

The Design of a Subprocessor with Dynamic Microprogramming

with MIMOLA

Peter Marwedel
Institut fur Informatik and

Praktische Mathematik
Olshausenstr. 40-60 2300 Kiel
1 W.-Germany

Abstract
MIMOLA is a language for the optimized design of digital processors, based

upon computing resource utilizations for typical programs. It has been used for

the design of a well-structured, fast, parallel and microprogrammable processor.

Although not larger than a conventional minicomputer, it is about 26 times

faster. It proves, that microcode need not be larger than equivalent

machinecode. This paper also discusses possible architecture alternatives with

low cost/performance ratios.

O. Introduction

MIMOLA is a language for the top-down design and description of

computer hardware.

The conventional computer aided design starts with a description of a

computer structure /Bre/. The design system then faciliates the step-wise

refinement of the design but it does not explore the cost/ performance tradeoffs

in the design space. In conventional systems, simulations measure performance

only roughly. Simulation times are rather high (for that reason, CASSANDRE was

extended by LASCAR /Bor/). Therefore only few sets of input parameters can be

tested. Furthermore, many systems use non-procedural languages (i.e. languages

without implicit control flow like e.g. CDL /Chu/). It is hard to write a large

number of programs without implicit control flow. Therefore only a small number

of programs is simulated and the result is an unreliable performance estimate.
Therefore the new language MIMOLA was defined /Zim 77/.

 165

1. Designing with MIMOLA
MIMOLA allows us to estimate performance and cost of digital struc-

tures. It is a procedural language (i.e. the flow of control is simi

lar to conventional programming languages. ike PASCAL). This makes it

possible to write such a large number of algorithms in MIMOLA that

reliable performance estimates can be derived-For this purpose MIMOLA

is problem-oriented. But at the same time it is easy to give software

statements a hardware meaning. One of the tools for this is a macro

processor /Hol/. Any sequence of MIMOLA symbols, that can be reduced

to a single symbol, can be replaced by any other sequence of symbols.

High-level language (HLL) elements like e.g. FOR .. TO, WHILE .. are

special cases of macros. The processor allows parameters and consi

ders the types of parameters. This flexible macro mechanism is missing

in HDL /Hof/.

After the HLL elements have been replaced, part B of our MIMOLA Software

System (MSS)/MaZ/ is able to map all language expressions into hardware /Mar/.

Cost computation is based on the fact that a structured hardware description

(consisting e.g. of modules and ports) is generated. Hardware may but need not

be predeclared. The declaration allows to put a limit on the resources that

can be used by a program. Intermediate steps are automatically inserted if

this is a way to get round hardware limitations /UZi/. By insertion of

intermediate buffering and new jumps, original semantics remain unchanged.

After the software/hardware mapping the MSS computes cost/performance

characteristics and utilization statistics. This includes for example the first

and second order utilization frequencies of modules, ports and the fields of the

microinstruction. Instead of computing repeat counts for microsteps by

time-consuming simulations,the MSS uses a different and new approach: the user

may manually set weighting factors for the microsteps. In a number of cases it

is easy to determine these factors: In matrix computation they are normally

equal to a power of the matrix dimension, for sorting and searching statistical

methods may be used /Knu/ and for operating systems hard- or software monitors

measure statistics more realistic than simulators.

A MIMOLA design starts with a set of typical application programs for the

target processor /Zim 76, Zim 79a/. The MSS maps these-programs into hardware

and computes utilization statistics. A large amount of hardware is usually

required due to some highly parallel parts of the input program. The resources
will be used inefficiently and the designe

 166

may limit the resources to those declared in a hardware declaration. The MSS

will do those transformations on the input program that are necessary in

order to make the programs executable on a limited hardware. Statistical

analysis of the transformed programs allows the repetition of the process

until a good cost/performance relation is obtained.

2. Design and Implementation of the SPDM /KSc,WSc/

After the definition of the design method it had to be applied to a real

problem. The large speed of highly parallel, microprogrammable computers had

already been proven by an older design /Zim 75/. This was a special purpose

processor that was coupled through a fast DMA-channel to a general purpose

minicomputer and therefore the processor was called a subprocessor with dynamic

microprogramming (SPDM). This asymmetric double-processor structure speeds up

lengthy computations by a significant factor while there is no need to design a

new operating system with assembler, compilers and editor.

It was decided to apply the MIMOLA design method to systematically design

a SPDM, using the IBM Scientific Subroutine Package (SSP) /MOD/ as a

representative for scientific calculations. Fortunately the SSP does not

contain I/O-statements and only a low number of called routines. Therefore we

can load all called subroutines into the SPDM and need not interrupt the

execution process until a complete SSP subroutine has been executed.

18 subroutines of different mathematical areas of the SSP were selected

because we assumed that 18 routines 'provide a sufficient statistical basis. The

SSP is written in FORTRAN, this allows an easy translation of the SSP to MIMOLA.

Sequential FORTRAN flow was translated into parallel MIMOLA microsteps. At an

average, between two and three FORTRAN statements were put into a single

microinstruction step (c.f. /Kuc/). Conditional FORTRAN statements were translated

to IF .. THEN .. ELSE .. FI . Nested conditions within one microstep were not

used.

These 18 routines were then analysed by a preliminary version of the MSS

(allowing only statistical analysis). Table 1 shows how often certain function
or storage modules are required for the initial MIMOLA version.

167

This table shows that there should be at least 3 memory ports in each

direction in addition to the DO-loop index storage. Large memory circuits with

more than an input and an output port are not available. However, a lot of memory

references is to a low number of local scalar variables. Therefore, a separate

small multi-port memory can reduce the load on the main memory. With the

integrated circuits SN 74172 two input- and two output-ports (with one common
address) can be easily implemented.

The mapping of functions to

function boxes was based upon

the second order frequency

distribution of used functions.

This led to five function boxes

(c.f. Table 2). Other functions

are implemented as subroutines.

The 18 input routines were then transformed by hand such that they fitted

into this limited hardware and the MSS statistical analyser computed utilization

statistics for modules and connections. Modules were now used more efficiently.
However, there was a large number of infre

168

quently used connections. The number of connections was reduced by: a) replacing

shift operations by multiplications and divisions b) replacing a ROM used for

constants by a reference to a preloaded RAM c) replacing DO-loop counters by a

second multi-port RAM d) replacing memory to memory transfers by an addition of

zero.

Table 3 is a comparison of the hardware requirements and the estimated
runtime for the three mayor design steps.

Fig. 1 shows the block diagram of the final design.
The hardware was implemented by an experimental module system, containing

for example 16 bit ALU's with look-ahead, multiplexes-units and different

storage modules. Flat cables are used for 16 bit data paths. This system eases

testing. The total system includes about 670 integrated circuits, most of them

MSI except for the memory chips.

The SPDM (slave) is coupled to the MODCOMP II (master) by a customdesigned

channel /Ber/ that has complete control over the MODCOMP's internal buses and uses

the full memory speed (0.8 usec/16 bit) of the MODCOMP II. While the SPDM is busy,

the channel may disable operations in the MODCOMP (except DMA-Transfers) or return

the control to the master. If the control is returned to the master, the SPDM may

interrupt it upon completion. Hence, parallel operation in the MODCOMP is

possible.

3. Results

W

This table shows that the SPDM increases the speed by a factor of about 29 if

the program is preloaded in the SPDM and by about 16 if it is not. This is about

the factor the floating point unit speeds up floating point operations. The SPDM

is far more flexible than a floating point unit and costs are not very different

if memory prices keep going down.

SPDM-execution times are calculated for GAMMA, LEP, MINV, SIMQ and

measured for MATA and RANK.

Some people believe that the codesize of microprograms is larger than the

codesize of equivalent machine language programs. As can be seen from table
5 this is not true for the SPDM.

First experiments with automatic code-generation with the aid of the MSS

resulted in about 10 % more code compared to hand-translation. Therefore the SPDM

needs about as much code as the MODCOMP II, even if suboptimal code-generation is

used.

For further results we use the MSS instead of the real SPDM. This has the
following advantages:

 17

- Statistical results can be obtained with the statistical analyser of

 the MSS more easily than with a logic state analyser

- The time characteristics of the hardware can be changed by declara

 tion. This allows us to study the effects of memory access times,

 multiplication times etc.

- The structure of the hardware can be changed.

However, we have to guarantee that the repeat counts for the statements and

the time that is required to execute a statement are computed correctly.

Therefore (and in order to speed up MSS analysis) we choose a subset of five

matrix routines of the SSP with repeat counts equal to a power of the matrix

dimension. The MSS computes a total execution time for subroutine MATA that is

20 % larger than the value measured by Schulz and a total execution time for

MINV that is 18 % shorter than the time computed by Schultze. Differences are

due to incomplete time specifications for the SPDM and therefore we do not

attempt to reduce them now.

As a first application of the MSS we determine how much the fast modules

contribute to the speed of the SPDM. To that end we assume that we had to build

the SPDM with modules that have the same speed as those in the MODCOMP. For

example, multiplications need 6.42 µsec (instead of 0.3 µsec) and divisions

need 10.74 µsec (instead of 0.6 µsec). Reading and writing from or to the main

(core-) memory requires between 0.3 µsec (access-time) and 0.8 µsec

(cycle-time) in the MODCOMP. Using 0.3 µsec for the read access-time and for

write data hold-time the SPDM would be 5.37 times slower than the actual SPDM,

using 0.8 µsec it would be 7.31 times slower. This means that the SPDM would

still be 26.5/7.31= 3.62 ties faster than the MODCOMP, even if we had to wait a

full memory cycle for every read and write operation.

Obviously the precise result depends on the amount of multiplications and

divisions in the test program. Furthermore we assumed that a full

microinstruction is read from main memory in one memory cycle. One cannot

completely seperate the influence of the architecture and the module speed

because the MODCOMP has seperate memories faith different access times for two

kinds of instructions while the SPDM has only .one instruction memory.

We conclude that the speed increase caused by the architecture is about

the same order of magnitude as the speed increase caused by the fast
modules.

172

4. Design Alternatives

As a second application of the MSS we examine how effective the

microinstruction of the SPDM is used (Fig. 2)

Although the instruction length is not used very inefficiently, a reduction of

the length by about 20 bits seems to be possible. For this reduction we consider

the use of one instruction field for two controlled destinations. This is possible

if the original field only selects a function, a memory or a multiplexer-address

('select' fields /Nag/) and does not require additional multiplexing bits. The

second order frequency distribution of used instruction fields determines fields

that can be put together. The fields need not be used mutually exclusive.

Microsteps that need fields for both destinations are automatically split into two

instructions by the MSS.

Two possible reductions have been tested: 1. Using the jump address field

also for the address of memory SA port A, thereby saving five bits. 2. Using the

jump address field for the address of port C of memory SA, the address of port A

of memory SR for port A of memory SA and using only one direct address for the

two ports of memory SB. This saves 20 bits. Table 6 shows the resultant changes
in runtime, instruction width and cost (unchanged SPDM = 100 $):

173

The relative reduction of the total cost is not very large because of the cost

of the other modules. - Another four bits can be saved if instruction fields for

multiplexers are included in the code generation. However, the current MSS cannot

yet split microstatements with resource conflicts at multiplexers. But because

there are only few resource conflicts for these 4 bits we may assume we can save

24 bits of 112 (21 $). Further reduction will significantly increase runtime (as

can be expected from Fig. 2).

The present MSS allows us to explore cost/performance relations in the

design space to a larger extend than the designer of the SPDM could. We now may

compare the SPDM to other architectures, including different memories and

operators and a more detailed speed analysis.

At first we analyse the requirements of the mentioned five matrix routines.

After an initial pass through the MSS we limit the hardware resources mainly

following the method that is outlined in /Zim 79b/ we delete all modules and

ports whose ration utilization (in $) divided by cost is below 1. Instead of the

absolute utilization we use the joint utilization of the resource that is to be

deleted and another resource that can serve as a substitute.

For the purpose of this paper we minimize only modules and ports and do not

attempt to minimize the number of connections and the width of the instruction.

We compare three design styles: 1. a processor with a small memory SHLP for

intermediate buffering and a large memory SB. We start with different modules

for different functions. Function boxes with more than one function are

introduced during the deletion process if one module has to take over the job

for one that is deleted. 2. same as 1. except that all local scalar variables

are kept in a small memory SA. 3. same as 2. except that we start with only one
type of function box that can execute all required functions.

174

175

176

Acknowledgement

I want to express my thanks to those

whose work contributed to this paper: R.

Berlinski (fast channel), R. Hollenbach

and U. Zimmermann (MSS), K. Schultze

and W. Schulz (SPDM), and G.

Zimmermann (fundamental ideas).

References

/Ber/ R. Berlin ski: "Ein mikroprogrammierbarer DMA-Kanal zur Rechnerkopplung", Diploma

Thesis, Kiel, 1978.
/Bor/ D. Borrione: "Description et Simulation dune architecture m8lti-Processeur a 1'aide du

language LASCAR", Rapport de Recherche-n 87 ENSIMAG, Grenoble,1977.
/Bre/ Y. Bressy, B. David, Y. Fantino, J. Mermet: "A Hardware Compiler for interactive Realisation

of logical Systems Described in CASSANDRE". Proc.Int.Symp. on Computer Hardware
Description Languages, New York, 1975.

/Hof/ R. Hoffmann: "Rechenwerke and Mikroprogrammierung", Munchen 1977.
/Hol/ R. Hollenbach: " Ein flexibler Makroprozessor fur die Sprache MIMOLA", Diploma

Thesis, under preparation.
/Knu/ D.F. Knuth: "The art of computer programming", Vol. 1, Reading, 1973.
/KSc/ K. Schultze: "Systematischer Entwurf eines Prozessors mit der Sprache MIMOLA",

Diploma Thesis, Kiel, 1978.
/Kuc/ D. J. Kuck, Y.Muraoka, S.-C. Chen: "On the Number of Operations Simultaneously

Executable in Fortran-Like Programs and Their Resulting Speedup, IEEE _C-21 (1972),
1293-1310.

/Mar/ P. Marwedel: "The MIMOLA DESIGN SYSTEM: Detailed Description of the Software
System", Proc. 16th Design Automation Conference, San Diego, 1979.

177

/MaZ/ P. Marwedel, G. Zimmermann: "MIMOLA Report Revision 1 and MIMOLA SOFTWARE
SYSTEM User Manual", Report 2/79 of the Institut fur Informatik and Praktische
Mathematik, Kiel, 1979.

/MOD/ MODCOMP Inc.: "MAX II/III Library: Scientific Subroutine Library", Ft. Lauderdale. 1976.
/Nag/ A. W. Nagle: "Automatic Synthesis of Microcontrollers", Proc. 15th Design

Automation Conference, 1978.
/UZi/ U. Zimmermann: "Ein Compiler zur Sequentialisierung von MIMOLAProgrammen",

Diploma Thesis, 1979.
/WSc/_ W. Schulz: "Realisierung eines Rechnerverbundes aus einem Universalrechner and

einem mit einer Entwurfssprache konstruierten Prozessor", Diploma Thesis, Kiel, 1979.
/Zim 75/ G. Zimmermann: "SPDM - A Subprocessor with Dynamic Microprogramming",

EUROMICRO, Nice, 1975.
/Zim 76/ G. Zimmermann: "Eine Methode zum Entwurf von Digitalrechnern mit der

Programmiersprache MIMOLA", Informatik-Fachberichte, Stuttgart, 1976.
/Zim 77/ G. Zimmermann: "Report on the Computer Architecture Design Language

MIMOLA", Report 4/77 of the Institut fur Informatik and Praktische Mathematik, Kiel,
1977.

/Zim 79a/ G. Zimmermann: "The MIMOLA DESIGN SYSTEM: A Computer Aided Digital
Processor Design Method", Proc. 16 Design Automation Conference, San Diego, 1979.

/Zim 79b/ G. Zimmermann: "Cost Performance Analysis and Optimization of Highly Parallel
Computer Structures: First Results of a Structured Top-Down-Design Method", Proc. Int.
Symp.. on Computer Hardware Description Languages and Their Applications, Palo Alto,
1979.

