THE MIMOLA DESIGN SYSTEM

A COMPUTER AIDED DIGITAL PROCESSOR DESIGN METHOD

G. Zimmermann

Institut fir Informatik und Praktische Mathematik
Universitdt Kiel, D 23 Kiel 1, W-Germany

Summary

A top-down design method is presented.
The design starts with an algorithmic descrip-
tion of the problems and attempts to find an
optimal hardware structure for the solution
of the problems. Comparisons with methods
using hardware and functional descriptions
are included. The application of the macro
processor is explained.

Introduction

A computer aided design method may be
used to cut down the time and cost of a de-
sign process, while trying to achieve the same
results in performance and economics of the
product as a human designer. This approach is
of interest if the design costs are high com-
pared with production costs. Examples are the
design of digital circuits or simple micropro-
cessors, using large scale integration tech-
niques. This is one of the objectives of the
RT-CAD project1'2.

The objective of our system is the design
and optimization of complex digital proces-
sors. In such tasks the human designer needs
help in making the best choices in the vast
design space. This help is given by our de-
sign system. Thus we do not speak of an auto-
mated, but of a computer aided, interactive
design. The human intelligence and the compu-
ting facilities are combined to find better
designs in a reasonable amount of time. This
method will be explained in this paper; fur-
ther details of the design system are given in
another paper3.

Problem Definition

Hardware Description

Many hardware design methods are based on
CHDL's (Computer Hardware Description Lan-
guages) . Using languages like CDL, DDL and
ERES, given computer structures can be des-
cribed for simulation purposes, however, the
proof of correctness by syntactical checks is
poor and the expression of algorithms is dif-
ficult, due to the nonprocedural behaviour.
The main handicap of these methods is the
wrong direction of the design: the starting
point is a more or less detailed hardware de-
sign, not the problem description.

Our system allows nonprocedural hardware
descriptions - DECLARATION's - during the
stepwise; interactive design process. The de-
sign language is MIMOLA4, a procedural CHDL
that is also suited as a HLL to describe algo-
rithms. The hardware level is the register
transfer level; the action level is the state
transition or microprogramming level. The des-

53

cription of this state transition of the syn-
chronous automaton, which models the computer
structure, is called & microstatement. It is
commonly interpreted as a word of microcode
in a program memory.In the MIMOLA syntax a mi-
crostatement begins with "L" (label) and ends
with ";". Declarations use an extended subset
of MIMOLA.

SP

ADR

CRAD
MADR
th - csM
1 FB
CRAC

MRP
a b | CRP

Figure 1: Simple Processor Example

DECLARE
ADDMODUL
SM<A(16384:0) .BIT(15:0), SM>A .
"main memory, 16k, 16 bits, 2 ports" ,
SP(1024:0) .BIT(21:0) "microprogr.mem.',
RAC.BIT(9:0) "accumulator" ,
RAD.BIT(15:0) "address register" ,
RP.BIT(9:0) "program counter" ,
A(.INCR) "monadic operator" ,
B(+,-,.a,.b) "adder" ,
I.BIT(21)CRP.BIT(ZO)MRP;BIT(19:18)FB
.BIT(17)CRAC.BIT(16)CSM.BIT(15)MADR
.BIT(14)CRAD.BIT(13:0)ADR
"microprogram word, field names” ;

Figure 2: Modul Declaration

Fig. 2 shows the declaration of the mo-
dules of a sample computer in fig. 1. It is
not possible to give a complete definition of
MIMOLA here. In Appendix A some of the terms
are explained. The examples can be understood
by comparing software and hardware together
with the “comments".

Fig. 3 completes this to a full declara-
tion of the hardware. The MIMOLA design sys-
tem transforms these declarations into a data
base3 which contains all the information
about the hardware.

ADDCONNECTION
"declaration of data, address and
control paths"
B<a <- SM>A,"memory out to adder input"
B<b <- RAC,
B.FCT <= I.FB "microprogram field to
adder function control",
RAC <~ B "adder out to accumulator",
RAC.CON <~ I.CRAC "accu load enable",
RAD <- B, RAD.CON <- I.CRAD,
SM<A <~ B, SM<A.CON <- I.CSM,
SM.ADR <- I.ADR / RAD "address field
and address register via multiplexer
to address port of memory"
SM.ADR.MPX <- I.MADR "address multi-
plexer control" ,
RP <- A / I.ADR, RP.CON <- I.CRP,
RP.MPX <- I.MRP,
A <- RP, SP.ADR <~ RP;

ENDDECLARE

Figure 3: Connection Declaration

Functional Description

A top-down design should start with a de-
finition of the function. The function of a
digital automaton or processor can be ex-
pressed in a procedural formal language. If
this language is a CHDL and if we are able to
define a complete set of functions, we call
this a functional description. A given set of
machine instructions is a good example of a
base for a functional description of a pro-
cessor.

There are two ways to write a descrip-
tion:

1. If we define every detail of the exe-
cution on the microprogramming level, there
is no free design space in the transformation
from the functional description to the hard-

-ware description. This transformation is '
called the allocation process. Fig. 4 gives

a functional description of 6 microstatements
in MIMOLA. The allocator transforms this to
the hardware of fig. 1.

2. In order to expand the allocation pro-
cess design space, we have to raise the level
of the functional description. On this higher
level the designer can describe the semantics
of the functions without giving execution de-
tails. Fig. 5 is an example of a transforma-
tion of Fig. 4 to a higher level.

If the original intention was to calcu-
late i:=j+k and jump to "label", with i, j,
k in memory SM, we can use an even higher
level of functional description as shown in
Fig. 6.

A correct transformation of a functional
description to a hardware structure will
assure that the hardware will execute the
functions correctly. This is the main advan-
tage over a hardware description. The cor-
rectness of the functional description is in
the field of program correctness and beyond
the scope of this paper. A simulation on the
starting level might be useful.

The hardware design will be only as de-=
tailed as the description is. Cn the RT-
level, modules like adders and memories are
language primitives and are assumed to behave
according to their description. If the avai-

Figure 4:

lable modules differ from the assumed ones,
there exist three possibilities:

1. The designer designs new "ideal" mo-
dules, using a conventional design method.
This is useful for theoretical investigations
and for small series or it may lead to new
commercially available modules.

2. If the first way is to expensive, the
designer can try to add some hardware to
existing modules to construct "ideal" inter-
faces.

3. The MIMOLA description has to be adap-
ted to the available modules. This may lead
to a performance degradiation and to unstruc-
tured designs. '

Lload RAC := SM(I.ADR) / X = B{(.a),
RP := RP -> A(.INCR);
"load accumulator from memory"

Lstore SM(I.ADR) := X / RAC — B(.b),
RP := RP -> A(.INCR);
"store accumulator in memory"
Ladd RAC := SM(I.ADR) / RAC -=> B(+),
RP := RP -> A(.INCR);
"add to accumulator"
Lladr RAD := SM(I.ADR) / X = B(.a),
RP := RP -> A(.INCR);

"load address"”
Laddind RAC := SM(RAD) / RAC => B(+),
RP := RP -> A(.INCR)};
"add to accu indirect"
Ljump RP := I.ADR; "uncondit. jump"

Functional Description

Lload RAC := SM(I.ADR);

Lstore SM(I.ADR) := RAC;
Ladd RAC := SM(I.ADR) / RAC => B(+);
Laddind RAC := SM(SM(I.ADR)) / RAC

~-> B(+);

Ljump RP := I.ADR;

Figure 5: High Level Functional Description

Laddjump SM(1i) := SM(Jj) / SM(k) => B(+),
GOTO Label;
"symbolic addressing"

Figure 6: Algorithmic Description

The Description Level

Fig. 4 - 6 have shown that the level of
the description can be changed. What is the
highest possible description level?

In the "Lload" statement, the transforma-
tion from Fig. 4 to Fig. 5 minimized the num-—
ber of data paths. This class of transforma-
tions does not change the semantics and the
state transitions. The highest possible de-
scription level is equivalent to the shortest
MIMOLA expression.

In a second class of transformations the
level is raised by decreasing the number of

microstatements or state transitions. This
can be done by parallel execution of sequen-
tial order-independent statements or by
building more complex expressions, avoiding
the storage of intermediate results. This
process may be supported by reordering the
statements and restructuring conditional
branches.

As far as these transformations do not
alter the essential state transitions of the
automaton, they will be considered as per-
missible. Thus the highest level of the de-
scription will only contain the essential
state transitions.

The problem has now been shifted to the
guestion: what are the essential states?

In the case of a traffic light con-
troller the answer is easy: Every state
transition changing a light is essential. If
the function of machine instructions are de-
scribed, every instruction must be represen-
ted by at least one state transition. It is
unessential on the ASSEMBLER-level if "shift
accu 8 times left" is executed in one or 8
state transitions. Some complex instructions
will need more than one state.

Problems arise if we have to deal with
more complex functions. A common problem is
the calculation of the Fourier transforma-
tion. We could look at the whole transforma-
tion as one state transition. Normally the
FFT algorithm is used. It is possible in
MIMOLA to expréss the FFT in one microstate-
ment, but such a description would be at
such a high level that the realization of
the hardware would be too difficult.

An algorithm is normally executed in
program loops. In a synchronous automaton a
loop has at least two states: the begin -
identified by a label - and the end of the
loop with a "GOTO label”. Both states may be
identical. Similar cases are subroutine
CALLs and RETURNs. In our design system we
call this "reasonable level" MIMOLA-§. Its
exact position is determined by the program-
mer.

Algorithms can be expressed without ex-
licit state transitions by data flow lan-
guagesd, functional languages as proposed by
Backusb, or the "value trace" in the RT-CAD
project 2. We can define these descriptions
as the highest possible level. These high
level descriptions have not yet directly
been included in our design system.

Asynchronous Operations

Our present intention is to design syn-
chronous automatons. Asynchronous operations
may occur on three levels:

1. MIMOLA can express concurrent state-
ments and spatial sequential operations in
one microinstruction. The internal tree re-
presentation of a microinstruction has a
great similarity to a data flow graph. The
difference is in the clock transition that
synchronizes all storage operations. Thus
deadlocks and races are prevented.

2. Asynchronous concurrencies on the RT-
level overlapping several state transitions
are forbidden in MIMOLA because deadlocks
and races cannot be excluded in general.
Such constructions are allowed in many CHDLs
and cause trouble in the hardware implemen-
tation.

55

3. On a processor level these synchroni-
zation problems arise on a level transparent
to the programmer. High level synchronization
tools can be included in concurrent programs
and built in hardware. This solution is pre-
ferred in our system as long as algorithms
for the distribution of programs into concur-
rent processes do not exist. Thus the problem
can be reduced to the independent design of
several processors as in 1.

Algorithmic Description

In our example of a FFT-function we have
already reached a high problem level. The de-
scription is not given in terms of machine
instructions but in terms of an algorithm.
the goal is to design a processor only ca-
rable of executing this function, we can
still speak of a functional description. In
the more general case the problem will be to
design a processor for one or several classes
of algorithms, where only very general speci-
fications of the classes exist. Typical
classes are arithmetic problems, signal pro-
cessing, text processing, information sys-
tems, compilers and operating systems. This
is the problem we attack by our design sys-
tem. It is no longer possible to define a
complete set of functions or algorithms, but
we must select a set of representatives of
the classes weighted according to their im-
portance in the proposed application of the
processor.

This set must be large enough to decrease
the influence of selection or estimation er-
rors in the statistical mean. Thus the de-
scription will become very redundant. This
redundancy together with the weights will be
used for statistical analysis in the design.

The description is now no longer functio-
nal and we call it algorithmic. Special cases
with limited function sets as our FFT example
will be included here.

A language to describe algorithms should
be powerful and descriptive. Therefore seve-
ral HLL structures are included in MIMOLA:

If

FOR FROM BY TO WHILE DO OD
IF THEN ELSE FI

CASE- OF THEN THEN ... ELSE ESAC
CALL , RETURN , GOTO

These instructions have no unique hardware
representation on the RT-level. Their seman-~
tics are not fixed in MIMOLA but should be
close to other HLL. The semantics have to be
declared by macros throughout the design pro-
cess. In this way the design space can be ex-
tended by macros.

In addition to these built-in macros user
macros can be inserted and declared. This is
a powerful tool in MIMOLA to introduce new
HLL-structures like semaphores, monitors, or
complex addressing schemes. Besides keeping
the program source small, it allows the de-
signer to experiment with different algo-
rithms.

The Design Method

The design goal is to find an optimal
hardware structure for a given set of algo-
rithmic descriptions under given constraints.
Measures for the optimum and constraints are

execution speed, costs, space and power con-
sumption and program and microprogram sto-
rage requirements.

The design space contains the parameters:
number of physical modules (memories; alu's,
shifters), number of memory ports, function
sets, address space, number of data paths,
multiplexers and buses, microinstruction
wordlength and module delay times. In addi-
tion there exists an algorithmic design
space.

At the state of the art it is impossible
to find ananalytical solution of this optimi-
zation problem. In our opinion we are far
from an algorithmic solution. We use an in-
teractive approach to get enough experience
to transfer interactions to automatic actions.

Problems
Algorithms

MACRO MIMOLA Hardware
Declaration Programs Declaration
I SYNTAX
{ ANALYZER !
) Designer
2
MACRO
PROCESSOR
COMPILER
. hardware
ALLOCATOR Description
]
STATISTICAL Statistics | |
ANALYZER Performance

/’_‘\\\~_//

MIMOLA
Programs

Figure 7: Design Method Flow Chart

Fig. 7 shows the designer's view of the
software system. Starting with a MIMOLA-§
program set and unrestricted hardware resour-
ces, the syntactical correctness is checked.
In addition to error printouts warnings are
generated pointing out errors that influence
the program execution but not the hardware.
Examples are "undefined label" and "unde-
fined macro". As long as no hardware con-
straints are in effect, the COMPILER action
is zero. The ALLOCATOR will add new resour-
ces to the data base as long as no frees can
be found there. The resources are mainly mo-
dules and connections. After every state
transition the resources are free again and
can be used in the next microstatement. Thus
the data base contains the union of all re-
source needs for all microstatements in the
input program set. Local optimization strate-~

56

gies are used to minimize the union.

At this point the data base contains a
hardware description of a processor that can
execute the programs in the original number
of state transitions and with our definition
of MIMOLA-¢. This is the minimum number of
transitions or the performance maximum. Usu-
ally cost constraints will forbid this solu-
tion.

The task of the designer is to restrict
the hardware in a way that he tries to go
backwards through the design space always as
near to the performance maximum as possible.
He can estimate the performance reduction due
to resource restrictions from statistical va-
lues, generated by the STATISTICAL ANALYSER.
Measured is the number of times F(r) a re-
source r is used in the program set. These
measurements will be realistic only if
FACTOR's are included in the calculation that
represent the probability of the occurrence
of a statement in the intended environment of
the processor. If the microstatement i in
the program k is executed n(i,k) times in a
loop and k is called m(k) times in the mean
in a time period T, the factor is

FACTOR(i,k)=n(i,k) x m(k) .
The frequency F(r) is calculated from

F(r) =3, 2,, FACTOR(i,k) x B(i,k,r) ,

B(i,k,r) is 1 if the resource r is used in
the microstatement i,k; O otherwise.

N =2, 2., FACTOR(i k)

is the number of microprogram steps or clock
cycles that occur in time T. This is a rough
measurement of the processor time consumption
of all sample tasks that are processed in T.
The exact time is

£ =2, 2,4 FACIOR(1,k) x 1T(i,k)
where 1T(i,k) is the executions time of the
microinstruction i,k. It depends on the lon-
gest data path in the instruction, and can be
calculated from individual delays in the re-
sources.

If t
o

t / t
The ratio U(r)=F(r)/N denotes the utilization
of a resource. As the allocator first tries
to minimize the use of resources and then will
select resources in a definite order, the uti-
lization distribution for equal resources,
e.g. different ports of a memory module, will
show strong differences. Small U(r) will indi-
cate candidate resources for deletion. Further
information is provided by joint usage sta-
tistics.

The factors n and m cannot be calculated
by the system as no simulation is done. They
must be supplied with the programs. In the
case of loops they can often be calculated
or estimated. In other cases measurements
will be appropriate. With operating systems as
input problems, it would be impossible to run
a simulation in a correct environment on the
MIMOLA-level. If we use an existing operating
system the most correct achievable factors can
be obtained by measurements. Many implementa-
tions offer some of these data for tuning pur-
poses.

is measured on the MIMOLA-@ level,

is a relative performance measure.

The task of the designer will be to re-
duce the costs of the MIMOLA-¢ level hard-
ware structure. He will start with high-cost
low~utilized resources, e.g. memory ports.
He can delete these resources from the data
base by DECLARATION's. At the same time fur-
ther declarations of this resource can be
forbidden.

When the program set is processed the
next time, more resources will be demanded
in some microstatements than are available.
In most cases the compiler can solve these
problems by sequentialization, introduction
of storage cells for intermediate results
or restructuring. Unresolvable situations
will be reported to the designer. In such a
case he can revise his declaration or try to
find a solution not known to the ALLOCATOR
or the COMPILER. The last can be performed
for the short term by macros and will later
lead to software systems improvements.

The effect of the compilation and primary
of the declaration can again be seen in the
statistics. If the hardware reduction is
done in small steps, it is possible to keep
the design always as near to the performance
optimum as possible. The iteration stops
when the design constraints are fulfilled.

The Macros

The standard macros of MIMOLA have al-
ready been mentioned. Macros generally make
it possible to postpone decisions on execu-
tion details until a later cycle in the de-
sign process. The semantics of the macros are
fixed by convention or by the programmer.

An example of the first type is the refe-
rence to an array element in the memory S.

In MIMOLA this can be expressed e.g. by

S (array-name [S(i),S(j)]) .

There exists a design space in the choice of
an algorithm to calculate the effective ad-
dress. A simple one is:

S (array-name/S(i)->B(+)/S(j) /dimension
=>B(*)=>B(+))

Now the hardware to execute this expression
can be allocated.
The tool for expanding the macro is a ma-
declaration. The MACRO PROCESSOR compares
all syntax trees of the programs with the
tree of the macro to be replaced. The re-
placement is made in the tree structure. The
PROCESSOR is not limited to standard or user
macros but can replace nearly every expres-
sion in a microstatement. Thus the algorith-
mic design space is extended. This tool
must be handled very carefully to avoid
changing the semantics or introducing errors.
Another example is the

Ccro

CALL subroutine (parameters)

macro statement. The semantics will depend
on the type of the subroutines and parame-
ters. Recursive and nonrecursive subroutines
will require different algorithms. This is ‘a
decision about the task of the processor. In
the design itself general hardware decisions
have to be made. Different stack concepts
are known. The macro facility gives the de-
signer the possibility of experimenting with
different concepts to find a solution that

57

fits into the already designed structure.

User-defined macros open a new possibili-
ty. In cases where the language is inadequate
and the programmer wants to express an opera-
tion with known semantics but unknown execu-
tion details, a macro can be used. Again ex-
periments with different replacements can be
made. Examples are semaphore operations:
Mp(..) , Mv (..), or a special call:

Mcall monitor (..).

Thus the macros are. valuable tools for ex-
ploring the algorithmic design space and for
defining the details that will lead to a com-
plete hardware design. An example of the lat-
ter is the definition of the control part of
the processor. The choice of a special algo-
rithm will have the result that the hardware
will have the best performance if this algo-
rithm is used in the later application. This
is the responsibility of the compiler de-
signer. It does not mean that other algo-
rithms cannot be executed. To assure more
flexibility, different algorithms can be de-
fined concurrently by duplicating the state-
ments and using appropriate weights.

Conclusion

The language MIMOLA is capable of de-
scribing hardware, functions and algorithms.
The hardware description is the result of an
interactive design process starting with a
functional or an algorithmic description. It
describes the modules on an RT-level and all
connections of data, functions, addresses and
control lines.

Starting with a functional description
that defines every state transition in de-
tail, the MIMOLA Design System software will
produce a full hardware description in one
pass. This fulfills the demand for a low cost
and fast design process.

A higher level functional description of
a given instruction set of a computer opens
a greater design space. An optimal solution
will require several passes through the sys-
tem and a human designer's interaction. A
project with the IBM 370 instruction set is
in progress to allow a comparison of our de-
sign with real machines.

As the instruction sets build an artifi-
cial bottleneck, our main purpose is to
start on the higher problem level and go
down to the great possibilities of micropro-
gramming. The step back to an intermediate
language that can be interpreted by the hard-
ware is a future goal of our system. This
will only be done if a code compression can
be achieved on this way.

Today many people speak about computer
networks, multi-minis and multi-micros as a
solution towards higher performance. In our
opinion the single processor has not yet
reached its optimum performance. If we can
find structures that will increase the per-
formance, many difficulties with computer
networks can be avoided.

The state of the project is as follows:
The MIMOLA Software System, written in
PASCAL, has been implemented and is used for
several applications. Further improvements
in the COMPILER and the MACRO PROCESSOR
will be added. A FORTRAN-MIMOLA compiler?
exists, and a MIMOLA-microcode translator
is under construction. The main goals at the

moment are applications. A special purpose
processor for a scientific subroutine 1li-
brary has been constructed using the me-
thod8. The translation of operating systems
to MIMOLA has been started.

Appendix A

In this section some of the MIMOLA nota-
tions are listed. The complete syntax of the
LR(1) Grammar, the semanticg and examples
are collected in the Report#.’

Modules:

XYYdzZz (aaa) .FFF

X module group: 1 letter
S storage
R register
K stack
A monadic operator
B dyadic operator
v bus

YY module name, free

a port direction

< input
> output
<> bidirectional

77 port name, free
aaa address, function: output ports; con-
‘ stants, identifier
FFF attribute, e.g. description of sub-
fields
Connections:

Explicit in the declaration part:

III <= 000,000,...
III Input port, connected via multi-
plexer or bus with

000 output ports.

Implicit in the program part:

000 => A(aaa) expression: input ports
of monadic /

dyadic operators are con-
nected to the output
port(s) of module(s).
Complex expressions in
postfix notation can be

constructed

000/000 - B (aaa)

microinstruction; the
value of the expression
is stored in the desti-
nation DDD

DDD:= expression

Time dependence:

microinstruction, microinstruction,..;

microstatement: all storage opera-
tions in the microinstructions are
executed synchronously (state tran-
sition of the automaton). The pro-
gram counter is incremented automa-
tically if not otherwise stated.

Laaa

58

References

L.J. Hafer, A.C. Parker, "Register-Trans-
fer Level Digital Design Automation: The
Allocation Process". Design Automation
Conference Proceedings, Vol. 15, 1978.

E.A. Snow, D.P. Siewiorek, D.E. Thomas,
"A Technology=-Relative Computer-Aided
Design System: Abstract Representations,
Transformations, and Designh Tradeoffs",
Design Automation Conference Procee-
dings, Vol. 15, 1978.

P. Marwedel, "The MIMOLA Design System:
Detailed Description of the Software
System” 16th Design Automation Confe-—
rence Proceedings, 1979.

G. Zimmermanh, "Report on the Computer
Architecture Design Language MIMOLA",
Bericht des Instituts fir Informatik und
Praktische Mathematik, Universitdt Kiel
Nr. 4/77/1977.

J.B. Dennis, "First Version of a Data
Flow Procedure Language", Lecture Notes
in Computer Science, Vol. 19, pp. 362-
376, Springer-Verlag, 1974.

J. Backus, "Can Programming Be Liberated
from the von Neumann Style? A Functional
Style and Its Algebra of Programs",
Comm. of the ACM, Vol. 21, 8, p. 613-
641 (1978).

K. Kasprzyk, "Entwicklung eines FORTRAN-
MIMOLA Compilers fiir den Entwurf wvon
Rechnerstrukturen", Diplomarbeit, Uni-
versitdt Kiel, 1978.

K. Schultze, "Systematischer Entwurf eines
Prozessors mit der Sprache MIMOLA",
Diplomarbiet, Universitdt 1978.

