THE MIMOLA DESIGN SYSTEM:
DETAILED DESCRIPTION OF THE SOFTWARE SYSTEM

Peter Marwedel
University of Kiel

Kiel,

Summary

A software system is described which aids in
the design of digital processors with a top-
down method. It takes the design language
MIMOLA as its input. Input may be either a
‘high level functional or a structural des-
cription of the hardware. The output is a des-
cription of the hardware on the block level.
In the case of a high level functional input,
the output contains a listing of the hardware
which is necessary to execute the input to-
gether with utilization factors of the hard-
ware units. The amount of creatable hardware
may be limited in a declaration. If there is
not enough hardware to execute the input
statements in parallel, the necessary inter-
mediate steps are inserted by the system and

a corresponding functional description is pre-
sented. -

Introduction

The general motivation has been set up in
a previous paper'. We will now give some de-
tails of our design system.

The complete system may be subdivided in-
to different parts according to Fig. 1. Basic
features of the macro processor have been de-
scribed inl and the lexical analyser and the
syntax analyser will be described in a forth-
coming reportz. We restrict ourselves to a de-
scription of the hardware allocator, the com-
piler, and the statistical analyser. A prere-
quisite for understanding the allocator is the
knowledge of the hardware data tables.

Hardware Data Structure and Declarations

The hardware data structure (hds) contains
all information about the available hardware.
It is needed for determining if the current
microstatement is executable in parallel and
for storing design information. The structure
has been specially developed for this purpose
and is similar to the network model3 of data
bases. We did not use available data base sys-
tems because most of them are not portable and
none is implemented in a language suitable for
compiler construction. Because operations on
the hds occur quite frequently, the hds has to
remain resident in the primary storage.

In order to define a hds, hardware resour-
ces have been structured mainly hierarchical-
ly:

‘A group of modules consists of all modules
with the same first letter in their identify-
ing module names. Examples are the groups of
registers and of stacks.

59

Germany
SOURCE
PASS_ L —— LEXICAL
J ANALYSER
PASS n
{n>1)
STACK
SYNTAX
ANALYSER
SYNTAX CONNECTION
TREE DESCRIPTOR
SYNTAX CONNECTION
TREE DESCRIPTOR
COMPILER O PEFAULTS_ ALLOCATOR
PSEUDO ERRORS
SYNTAX UPDATE OF
DATA
TREE STRUCTURE
DUMP STATISTICAL
PROCESSOR ANALYSER
UPDATE OF
STATISTICAL
INFORMATION
PRINT
ROUTINES
IMAGE OF
MODIFIED HARDWARE
PROGRAM STATISTICAL
INFORMATIO!
Fig. 1 Flow of data in the MIMOLA

software system

Modules must have at least one port for
doing input or output. Some groups have a
fixed number of ports (e.g. dyadic operators
have three: two for input and one for output),
others have a varying number of ports (e.g.
storages). Ports are identified by the direc-
tion characters < and > and by a name.

Each port has up to four inputs or three
inputs and one output: function input, ad-
dress input, control input and data input or
output. Inputs and outputs are identified by
the standard attributes .FCT, .ADR, .CON, and
«DAT. The latter is assumed by default.

Inputs and outputs have fields of one or
more bits. Fields can also be described by
symbolic names; in this case the correspon-
ding bitnumbers may be defined in a more re-
fined design step. Input fields can be viewed
as multiplexers if there is more than one
source for a field. In this case the field
has an associated multiplexer address input
field. This field can be identified by a
«MPX attribute.

Sources in their most general form are
concatenated subranges of fields of ocutput
ports. Concatenation can be expressed by the
star operator.

By writing all the names and attributes
one after the other, one can create and ad-
dress all nodes in the data structure. Addi-
tional attributes and syntactic rules allow
the modification of entries in the nodes. By
this means the user has complete control over
the data structure in the declaration part
and therefore can fully specify all the hard-
ware. It is up to him to create meaningful
hardware structures.

The declaration has been divided into two
parts: .
1. Declaration of connections (sources)
using the ADDCONNECTION command,

2. Declaration of the other data struc-
ture nodes using the ADDMODUL command.
We include an example in order to demonstrate
the relations between the various descriptive
tools.

The following block diagram

1
4
4 {
R2’ R1
11:8 11:8 I
15:8
y
11:0 \1? : 8 / \‘7 : 047
A {1,15:0
ADR <> DAT
DATA
SMAIN
<> >
DMA INSTR
Fig. 2 Hardware block diagram

may be declared in MIMOLA as

60

ADDMODUL

SMAIN<>DMA , SMAIN >INSTR,
SMAIN<>DATA.ADR.BIT(11:O),
SMAIN<>DATA.DAT.BIT(15:8,7:0),
R1> ,R1<¢ ,R2> ,R2< ;

ADDCONNECTION
SMAIN<>DATA.DAT.BIT(15:8) =-> R1.BIT(15:8) /
R2.BIT(11:8) % R1.BIT(11:8);

The allocator converts this into
data structure:

following

Module Source

Group

Hardware data structure

Fig. 3
Allocator

When the software system analyses a pro-
gram part, it must find the correspondence
between the language expressions and the
hardware, represented by the hardware data
structur hds. This is done by the hardware
allocator which does the resource management.
If there is not enough hardware to execute
the ustatement in parallel, the allocator de-
termines what additional hardware may be de-
fined. The amount of additional hardware is
restricted by the declaration. If the neces-
sary extensions are not allowed, the alloca-
tor gives a pseudo error indication, thereby
stimulating the compiler to divide the micro-
statement. Other errors, like writing concur-
rently into the same destination, are also
indicated but do not stimulate the compiler.

The resources which the allocator must
distribute are input fields and the code of
the microinstruction. Output fields can be
accessed concurrently; the allocator only
indicates their use for statistical purposes.
Output port allocation is necessary, however,
because most output ports contain function
or address inputs at which conflicts might
occur.

Conflicts normally are recognized by an
attempt to use the same bit of the same input
field by different sources not under mutually
exclusive conditions. Conflicting jumps are
only a special case in that they would result
in a conflict at a program counter input
field. Two problems unfortunately are undeci-
dable for the allocator:

1. In some cases mutual exclusion cannot
be checked before run time. In this case the
allocator assumes there is no mutual exclusion
and possibly indicates too many errors.

2. If more than one input port of a sto-
rage or stack with non-constant addresses is
present in the same microstatement, the allo-
cator does not know whether they are equal.

It assumes they are not equal, because expe-~
rience has shown that even warnings by the
allocator would be too numerous to be indivi-
dually examined by the user.

By 'microinstruction' we mean one instruc-
tion word of the program storage. There is no
state-sequencing while one instruction is
valid; therefore it is called microinstruc-
tion. We do not assume a machine language
level exists. A microinstruction consists of
fields of bits. Fields are used to steer the
address inputs of storages, function inputs
of operators, enable inputs, and multiplexer
addresses. Normally each field is dedicated to
one such input; sharing one field among
-different inputs may be declared.

By 'microstatement' we mean the descrip-
tion of the entire state transition from one
clock cycle to the next.

A microoperation is the transition of a
subset of bits, e.g. S(a):=R1l.

Resource management for the microinstruc-
tion consists of assigning a symbolic value to
the microinstruction's fields the first time
these fields are needed in the current mi-
crostatement. In the case of symbolic ad-
dresses for example; the alphanumeric identi-
fier is assigned to the corresponding micro-
instruction field. While assigning a diffe-
rent identifier in the same microstatement
is a conflicting use of the resource 'micro-
instruction' a second use of the same identi-
fier is allowed. This assignment process com-
bines resource management and microprogram
generation in a natural way. Therefore the
allocator is capable of acting like a micro-
program assembler. However, it is advisable
to use a different program for code genera-
tion for the sake of program modularity and
a less complex software system.

The allocator reads its input out of
small intermediate connection-describing re-
cords. The original intermediate structure
is completed by insertion of default values
for directions and for bitnumbers/names. If
the microinstruction is the source, a symbo-
lic subrange depending on the name of the
destination is taken as the source bit speci-
fication. Otherwise if the input does not
have a different field width, the standard
attribute .WORD is taken.

Automatic horizontal migration on the mo-
dule and port level is inherent to the idea
of a MIMOLA design system. Two such features
have already been included in the software
system:

1. The omission of port names for stacks
and storages indicates that the allocator
shall select suitable ports. The allocator
then will first try to find a port where the
address connection already exists and is
usable. If no such port exists, the user may
choose to take the first free port or to op-
timize data connections. In the second case
the allocator tries to find a port where the
required data connection already exists and
is usable. If there is more than one port

61

with the required data connection, the one
with the most frequently used connection is
taken. This optimization is essential for the
design process because it tries to create few
frequently used connections instead of scat-
tering uses over the set of all possible con-
nections. The designer's part of the optimi-
zation process is to delete some unfrequent-
ly used connections whose usefulness could
not be foreseen by scanning only once over
the entire program.

The automatic allocation of ports is one
of the degrees of freedom in the design space
which is used by MIMOLA.

The allocator will create new ports if
the current number is not sufficient and if
creation is allowed. The maximum number of
ports may be declared in the declaration. If
no new ports are allowed, the allocator will
stimulate the compiler to split the micro-
statement.

2. If more than the present number of
operators is needed, the allocator tries to
create duplicates of existing operators. The
number of allowable duplicates may be de- |
fined in the declaration.Compiler stimulation
is used as above.

The compiler may add the default bitnum-
bers, portnames and names of duplicates to
the syntax tree. Later dumping of the termi-
nal symbols in the tree then results in a
more refined version of the source program.

Proceeding this way from microstatement
to microstatement, the allocator creates an
image of hardware which may execute the
given input. 'Used' - flags are the input
to the statistical analyser, and pseudo-
errors cause the splitting of certain micro-
statements. If a high level functional des-
cription is input, the allocator will convert
the inherent parallelism into parallel hard-
ware. Using a high level input for the allo-
cator avoids the machine level bottleneck.
Conventional machine languages can also be
used as input in order to study utilization
factors of conventional hardware structures.

Compiler

The compiler is triggered by pseudo-
errors from the allocator when splitting of
the current microstatement is necessary. It
takes the syntax tree as its input, and the
output is a syntax tree of microstatements
which may run on the hardware. The compiler
calls the statistical analyser when a micro-
statement is free of pseudo-errors.

The output program is in a canonical form
due to the splitting algorithm4:
if there are pseudo errors
then call testrecursiv;
check if splitting requires buffering
in order to maintain program semantics;
find optimal sequence of ustatements
such that buffer requirements are mini-
mal;
call testrecursiv "buffering can cause
pseudo errors";
minimize buffer use
fi;
insert default bitnumbers, portnames, dupli-
cate names;
call dump processor to put out new program;
call statistical analyser;
stop;

procedure testrecursiv
begin

0. let the first nodes of the syntax tree be-
long to non-jumping unconditional uopera-
tions, followed by conditional loperations
and finally the jump class umoperations.
if noperations are in error because of a
use of the required hardware in the same
uoperation, store the source of the connec—,
tion in a temporary cell and continue with
step 1 as long as there are such errors.
if there are error-free unconditional
poperations, make a separate ustatement
out of them together with error-free
unconditional poperations else goto 4.
call testrecursiv for the remaining uope-
rations.
if there are conditional poperations left
then take the errorless part of the first
conditional uoperation and make a ustate-
ment out of it ’
else return
if the THEN part contained errors make a
microstatement out of it.
if the ELSE part contained errors
microstatement out of it.
make a ustatement out of the rest of the
original ustatement (e.g. jumps)
8. call testrecursiv of steps 5 - 7.
end;
The user may choose to use registers or a RAM
storage module with at least three ports as
temporary storages.

An example is given for the resulting new
programs:

INPUT:

ADDMODUL SA > A(#FFFF:0), SA<>B(#FFFF:0);
"storage with an output and a bidi-
rectional port, other module and
the connections will be declared
by appearance in the program"

make a

"one port missing in each pstatement"
BEGIN
Lone SA(a):=SA(b)/SA(c)->B1(+);
Ltwo IF SA(R1)-—>A1(.INCR).BIT(3)
THEN R1:=S8A(b), SA(b):=R1, GOTO Lone
ELSE R1:=8A(d), R2:=SA(e)
FI, R3:=F1;

PROGRAM

END

OUTPUT:

PROGRAM BEGIN

Lone.1 Rtmp_101:=SA>A(b) /SA>B(c)->B1(+);

Lone.2 SA<B(a) :=Rtmp_101;
Ltwo.1 Rtmp_101:=R1, R3:=F1,
IF SA>A(R1)->A1(.INCR).BIT(3)
THEN R1:=SA>B (b)
ELSE R1:=SA>B(d), GOTO Ltwo.3
FI;
Ltwo.2 SA<B(b) :=Rtmp_101, GOTO Lone.1;
Ltwo.3 R2:=SA>A(e);
END

Statistical Analyser

The hardware allocator identifies all con-
nections which have been used in a microstate-
ment. If all pseudo-errors have been resolved
by splitting the microstatement, a statistical
analyser uses this information in order to
compute the necessary information for the de-
sign process. The unequal importance of dif-
ferent microstatements may be expressed by
defining different weighting factors. The fol-
lowing information is computed:

62

1. frequency of module uses
This information is required in order to
know all the modules which shall be deleted
in the next design step.

2. frequency distribution of the number
of ports required in Jstatements
It is counted, how many times parallel execu-
tion of a mustatement requires n (Osne9) ports
of a storage module. The number of concurrent
uses of different ports of the same module
determines the number of independant ports
in the final design.

3. frequency of uses of a particular port
This information determines the utilization
factor of particular ports.

4. frequency of connection uses
Connections are basic cost factors and the
frequency of their use is needed in an eco-
nomic design.

5. joint frequency distribution of con-
current module and port uses
Often a hardware unit may be substituted by
another hardware unit, e.g. an incrementer
by an arithmetic function box (horizontal
migration). The joint distribution indicates
whether the substitution of two or more units
by a single unit would significantly increase
the number of microstatements. The same is
true of ports of storages and stacks. For
example, two ports with different direction
which are rarely used concurrently may be
substituted by a single bidirectional port.

6. Estimation of run-time
It is assumed that addressing of storage
ports, propagation through operators, micro-
instruction reading and the write cycle of
storage ports each require one unit of time.
Overlapping is considered correctly.

Manual setting of weighting factors for
the ustatements is important for this compu-
tation.

First Results

A selection of subroutines of the IBM
scientific subroutine package has been manu-
ally converted to MIMOLAS5S. This selection has
then been used as input to the MIMOLA Design
System. The number of allowable storage ports
has been varied from unlimited to one. The
number of operators has been varied, holding
the number of ports fixed to one and four.
Cost factors of storages, operators, multi-
plexers and connections have been estimated
and the resulting costs have been computed
for the different designs. Fig. 4 shows the
resulting curves for runtime, cost, and the
product of both. Notice that there is a mini-
mum for four ports of the main storage, far
away from classical architectures. Improving
the minimization of connections, which is our
next task, will decrease the costs of multi-
port architectures while the cost of the one-
port architecture will remain fixed.

Final Remarks

A software system has been built which
aids in the design of digital processors with
a top-down method described in'. It can pro-
cess the large number of input statements ne-
cessary to get significant statistical infor-
mation. The system now will be applied to va-
rious design problems and will be further ex-
tended if there is a need to do so. It is
written entirely in Standard PASCAL and there-

300¢

200}

80¢

40

30

20

60L

Runtime

Cost » Runtime

Cost

10
-1 : : 1« <« | 1
FPR2 27 6 5 1inp.,2autp., 1 bigir. 35 3% I I L &
isRo 71 1 1 1 54 33 87 FEYT ;
gpjs 22 2 2 2 1 1 1 W2 2 2 2 2

tmplR RR R R R R S § S S R R R R R §

P : number of ports of main memory
A/B: number of simple operators
BMD: number of units for multiplication or division
tmp: intermediate storage method: R = register, § = RAM
+ : shift-operations replaced by multiplication/division
§ : 2 function-boxes instead of separate add-,subtract-,and
8 : 1 common address compare-units

Fig. 4 Cost and speed of different
architectures

fore is portable. It has been implemented on
a SIEMENS 7.760, a DECSYSTEM-10, and a UNIVAC
1100. Storage requirements are 400 - 500 k
bytes on the SIEMENS and 100k words on the

UN

IVAC.
References

G. Zimmermann: The MIMOLA Design System:

A Computer Aided Digital Processor Design
Method, Design Automation Conference
Proceedings, Vol. 16, 1979

P. Marwedel: Algorithms and Data Structures
for a MIMOLA Design System, Report of the
Institut fiir Informatik und Praktische
Mathematik, Kiel, 1979 (forthcoming)

G. Schlageter, W. Stucky: Datenbanksysteme:
Konzepte und Modelle, Stuttgart, 1977

U. Zimmermann: Diploma Thesis, Kiel, 1979
(forthcoming)

K. Schultze: Systematischer Entwurf eines
Prozessors mit der Sprache MIMOLA,

Diploma Thesis, Kiel, 1978

63

