POINT must be explained. Sometimes the stack 

 

pointer must be examined to estimate the load of the stack. 

K "name" ( .POINT ) addresses the stackpointer. By this the 

value of the address of the top of the stack can be read or 

changed. The bottom of the stack has the address (b. 

 
 
 
5.2.4 Instruction 

I is the current instruction word and is an abbreviation of S 

(RP). There is resemblance to the "instruction register" in 

conventional structures, but I is no register and therefore no 

"instruction fetch phase" is needed. Such a phase can be programmed, 

if conventional cumputer structures shall be exactly simulated. By 
 

I. <attribute> 

every part of I can be addressed. These parts may be functions, 

addresses, constants etc. Thus the microprogram can be inserted 

into the expression. 
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As long as the precise partitioning of the microprogram word is not 

fixed, the implementation by the instruction word can be expressed by: 
I ( <identifier> )  and 
I ( <function identifier> ) 

 
 
 
5.2.5 Hardwired Constant 

F "name" 

is a single hardwired constant. The storage of several constants in a ROM 

can be expressed by 

F "name" (<operand> ) The operand addresses the ROM. Single 

constants and the contents of the ROM must be declared. Hardwired constants 

are one possibility to implement constants (see chapter 7.5.2). 
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Standard operations for all applicable data types are, 

output type equal to input types: 

 + - *  / -a+b .AND .OR .XOR .NAND .NOR 

Boolean output: 
<_ >_ < > >_  <> 

Other features are the same as in chapter 5.2.6. 

 
 
5.2.8 Triadic Operator 

C "name" ( <function> ) 
C has 3 input ports named a, b and c. The assignment to the 

operands is an extrapolation from that in chapter 5.2.7. 

No standard functions are declared. Other features are the 

same as those in chapter 5.2.6. 

 
 
5.2.9 Network 

N "name" ( <function> ) 
denotes a network with any number of inputs, named a, b, ... A, B 

... from the left to right. Operands are assigned in the same 

order. 
 

Functions are expressions of used input names and operators 
  (AND ) 

 + (OR ) 

 - (NOT ). 

No brackets are allowed. 

It is assumed that every control unit of a computer has 

an instruction pointer unit (8). This unit performs the 

switching in the case of conditional instructions and is 

therefore equivalent to the operator td. The range of 

functions can be altered by declarations. 

 
 
5.3 Declaration of Connections 
 
 
5.3.1 Addition 
 Connections are added by the $ ADDCONNECTION command, 

followed by a list of connections. The general form is 
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Example 5.3.2 : DELCONNECTION Va <- Rb , 
 
 
 
 
 
5.4 Data Paths Conventions 

The standard declaration for data paths is: All inputs and outputs of all 

modules are connected via multiplexer. The number of paths can be limited by 

declarations (chapter 5.1.1) . 
 
 
 
 
 
5.4.1 Statements 
 

In the case of 
 

<statement> _ <operand> |  <source> 

no data are transferred outside the source module. Generally statements 

specify data paths. 
 

<destination>::= <operand> 

specifies a connection between the data output of <operand> and the data 

input of <destination> , which must be a memory. The <operand> itself can 

include the connection of several 
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The assignment of the input and output ports is always given by 

the position of the operands. The postfix-notation gives a simple 

unique picture of all data paths. The switches for different data 

paths are assumed to be multiplexers,assigned to the inputs of the 

modules. It is possible to declare busstructures. 
 
 
 
 
 
5.4.2 Destinations 

All destinations are assumed to be edge triggered. This 

means: the contents of a memory cell can be read and changed in 

the same <esb> 
 
 
 
 
 
5.4.3 Bit-to-Bit Assignment 

Normally, when equal data types are coupled, bits with equal 

bit-position are connected. The rightmost bit is always the 

least significant bit. Its bit-position number is zero. 

If data types with unequal word length are coupled, the 

connection is always right justified. There is no truncation, if 

the word length has not yet been specified. 

Free input lines are set to zero, free output lines remain open 

ended. Information can be lost. Correct type transformations must be 

made by operators. 
 
 
 
 
 
5.4.4 Attributes 

All data paths can be split up into single bits, bitgroups or 

bytes (8 bits).A constant selection can be made by attributes, 
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is a direct assignment. The expression may be composed of 

several parts, separated by commas. See also Appendix A. The 

meaning of these parts is: 
 

<unsigned integer> <unsigned integer> 
 
is a range of bits/bytes. 

<unsigned integer > is the bit/byte-position 

number of a single bit/byte. Allowed names are: 

 BIT, BYTE;, MASK; BYTEMASK+ 

BIT and MASK address bits. 

BYTE and BYTEffASK address bytes. 

BIT and BYTE effect the position of the bits/bytes. All 

selected bits/bytes are packed tight to the right bound of 

the data path. 

MASK and BYTEMASK do not effect the position of the bits/bytes. 

The rules of chapter 5.4.3. have to be obeyed. 
 

Two examples show the result of attributes to bit connections: 
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5.4.5 Distributors 
 

V "name" marks a point on a data path. By 

<operand> = V "name" this point is defined and can be 

referenced in the same <esb>. V means no storage of data! 

The main application of V is the identification of inter- 

mediate results, which are used in different expressions in the 

same <esb> . In hardware this simply means the parallel con 

nection of several inputs to one output. V can be named. If 

V is used in the declaration part it denotes a bus-structure 

(see chapter 5.3.1). 
 
 
 
5.4.6 Concatenation 
 

<operand> * <source> 
 
means the concatenation of all bits of the data output of 

 <operand> with those of <source> . The result forms a new 

data path, whose width is that of the sum of both elements. 

The source forms the lower significant part of the word. 

Example 5.4.2 shows this relation. 
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With V as <source> , even complicated connections can 
 
be made. 
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6. ASSIGNMENTS 

The assignment part has little or no relevance to the design of 

the hardware. It is needed only when micro programs shall be 

generated. The assignment part is bounded by ASSIGNMENT .... 

ENDASSIGN The assignment statement a:= b; means: b is assigned to 

a. a and b may be lists. There are four kinds of assignments: 
 
 
 
 
 
6.1. Identifier Assignment 
 

<identifierlist> :_ <constant> 

<identifierlist> is a list of scalar or array identifiers 

separated by ' , ' . All identifiers in the list get the value 
 

<constant> 
. 

 
 
 
 
 
6.2. Storage Map Assignment 
 

<module> ._  <identifierlist> 

This is an implicit assignment of the identifiers to the next free 

storage cell of <module> , which is assumed to be a stack K or a 

storage S. <module> may contain a start address or a constant range. 

The right most identifier gets the lowest value. 
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6.3 Initial Value Assignment 

<modules> :_ <constant> This assignment has influence only for 

simulations and will normally be regarded as a comment. It means: all 

or the specified part of the modules cells are assumed to hold an 

initial value of <constant>. 
 
 
 
6.4 Record Assignment 

 <attribute> :_ <attribute list> 

The attributes of the attribute list do not overlap each other 

and as a whole are equal to  <attribute>. 



- 39 - 

7. PROGRAM 
 
 
 
 
 
 
 
 
 
7.1 Fundamental Semantics 

MIMOLA is to be understood as a programming language and as a 

language to describe hardware or synchronous automata functions on a 

gate control level. Therefore we must notice the software and the 

hardware meaning of language details. 
 

The fundamental nonterminal symbol of the syntax is the 

<elementary statement block> , short <esb> . It is composed by all 

those <statement> 's, which are executed in parallel. The execution 

of statements can depend on conditions. 

The hardware meaning is: one <esb> describes completely one state 

transition of all synchronous automata that are large and powerful 

enough to accept all <esb> 's of the programs. To reduce the length 

of the programs there exist some fundamental semantics: 
 
 
 

7.1.1 All storage cells that contribute to the state of the automaton 

are not changed except for those explicitly mentioned in the <esb> 

and except for the program counter RP. 

 
 
 

7.1.2 Unless otherwise determined the program is assumed to be 

stored in a memory (see 5.2.4) with the program counter RP as a 

pointer. RP is assumed to be set to the label of the next 

 <esb> in the program, when no other assignments are made. 

RP is affected by: GOTO, CALL, RETURN, DO,  OD. 
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7.1.3 All statements of one <esb> are executed within one clock 

period. Reading of, switching of and operations on data are assumed to 

be network functions needing no clock. The clock changes the 

information of the destinations,executes the functions of registers 

and stacks and terminates the action of the statements by setting RP. 

The clock is one edge of a clock puls and is synchronous for all 

statements of one <esb> The clock is not periodic. Its interval 

depends on the slowest statement in every <esb> 

 
 

7.1.4 All resources and data paths that occur in one <esb> must be 

available in parallel. The syntax makes no limitations as to the 

number of resources or paths. The number can be limited by 

declarations as a part of the definition of a special automaton. The 

set of possible resources is defined by the standard declarations in 

chapter 5.2. 

 
 

7.1.5 Unless otherwise determined it is assumed that there 

exists a control module. It must generate the clock, decode the 

current program word to control the resources and data paths and 

it must take into account the conditions. There exist no 

sequential steps within any <esb> controlled by hard-wired or 

firmware microprograms. The level of MIMOLA is therefore the 

microprogramming level. 
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direct assignment between labels and memory addresses of microinstructions is 

made by the MSS on the lowest level of MIMOLA or by the program loader. 
 

Seven characters are significant for the label name. 

During the design process the MIMOLA programs are often compiled from one 

level n to the next lower level n+1. Every compilation divides several < esb>'s 

into smaller ones. The label number space is extended by joining unsigned 

integers at every change of the level. Thus the level can be evaluated from the 

label structure. 

7.3 Functions 

The standard functions have been described in chapter 5.2. Special 

functions have to be declared. It is assumed that the compiler knows the 

code to control the modules. 

Normally the function code is part of the instruction word I. This can be 

expressed by 

 
 <function> = I ( <function identifier >   ) 
 

In hardware it is possible to make a function depend on 

conditions. This can be expressed by 
 

IF <operand> THEN <function> ELSE <function> FI 
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Multiple applications of the same function to registers and 
stacks can be expressed by 
 

<function> _ <function> ( <operand> ) 
It has to be regarded that the multiple function must be executed 
synchronously during one clock period. Chapter 7.1.3 has to be 
obeyed. The result of <operand> must be of type < unsigned integer > 

Example 7.3.1: 
S(a)= V -> A(IF V -> A(<O) THEN - ELSE +  
FI), 
K1(.POP(3)), 
R1(.SHIFTL( S(a))) 

7.4 Identifiers 
Identifiers are representatives of constants. After compiling 

there should exist a list of the values of all identifiers. There are 
two kinds of assignments: 

 
 
7.4.1 Identifiers can be assigned a value in the assignment 
part. These identifiers can be operands. Their values are  
known 
to the programmer. 

 
 
7.4.2 Identifiers can be assigned a value by their appearance 
in a program. Identifiers forming the addresses of memory 
cells are typical examples. In this case the value of the 
identifier is the address, not the contents of the memory 
cell. 

The only standard data structure is the array. Elements of 
arrays can be addressed by 

<array identifier> _ <identifier>[ <operand> 
[,<operand>)0*] There 

exists no fixed scheme for the evaluation of effective addresses of 
array elements. If array indices shall be compiled, array dimensions 
must be fixed in the assignment part and an evaluation algorithm 
must be declared in the macro definition part. 
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7.5.4  Dummy Source 

X is a dummy source. It is needed, if an operand has no 

influence but must be present to fit the syntax. 

 
 
Example 7.5.1 

S(a) / X -> B(-a) "dyadic operator executing a monadic 

  operation" 

IF a THEN X ELSE ... FI "dummy statement" 

a / b -> BV(X).EQUAL "operator without function input" 
 
 
 
 
 
7.6  Allocator Conventions 

 
 

7.6.1 Default Replacement of Identifiers, Functions and 

 Constants 

Any constant, identifier or function, which is not removed by a 

macro, is substituted by a reference to a field of the 

microinstruction I. The symbolic name of this field depends on the 

destination. The first letter reflects the type of the input: A for 

address inputs, C for control inputs, D for data inputs and F for 
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7.6.4 Default Bitnumbers 

If no bitnumbers/names are present in a description of a connection, the 

allocator inserts default ones according to the following rules: 
 

1. If I is the source, chapter 7.6.1 applied. 
2. If there is no field at the source or destination, the 

attribute .WORD is used. 
3. If there is a field present, the field's bitnumbers will be 

converted into attributes. 
4. If there are several fields present, bitnumbers/names, which are not 

overlapping (see chapter 6.4 ) are concatenated in the following 
sequence: .WORD fixea bitnumbers .INT .REAL .BOOL user-defined bitnames 
in the order of their appearance in the program Example 7.6.1 

 
Assume: 
S<A.DAT contains no field, 
S<A.ADR contains fields BYTE () , WORD and USER-ATRB, 
BALD > .DAT contains the non-overlapping fields OVFL and WORD. 
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7.7 High Level Language Elements 

Many algorithms use repetitions, conditional branches, 

condition dependent execution of simple or compound actions, 

functions and subroutines (procedures) to get economic and 

structured programs. Therefore special language elements have been 

incorporated in the HLL's and for the same reason in MIMOLA. The 

MIMOLA elements are: GOTO, FOR FROM BY TO WHILE DO OD, WHILE DO 

OD, IF THEN ELSE FI, CASE OF THEN FI ELSE ESAC, CALL, SUB, RETURN. 

These elements differ in many senses from the elements in the 

previous chapters. The semantics are a little bit different in 

different languages and should not be fixed in MIMOLA to avoid a 

restriction of the design space. There exists no unique hardware 

equivalent of these elements. Thus a direct entry into the 

hardware data structure is impossible. The designer has to define 

algorithms that may replace the HLL-elements. These algorithms may 

use special hardware structures, designed to execute the actions 

of these elements, or may use the same hardware as the rest of the 

program. In both cases the HLL-elements can be interpreted as 

macros. Therefore we will treat these elements in chapter 8.5 

together with suggested macro replacements. 
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8. MACROS 
 
 
 
8.1 Use of Macros 

 
 
8.1.1 Standard Macros 

High-level language elements, e.g. FOR FROM ..., do not 

generate a unique hardware replacement. These "standard macros" 

have to be replaced by other language elements. This can be done by 

the macro facility of MSS. The declaration of these macros has to 

be done by the programmer or the designer. The designer can 

experiment with different declarations and gains a great design 

space. Chapter 8.5 explains the standard macros in more details. 

The macros are identified by their "name" and may have para-

meters of different types. Since this macro is reduced to 

<operand> and <operand> is used in many syntax rules, 

user-defined macros are very flexible. 

User-defined macros can be used as abbreviations for frequent 

program constructions. Thus the program text can be kept short and 

clear. The expansion will be defined prior to the application of the 

macro. ("Application" in this context means the 
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act of replacing a fitting program string by the declared 

substitute). 

Another use is the introduction of new HLL constructs which are 

not standard. The programmer may have a certain idea of the 

semantics, but wants to postpone the decision on, the best 

implementation. Examples are synchronization primitives. Semaphore 

operations can be introduced by 

My (semaphore), Mp (semaphore), 

monitor calls by 
 

Monitor (entry, 
parameters) . 

 
 
 
 
 
8.1.3 Software and Hardware Replacements 

During the design process situations may occur where it is 

desirable or necessary to replace certain program constructs. It 

may be the replacement of a complex operator module, e.g. a 

floating point adder, by a sequentialalgorithm using only simple 

operators. Another example is the introduction of a special 

hardware module instead of a software structure that is used 

frequently in order to increase the execution speed. 

To meet these requirements, very flexible macro facilities 

have been implemented in MSS. Independent of standard or user 

defined macros nearly all possible program structures can be 

replaced by others. 

This powerful tool must be handled very carefully. The 
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The result of this declaration is: expression-1 will be replaced 

by expression-2 as often as it is found in the original program. 

Expression-3 will be inserted ahead of the elementary statement 

block, where a replacement takes place. 

expression-1 must be reducable to a nonterminal symbol except 

100,101,102,105,106 (see Appendix F) by a syntax rule of the program 

part (see Appendix B). 

expression-2 must be syntactically correct together with its 

context in its new place. 

expression-3 must be one or more esb's. The labels of these 

esb's must not have more than two characters (excl."L"). 

expression-2 and expression-3 may use parameters that have to 

be introduced in expression-1. The names of these parameters are 

valid only inside the defining macro. 
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8.2.2 Parameters 

The range of application of a macro can be increased by 

parameters. In MIMOLA three different parameter types can be 

used in macros: macroparameters, the "?" and special labels. 
 
 
 
 
 
8.2.2.1 Macroparameters 

&"name"' is a free parameter which can be used in a macro 

declaration. During the syntax check of the macro declaration, 

<operand> , <storage> , <register> , or <stack> are tested 

instead of the parameter, because &"name" is no syntactical symbol. 

The correspondence to one of the four nonterminals is not 

remembered. Thus a parameter fits all terminals and nonterminal& 

during the application of the macro. 

If none of the four possibilities can be used to meet the syntax 

in the declaration, a macro parameter can be bound to a definite 

terminal or nonterminal, represented by its number in in Appendix F, 

by 

&"name". <unsigned integer> This assignment will also 

be used during the application of a macro to a program string. 

If a parameter is used several times in expression-1, the 

assignments must be equal. In expression-2 and expression-3, 

different assignments can be used. During the application the 

assignment.corresponding to the place of the parameter in the 

declaration.is valid. 
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Thus the digits changing most often are placed directly behind the "name". 

This increases the significance of the generated names in the case of a 

truncation (after 8 characters at the moment) of "name"s on the right side. 

8.3 Controlled Application of Macros 
 
 
 
 
 
8.3.1 RECMAC 

Macros are applied during the syntax analysis process. This process 

sequentially scans the program string. If a macro becomes applicable to an 

already scanned string by a macro replacement, this cannot be detected in 

the same pass. By the key "RECMAC" in the declaration those macros can be 

marked, which shall be used in another pass. The key "ONLYRMAC" will 
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inhibit all macros declared with "MACRO". See e.g. example 8.8 . 

8.3.3 Order of Macros 

The application of macros is influenced by the order of their 

declaration. 

1. During the declaration of a macro Mi all prior declared matching 

macros, not containing esb's, are inserted into Mi. 

2. The macros are tested in the reverse order of their declaration. 

This is important if two different macros fit in the same esb before the 

application of the first fitting macro but not after it. 
 

In both cases the block ranges are observed. 
 
 
 
 
 
8.4 Application Rules 
 
 
 
 
 
8.4.1 The Test 

A macro fits a string in a program, if the syntax tree of expression-1 

of the macro declaration is equivalent to the syntax tree of the string. 

This equivalence is tested every time a rule is applied by the syntax 

analyzer. The equivalence of macro parameters has been explained in 
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must be identical. Different attributes for equal fields are not 

equivalent. If a port is declared in a macro, only this port 

fits. 

Local distributors V "name" (see chapter 5.4.5) will be 

replaced by their definition prior to the test. 
 
 
 
8.4.2 The Application 

In the case of a positive test, the program string is re-

placed by expression-2. The new esb's in expression-3 are 

inserted on top of the currently analyzed esb. No further test 

is made in the expanded parts in this pass. 

Labels of inserted esb's are automatically numbered as in the 

case of a "?" (see chapter 8.2.2..2) to avoid double defined 

label errors. The labels of the current and the first inserted 

esb are exchanged. Thus the correct pointers to labels are 

reconstructed. 
 
 
 
8.5 Standard Macros . 

The HLL elements of MIMOLA can be interpreted as macros.. The 

replacement is not unique and depends on the exact semantics of 

the element that is used in an algorithm and on the existing or 

proposed hardware. The given example declarations are only 

possible solutions. They have been included to describe the HLL 

elements, to give ideas for macro declarations and to serve as 

examples for correct macros. 
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Example 8.5 

If different forms of setup statements exist in a program, it may be 

necessary to. distinguish between different forms of condition tests. In 

this case user defined macros for DO and OD must be used. 
 
 
 
8.5.2.3 Updating and Return 

At the end of a FOR loop the control variable must be updated and a jump 

to the head of the loop occurs. The syntax of 
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8.5.4.1 Conditional Statement Block 

The execution of statement blocks can be condition dependend. The 

syntax is: 

The semantics is the same as in other HLL's. The hardware realization of 

conditional executions is normally a part of the control module of a 

computer. Therefore no generally applicable macro can be given. In our 

example 8.8 an IF THEN ELSE construction is split into two esb's, one 

executing the THEN part, the other the ELSE part. The second macro seems to 

be senseless, but if we observe chapter 8.3.3 we can 
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see that in this way the application of the first macro to already 

split IF THEN ELSE constructions is prevented. 

Example 8.8 
 
 
 
8.5.4.2 Conditional Operands 

If the THEN and ELSE; parts of a conditional statement block differ 

only in one of the operands, this can be directly shown by applying the 

condition to the operand itself. The syntax is 

Example 8.9 shows an application. The semantics and the hardware are the 

same for both statements. 

Example 8.9 Conditional Operand 
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8.5.4.3 Conditional Functions 
 

The same reason as in chapter 8.5.4.2 holds for condi- 



 
 

 

 

 

8.5.6 Subroutines 

The semantics of subroutines and procedures vary strongly between 

different languages. Therefore only very general language elements have 

been incorporated in MIMOLA. 

Three general actions can be distinguished: the call, the parameter 

handling and the return to the calling program. 

are statements for subroutine or procedure calls without and with 

parameters. Possible actions are e.g. save program status, jump to 

subroutine head. The identifier points to the subroutine code. <operand> 

is an actual parameter. 
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Example 8.12 is a simple subroutine mechanism. The return address is 

pushed onto stack Kcall. The parameter values are pushed onto stack Kop in 

the calling sequence and stored in memory locations by SUB. The parameter 

lists must be of equal length. The example mainly demonstrates a 

possibility to handle calls with different numbers of parameters. 
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9. CONTROL LANGUAGE 
 
 
 
 
 
 
9.1 General 

The control language is used to start different language parts, to cause 

typeouts and to set options. Commands may be input from any of the three 

input channels: the INP(ut)-file, the LIB(rary)-file and the terminal. The first 

command is read from the INP-file. Changing the input stream permanently is 

done with the INSERT command. A breakpoint facility is supplied for temporary 

command input from the terminal. Nonrecursive nesting of control commands is 

possible because a new control command is expected if there is a $-sign in the 

parameter string of the last command. 

Breakpoints allow interaction by the terminal operator. A breakpoint is 

inserted by the user with a $BREAK command or by the MSS under the 

following conditions: 

 
1. a declaration part has been completely analysed, 

2. the DISPLAY option is true and an <esb> has been analysed, 

3, the SELF option is false and the hardware is not sufficient to 

execute the current <esb> , 

 
4. a DEBUG test is true, 

 
5. a WAIT condition is acknowledged with a $-sign, 

6. an internal error has been found. Breakpoints (except case 6.) are 

ignored if the BATCH option is true. At breakpoints the operator may inform 

himself of most of the MSS data structures, including structures which 
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are useful during the program analysis (e.g. the analyser stack, the current 

connection etc.). 

When the MSS expects a control command, all special characters preceding 

a command (except - and @ ) are ignored. Therefore a $-character may always 

precede control commands for clarity. Prompt characters, sent to the terminal 

whenever the computer expects an input, may be sent back. 

 
Strings enclosed in " ...." are treated as comments. 

Because multiple successive commands may be input at breakpoints, a 

special command is required which returns control to the original language part. 

This is done by the RESUME command. In order to reduce necessary writing, 

any special character except (blank), - and @ preceding (end-of-line) is treated as 

a RESUME command. On some installations the prompt character sent to the 

terminal automatically may be used as the RESUME command. 

 Nesting of control commands may either result from a 

 construction or a breakpoint. Normally, nesting does not 

go beyond level 3: 

 level 1: normal control flow 

 level 2: a) $ -constructions within MIMOLA language parts 

  b) breakpoints 

 level 3: breakpoint in level 2 case a). 

If after a long MSS run an important breakpoint has been 

reached, the user may increment the current level by typing 

BREAK if he wants to be safe against a single, erroneously 

typed RESUME. 
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Decrementing the nesting level will cause the continuation of 

analysis at the next lower level. For breakpoints this will also 

reset the input stream to the old input channel, except if an INSERT 

command has been written. If the current level is maintained after 

the execution of a command, a new control command is expected. 

RESUME, CORRECT and GO will decrement the current nesting level. 

Nesting levels >1 are also decremented if the input stream is not 

the terminal or after an INSERT command. Therefore no level 2 

command is expected after e.g. a $ FACTOR command in the INP-file. 

The same command from the terminal requires a RESUME in order to 

leave level 2 because of the multiple successive command feature for 

the terminal. No control command is expected after a level 2 INSERT. 

A level 1 insert, however, may not be decremented because this would 

cause an EXIT to the operating system. Fig. 9.1 shows a flow diagram 

for control commands. 
 

In order to exclude nestings which may cause MSS errors, the set 

of allowable control commands depends on the context. The user can 

get a list of allowed commands with the KEY command. 
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9.2 Command Description  
9.2.1 General Commands  
PROGRAM Start of a program part. Ends with END or 
 ENDSUB. 
ASSIGN Start of an assignment part. Ends with 
 ENDASSIGN. 
LIST Copy source input to OUT-file. Normally 
 only in the case of errors the last two 
 source lines are copied to the .OUT-file 
 If the user wants to have a better over- 
 view of the locations of errors or if he 
 wants to document the complete source to- 
 gether with the hds listing, he should 
 use this command. 
DISPLAY (default) If the DISPLAY option is on, the MSS shows 
/ each completed <esb> at the terminal and 
NODISPLAY ,inserts a breakpoint. The commands can be 
 used to switch the option on and 
 off. 
WAIT In the wait mode the MSS asks the terminal 
/ operator to type in an acknowledgment 
NOWAIT (default) character after the writing of error 
 messages to the terminal. The MSS expects 
 a control command if a $ -sign is input. 
BATCH The BATCH command includes the NODISPLAY, 
 NOWAIT and SELF commands and additionally 
 will cause breakpoints to be ignored. 
 No messages will be written to the 
 OUTPUT-file (the terminal) if the MSS 
 runs in the BATCH mode. The allocator 
 will not ask for new microprogram fields 
 if the number of fields is restricted and 
 not sufficient. See chapter on allocator 
 conventions. 
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RESET Sets all hds frequencies to zero and 
 starts reading from the beginning of the 
 INP-file again. This command is used to 
 obtain a second pass over the entire 
 program after e.g. certain connections 
 have been marked with DELCONNECTION 
 (see below). This allows a better opti- 
 mization by the allocator. 
PRINTSTACK / The analyser stack is dumped into the 
TYPESTACK OUT-file or to the terminal. PRINTSTACK 
 is executed automatically when syntax 
 errors are encountered. The dump contains 
 the internal numbers of the base symbols 
 and names, numbers and some special charac- 
 ters. If the basic symbol is a reserved 
 word, this is also written. A right arrow 
 points to the symbol the analyser looks 
 at. The user has to use the symbol table 
 in Appendix F for recoding the basic 
 symbols. All non-terminal symbols have 
 codes >= 100. All terminals, which consist 
 of only one character, use their ASCII 
 number as code. 
DEBUG <character> This command is used for debugging 
 MSS. <character> is added to a 
 test set. The MSS contains tests which 
 will produce a certain action if a 
 certain character is included in the test 
 set. Initially the test set is empty. 
 Some of the actions are: 
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 character action 
 1 list intermediate connec- 
 tion descriptors 
 4 set breakpoints within allo- 
 cator execution 
 7 include connections to 
 CONTROL inputs 
 set breakpoints within 
 compiler execution 
DEBUGOFF <character> <character> is subtracted from the 
 test set. 
DECLARE, ENDDECLARE Ignored, provided for compatibility 
 with older MSS versions. 
9.2.2 Macro Commands  
MACRO Start of macro definition. Ends with 
 ENDMACRO. 
RECMACRO Same as MACRO except only RECMAC 
 macros are inserted if the command 
ONLYRMAC has been given. 
BLOCK Defines the beginning of a range of 
 macro definitions. The following macros 
 are valid only until a corresponding 
BLOCKEND has been found. These commands are 
 intended for the easy substitution 
 of variable declarations of high- 
 level block-oriented languages. 
9.2.3 Compiler Commands  
NOGENERATE This option disables the internal 
 storage of a syntax tree and disables 
 all actions which rely on this tree. 
 With the NOGENERATE option no macro 
 can be inserted, <esb>' s cannot 
 be splitted and no GEN-file can be 
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generated. The allocator and  
statisti- 
cal analyser, however, are  
unaffected. 
This option saves core and time. 
ESB If a connection error (insufficient 
hardware) occured in an <esb> , 
the compiler will insert a break- 
point at the end of the esb if 
the SELF option (see below) is  
false. 
The user then may use ESB to get a 
listing of the current esb at his 
terminal. He may use 
CON to show the connection errors. 
CORRECT will start the splitting of <esb>'s 
containing connection errors, 

 



 - 73 - 

 temporary cell if one reference causes 
 a connection error. MINHLP reduces the 
 number of temporary cells in some 
 cases. 
NFULBUF With this option the compiler buffers 
 operands after CASE and IF only if it 
 is necessary. In the default case 
 these operands may be-buffered in 
 order to free hardware for the 
 following statements. 
9.2.4 Commands  Referencing the Data Base 
ADDMODUL This command declares modules, ports, 
 fields and functions. 
 See chapter 5.1.1 for full explanation. 
DELMODUL Deletes modules. cf. chapter 5.1.2 . 
ADDCONNECTION Create connections . cf. chapter 5.3.1 . 
DELCONNECTION Mark connection as not usable. 
 cf. chapter 5.3.2 . 
PRINTHARDWARE,  PH Dump the hds into the OUT-file. 
 Appendix E shows the format of this 
 listing. 
 It contains the following information: 
 1. frequency of module uses 
 This information is required in order 
 to select all the modules which shall 
 be deleted in the next design step. 
 2. frequency distribution of the 
 number of ports required in <esb>'s 
 It is counted, how many times parallel 
 execution of an <esb> requires n 
 (O<-n<_9) ports of a storage module. 
 The number of concurrent uses of 
 different ports of the same module 
 determines the number of independent 
 ports in the final design. 
 3. frequency of use of a parti- 
 cular port 
 This information determines the uti- 
 lization factor of particular ports. 
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If function, address and data input 
are used, the data input has priority 
over the other inputs. 

PRINTFUNCTIONS, PF List used and predeclared functions 
TYPEFUNCTIONS, TF together with the frequency of 
 their use and the names of ports, 
 which can execute them. Listing 
 goes to the OUT-file for PRINT- 
 FUNCTIONS and PF,and to the terminal 
 for TYPEFUNCTIONS and TF. 
9.2.5 Allocator Commands  
NOLOWERLETTERS This option causes the allocator to 
 use upper case letters instead of lower 
 case letters as portnames of B, C 
 and N modules. 
FIRSTPORT This option causes the allocator to 
 use the alphabetically first free 
 port of an S or R module while 
 looking for a suitable port. In the 
 default case, the allocator tries 
 to find a port where the required 
 connection already exists. 
CURHSTAC The allocator lists the currently 
 valid intermediate connection 
 describing structure at the terminal. 

 



 9.2.6 Statistical Analyser Commands 
The analyser counts all uses of  
hardware 
with a factor f = fac * fact * fac3  
. 
Default value of all factors is  
one. The 
following commands set the  
factors to 
other values: 
FACTOR <n> Set fac to n. 
FACTOR2 <n> Set fact to n. 
FACTOR3 <n> Set fac3 to n. 
n must be decimal. Changing of  
the 
factors takes place at the  
beginning 
of the <esb> following the  
control 
command. 
NOFACTOR Disable all following FACTOR, FACTOR2 
and FACTOR3 commands. This  
command is 
useful if unweighted  
informations are 
desired. 
JOINT Compute relative joint distributions 
of module and storage port uses  
and 
of microinstruction field uses. 
Computation starts with the first 
completed <esb> after this  
command. 
This option requires about 12.8  
Kbytes 
on the heap. Listing is  
requested 
with the PRINTHARDWARE  
command. 
9.3 Example 
The following example shows how a small program is 
analysed and how the LIB-file may be used to contain 
common module declarations, assignments and macro definitions. 
It is important to see how the input stream is switched 
between the various input channels. Note that breakpoints 
for terminal interaction are automatically inserted after 
the module declaration (because BATCH is false), and after 
<esb>'s are analysed (because DISPLAY is true by default). 
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10. EXAMPLES 

10.1 Output Listing Examples 

The following short program is used to show the format of the 

output files 

Fig. 10.1.2 

One memory port was missing in the original esb's. Register 

RHLP-101 is used as a substitute. The dump routine appends the 

names of the used ports to the module names. 
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The COD-file contains symbolic  

Enable fields are not considered at present. Therefore the 

first esb only needs an address field for storage port SA>A. 

This field is named ASAA by default and is set to zero. 

Estimated run time is two units : one unit until data from SA 

is valid and one is required as data set up and hold time for 

RHLP and for the reading of the next microinstruction. The 

second esb requires three time units because the data from 

SA>A(2) have to propagate through B1. The write cycle for SA<B 

is assumed to be one time unit because a constant address is 

used. The second esb uses three microinstruction fields, two 

for addresses and one for the function code of B1. 
 

The OUT-file contains the hds listing 
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Fig. 10.1.4 

Compare this listing with the general form in Appendix E and 

with the description of %PRINTHARDWARE in chapter 9.2.4. 

 
 
 
10 2 Computation of a Bessel Function 

The following FORTRAN subroutine from the IBM scientific 

subroutine package computes the J-Bessel function 
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distributors can be inserted. 

Fig. 10.2.3 shows module declarations which introduce a limit to 

the allowable hardware. Macros are declared in order to use a 

compare unit with simultaneously accessible comparison results 

(e.g. SN 7485) instead of a compare unit with a function input. 
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APPENDIX C 
 
 
 
Additional Rules Part 1 
 

These rules are necessary for a correct hardware operation. 

1.1 In one <esb> the contents of a storage cell may change by 

one assignment (as a destination) or by one function only. A 

function parallel to an assignment is allowed, if it doe: not alter 

the contents of the cell. 

1.2 GOTO, CALL, RETURN, DO, OD alter the contents of the 

program counter RP. Rule 1.1 must be obeyed. 

1.3 In conditional statements rule 1.1 must be obeyed in all 

statements, which depend on nondisjunctive conditions. 
 

1.4 Distributors must be defined before they are used. 
 
Additional Rules Part 2 
 

These rules are necessary for meaningful programs. 

2.1 No arithmetic type transformations or checks are made in 

arithmetic expressions. 

2.2 The operands (conditions) after IF, WHILE must be of 

the type boolean (1 bit). 

2.3 Loops must be complete. Minimal loops must contain: 

 FOR DO OD or 

 WHILE DO OD 

2.4 The identifier in D ( <identifier> ) must be the 

control variable of the current or of one outer FOR - loop. 

2.5 The FOR - loop, which is referenced by D ( <unsigned 

integer > ), must exist. 
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