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Abstract 
MIMOLA is a language for the optimized design of digital processors, based 

upon computing resource utilizations for typical programs. It has been used for 

the design of a well-structured, fast, parallel and microprogrammable processor. 

Although not larger than a conventional minicomputer, it is about 26 times 

faster. It proves, that microcode need not be larger than equivalent 

machinecode. This paper also discusses possible architecture alternatives with 

low cost/performance ratios. 

 
 
 
O. Introduction 
 

MIMOLA is a language for the top-down design and description of 

computer hardware. 

The conventional computer aided design starts with a description of a 

computer structure /Bre/. The design system then faciliates the step-wise 

refinement of the design but it does not explore the cost/ performance tradeoffs 

in the design space. In conventional systems, simulations measure performance 

only roughly. Simulation times are rather high (for that reason, CASSANDRE was 

extended by LASCAR /Bor/). Therefore only few sets of input parameters can be 

tested. Furthermore, many systems use non-procedural languages (i.e. languages 

without implicit control flow like e.g. CDL /Chu/). It is hard to write a large 

number of programs without implicit control flow. Therefore only a small number 

of programs is simulated and the result is an unreliable performance estimate. 
Therefore the new language MIMOLA was defined /Zim 77/. 
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1. Designing with MIMOLA 
MIMOLA allows us to estimate performance and cost of digital struc- 

tures. It is a procedural language (i.e. the flow of control is simi 

lar to conventional programming languages. ike PASCAL). This makes it 

possible to write such a large number of algorithms in MIMOLA that 

reliable performance estimates can be derived-For this purpose MIMOLA 

is problem-oriented. But at the same time it is easy to give software 

statements a hardware meaning. One of the tools for this is a macro 

processor /Hol/. Any sequence of MIMOLA symbols, that can be reduced 

to a single symbol, can be replaced by any other sequence of symbols. 

High-level language (HLL) elements like e.g. FOR .. TO, WHILE .. are 

special cases of macros. The processor allows parameters and consi 

ders the types of parameters. This flexible macro mechanism is missing 

in HDL /Hof/. 

After the HLL elements have been replaced, part B of our MIMOLA Software 

System (MSS)/MaZ/ is able to map all language expressions into hardware /Mar/. 

Cost computation is based on the fact that a structured hardware description 

(consisting e.g. of modules and ports) is generated. Hardware may but need not 

be predeclared. The declaration allows to put a limit on the resources that 

can be used by a program. Intermediate steps are automatically inserted if 

this is a way to get round hardware limitations /UZi/. By insertion of 

intermediate buffering and new jumps, original semantics remain unchanged. 

After the software/hardware mapping the MSS computes cost/performance 

characteristics and utilization statistics. This includes for example the first 

and second order utilization frequencies of modules, ports and the fields of the 

microinstruction. Instead of computing repeat counts for microsteps by 

time-consuming simulations,the MSS uses a different and new approach: the user 

may manually set weighting factors for the microsteps. In a number of cases it 

is easy to determine these factors: In matrix computation they are normally 

equal to a power of the matrix dimension, for sorting and searching statistical 

methods may be used /Knu/ and for operating systems hard- or software monitors 

measure statistics more realistic than simulators. 

A MIMOLA design starts with a set of typical application programs for the 

target processor /Zim 76, Zim 79a/. The MSS maps these-programs into hardware 

and computes utilization statistics. A large amount of hardware is usually 

required due to some highly parallel parts of the input program. The resources 
will be used inefficiently and the designe 
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may limit the resources to those declared in a hardware declaration. The MSS 

will do those transformations on the input program that are necessary in 

order to make the programs executable on a limited hardware. Statistical 

analysis of the transformed programs allows the repetition of the process 

until a good cost/performance relation is obtained. 

 
 
 
2. Design and Implementation of the SPDM /KSc,WSc/ 
 

After the definition of the design method it had to be applied to a real 

problem. The large speed of highly parallel, microprogrammable computers had 

already been proven by an older design /Zim 75/. This was a special purpose 

processor that was coupled through a fast DMA-channel to a general purpose 

minicomputer and therefore the processor was called a subprocessor with dynamic 

microprogramming (SPDM). This asymmetric double-processor structure speeds up 

lengthy computations by a significant factor while there is no need to design a 

new operating system with assembler, compilers and editor. 

It was decided to apply the MIMOLA design method to systematically design 

a SPDM, using the IBM Scientific Subroutine Package (SSP) /MOD/ as a 

representative for scientific calculations. Fortunately the SSP does not 

contain I/O-statements and only a low number of called routines. Therefore we 

can load all called subroutines into the SPDM and need not interrupt the 

execution process until a complete SSP subroutine has been executed. 

18 subroutines of different mathematical areas of the SSP were selected 

because we assumed that 18 routines 'provide a sufficient statistical basis. The 

SSP is written in FORTRAN, this allows an easy translation of the SSP to MIMOLA. 

Sequential FORTRAN flow was translated into parallel MIMOLA microsteps. At an 

average, between two and three FORTRAN statements were put into a single 

microinstruction step (c.f. /Kuc/). Conditional FORTRAN statements were translated 

to IF .. THEN .. ELSE .. FI . Nested conditions within one microstep were not 

used. 

These 18 routines were then analysed by a preliminary version of the MSS 

(allowing only statistical analysis). Table 1 shows how often certain function 
or storage modules are required for the initial MIMOLA version. 
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This table shows that there should be at least 3 memory ports in each 

direction in addition to the DO-loop index storage. Large memory circuits with 

more than an input and an output port are not available. However, a lot of memory 

references is to a low number of local scalar variables. Therefore, a separate 

small multi-port memory can reduce the load on the main memory. With the 

integrated circuits SN 74172 two input- and two output-ports (with one common 
address) can be easily implemented. 

The mapping of functions to 

function boxes was based upon 

the second order frequency 

distribution of used functions. 

This led to five function boxes 

(c.f. Table 2). Other functions 

are implemented as subroutines. 

The 18 input routines were then transformed by hand such that they fitted 

into this limited hardware and the MSS statistical analyser computed utilization 

statistics for modules and connections. Modules were now used more efficiently. 
However, there was a large number of infre 
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quently used connections. The number of connections was reduced by: a) replacing 

shift operations by multiplications and divisions b) replacing a ROM used for 

constants by a reference to a preloaded RAM c) replacing DO-loop counters by a 

second multi-port RAM d) replacing memory to memory transfers by an addition of 

zero. 

Table 3 is a comparison of the hardware requirements and the estimated 
runtime for the three mayor design steps. 

Fig. 1 shows the block diagram of the final design. 
The hardware was implemented by an experimental module system, containing 

for example 16 bit ALU's with look-ahead, multiplexes-units and different 

storage modules. Flat cables are used for 16 bit data paths. This system eases 

testing. The total system includes about 670 integrated circuits, most of them 

MSI except for the memory chips. 

The SPDM (slave) is coupled to the MODCOMP II (master) by a customdesigned 

channel /Ber/ that has complete control over the MODCOMP's internal buses and uses 

the full memory speed (0.8 usec/16 bit) of the MODCOMP II. While the SPDM is busy, 

the channel may disable operations in the MODCOMP (except DMA-Transfers) or return 

the control to the master. If the control is returned to the master, the SPDM may 

interrupt it upon completion. Hence, parallel operation in the MODCOMP is 

possible. 

 
 
 
3. Results 
 
 



 

 

W 



 

 

 

 

This table shows that the SPDM increases the speed by a factor of about 29 if 

the program is preloaded in the SPDM and by about 16 if it is not. This is about 

the factor the floating point unit speeds up floating point operations. The SPDM 

is far more flexible than a floating point unit and costs are not very different 

if memory prices keep going down. 

SPDM-execution times are calculated for GAMMA, LEP, MINV, SIMQ and 

measured for MATA and RANK. 

Some people believe that the codesize of microprograms is larger than the 

codesize of equivalent machine language programs. As can be seen from table 
5 this is not true for the SPDM. 

First experiments with automatic code-generation with the aid of the MSS 

resulted in about 10 % more code compared to hand-translation. Therefore the SPDM 

needs about as much code as the MODCOMP II, even if suboptimal code-generation is 

used. 

For further results we use the MSS instead of the real SPDM. This has the 
following advantages: 
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- Statistical results can be obtained with the statistical analyser of 

 the MSS more easily than with a logic state analyser 

- The time characteristics of the hardware can be changed by declara 

 tion. This allows us to study the effects of memory access times, 

 multiplication times etc. 

- The structure of the hardware can be changed. 

However, we have to guarantee that the repeat counts for the statements and 

the time that is required to execute a statement are computed correctly. 

Therefore (and in order to speed up MSS analysis) we choose a subset of five 

matrix routines of the SSP with repeat counts equal to a power of the matrix 

dimension. The MSS computes a total execution time for subroutine MATA that is 

20 % larger than the value measured by Schulz and a total execution time for 

MINV that is 18 % shorter than the time computed by Schultze. Differences are 

due to incomplete time specifications for the SPDM and therefore we do not 

attempt to reduce them now. 

As a first application of the MSS we determine how much the fast modules 

contribute to the speed of the SPDM. To that end we assume that we had to build 

the SPDM with modules that have the same speed as those in the MODCOMP. For 

example, multiplications need 6.42 µsec (instead of 0.3 µsec) and divisions 

need 10.74 µsec (instead of 0.6 µsec). Reading and writing from or to the main 

(core-) memory requires between 0.3 µsec (access-time) and 0.8 µsec 

(cycle-time) in the MODCOMP. Using 0.3 µsec for the read access-time and for 

write data hold-time the SPDM would be 5.37 times slower than the actual SPDM, 

using 0.8 µsec it would be 7.31 times slower. This means that the SPDM would 

still be 26.5/7.31= 3.62 ties faster than the MODCOMP, even if we had to wait a 

full memory cycle for every read and write operation. 

Obviously the precise result depends on the amount of multiplications and 

divisions in the test program. Furthermore we assumed that a full 

microinstruction is read from main memory in one memory cycle. One cannot 

completely seperate the influence of the architecture and the module speed 

because the MODCOMP has seperate memories faith different access times for two 

kinds of instructions while the SPDM has only .one instruction memory. 

We conclude that the speed increase caused by the architecture is about 

the same order of magnitude as the speed increase caused by the fast 
modules. 
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4. Design Alternatives 
 

As a second application of the MSS we examine how effective the 

microinstruction of the SPDM is used (Fig. 2) 

Although the instruction length is not used very inefficiently, a reduction of 

the length by about 20 bits seems to be possible. For this reduction we consider 

the use of one instruction field for two controlled destinations. This is possible 

if the original field only selects a function, a memory or a multiplexer-address 

('select' fields /Nag/) and does not require additional multiplexing bits. The 

second order frequency distribution of used instruction fields determines fields 

that can be put together. The fields need not be used mutually exclusive. 

Microsteps that need fields for both destinations are automatically split into two 

instructions by the MSS. 

Two possible reductions have been tested: 1. Using the jump address field 

also for the address of memory SA port A, thereby saving five bits. 2. Using the 

jump address field for the address of port C of memory SA, the address of port A 

of memory SR for port A of memory SA and using only one direct address for the 

two ports of memory SB. This saves 20 bits. Table 6 shows the resultant changes 
in runtime, instruction width and cost (unchanged SPDM = 100 $): 
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The relative reduction of the total cost is not very large because of the cost 

of the other modules. - Another four bits can be saved if instruction fields for 

multiplexers are included in the code generation. However, the current MSS cannot 

yet split microstatements with resource conflicts at multiplexers. But because 

there are only few resource conflicts for these 4 bits we may assume we can save 

24 bits of 112 ( 21 $). Further reduction will significantly increase runtime (as 

can be expected from Fig. 2). 

The present MSS allows us to explore cost/performance relations in the 

design space to a larger extend than the designer of the SPDM could. We now may 

compare the SPDM to other architectures, including different memories and 

operators and a more detailed speed analysis. 

At first we analyse the requirements of the mentioned five matrix routines. 

After an initial pass through the MSS we limit the hardware resources mainly 

following the method that is outlined in /Zim 79b/ we delete all modules and 

ports whose ration utilization (in $) divided by cost is below 1. Instead of the 

absolute utilization we use the joint utilization of the resource that is to be 

deleted and another resource that can serve as a substitute. 

For the purpose of this paper we minimize only modules and ports and do not 

attempt to minimize the number of connections and the width of the instruction. 

We compare three design styles: 1. a processor with a small memory SHLP for 

intermediate buffering and a large memory SB. We start with different modules 

for different functions. Function boxes with more than one function are 

introduced during the deletion process if one module has to take over the job 

for one that is deleted. 2. same as 1. except that all local scalar variables 

are kept in a small memory SA. 3. same as 2. except that we start with only one 
type of function box that can execute all required functions. 
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