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INTRODUCTION 
 
The design of a digital system can typically be split into phases, which are 
defined here as: 
 

Architectural Design: Specification of the behavior and design of the system as 
built from subsystems. 

 
Subsystem Design: Transformation of the behavior into a register transfer level 

structure. 
 

Logic and Circuit Design: Refinement of register transfer level modules down to 
the gate and circuit level. 

 
Physical Design: Transformation of the structure into a physical implementation. 

 
Software design is excluded here. Firmware design is viewed as part of the control 
structure design, and thus, is done during the subsystem and logic design phases. 
 
Due to the complexity of all of these tasks, there is a strong need for computer 
aids. Historically, the development started with simulators for all phases, and 
graphical aids for the physical design. The first synthesis tools were developed 
for printed circuit board layout. Currently, an enormous effort is devoted to 
synthesis tools for LSI and VLSI. The total physical design area has become of 
prime interest for CAD. 
 
In the other design phases, the development of synthesis tools has already begun. 
PLA synthesis is a well-known example for logic design aids. Subsystem synthesis 
is in progress in a few laboratories; architectural synthesis is still far-off. 
 
Although, or maybe because, the architectural and structural design phases are 
critical for the performance and cost of a digital system, designers are hesitant 
to believe in synthesis aids. I will, therefore, try to explain what synthesis in 
these two phases can do for the designer, where the current limitations are, and 
what the topics for further research are. First, the structure of the design 
process and synthesis in general will be introduced. Then an overview of the 
current status and existing problems in the architectural and subsystem design 
phases will be given. 
 
The first three design phases contribute more than 60% to the total design costs, 
on the average. Since in VLSI the design costs form a considerable part of the 
product cost, small savings made by using design aids can result in considerable 
savings in the product cost. 
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In addition, decisions made at the architectural or subsystem level strongly 
influence the manufacturability of a system. "Front-end" tools at these levels can 
help make the right decisions, and reduce the necessity for design iterations 
through the total physical design process. Synthesis offers "front-end" 
capabilities. Expensive design iterations also result from functionality and 
performance failures. Verification by construction (synthesis) is a much stronger 
tool than by analysis (simulation) for detecting failures early in the design 
process. Thus, computer aided synthesis can provide considerable aids for the 
designer, in reducing the design costs or achieving better products. 

ANALYSIS is the evaluation and checking of the implementation against the 
specification. Typical tools are: simulators, design rule checkers, timing 
analyzers, and fault simulators. 
SUPPORT functions are necessary to speed up timeconsuming tasks. Examples are 
graphical aids, language translators, macro expanders and schematic generators. 

SYNTHESIS is the actual design, the transf ormaton: 
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appears to be widely accepted now. 
DOMAINS: BEHAVIORAL, STRUCTURAL, PHYSICAL 

A BEHAVIORAL description is purely functional. For example, the instruction set 
manual of a microcomputer describes its behavior without revealing almost any 
information about its internal structure. The behavior of a logic black box can be 
described by its truth table. 
 
A STRUCTURAL description contains only information about named boxes and their 
interconnections. Only if we know the behavior of a box can we derive the behavior 
of the described subsystem. Schematics are examples of structural descriptions. 
 
A PHYSICAL description is the information about the physical implementation. It is 
mainly geometric information, as for example, mask data. 
 
The interesting relation between the domains is that for a specified behavior, many 
structural implementations exist, but for a specified structure, there is only one 
behavior. The same relation exists between the structural and physical domains. 
Thus, synthesis involving design decisions only proceeds in the direction: 

In each domain we may have subdomains. For instance, the behavior can be expressed 
in applicative or procedural languages, as formal specifications or as state 
transition graphs. Translations between different subdomains involve degrees of 
freedom and thus, can be called synthesis. 
 
In every domain or subdomain, we have another dimension: The LEVEL OF DETAIL. In 
structured programming, we make use of a hierarchy of levels of detail to reduce 
the complexity of every design step. In hardware we do the same. For example, in 
the physical description there are some natural levels, such as cabinet, rack, 
board, carrier, chip, and some artificial, such as macro- or microcell. The choice 
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of the artificial levels depends upon the application and comprehensiveness. The 
register transfer (RT-level) for instance, has become a useful level throughout 
behavior and structure, and is supported by many languages. Figure 1 gives an 
overview of the total description structure. The levels of detail are only 
examples, and are not meant to be complete. 

Applying the structure of description 
domains and levels of detail on the 
specification of a synthesis step, we 
can talk about four parameters (see 
Figure 2). The SUBSYSTEM is the module 
we are dealing with at this point of the 
design. It may be the total system or 
any piece of it. We can locate it at a 
certain level of detail which it 
represents. The SPECIFICATION of the 
SUBSYSTEM is composed of PRIMITIVES, 
which can be located in a domain and at 
a level of greater detail than the 
subsystem. The SYNTHESIS creates an 
IMPLEMENTATION of the same subsystem. 
The subsystem is now described by 
primitives or PARTS in another domain 
and level. The level of detail of the 
parts 

cannot be greater than that of the primitives, without additional information. 

Locating these four parameters in the description space helps us to understand what 
inputs synthesis requires, what outputs it provides, and how several different 
syntheses can be connected in a structured design process. 
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We can proceed with the design through subdomains and domains, if we use the 
implementation of one synthesis as specification of the next one, as shown in 
Figure 3. 

We can refine an implementation by 
making the parts of a synthesis the 
subsystem of the next, as shown 
in-Figure 4. It should be noted that we 
have to specify every level. Thus, 
refinement cannot be done without 
additional information) This is often 
provided by libraries, by manual 
interaction, or by other syntheses. 
Synthesis cannot invent the refinement! 
 
So  far, we have simplified the  
specification.We have only used the part  
that can be transformed. Areal
 specification  
also contains other parameters, such as  
constraints, design objectives, design  
rules, and predefined parts. These 

parameters are defined in different locations of the description space, or even at 
the product level. However, their influence on design decisions is not local. For 
instance, a specified chip area and layout rules are important criteria for 
evaluating results from system synthesis. This means that the synthesis steps in a 
structured design are highly related to each other. 

In order to make the synthesis steps as 
independent of each other as possible, 
and yet consider the relations, we add a 
special evaluation capability to the 
synthesis that controls the use of the 
design space. Figure 5 Shows the 
resulting feedback loop. The evaluation 
is based on a model of the rest of the 
design process. This model can be 
analytical, can be based on statistical 
evaluations of similar designs, or it 
can be a fast simulation of the 
following design steps (fast 
prototyping). In either case, we get an 
approximation of parameters that 

cannot be directly measured at the level of the synthesis step. Such an 
approximation is normally enough to select a feasible or best version out of 
several trials, or to control the synthesis process directly. This is a problem of 
global optimization /3/. 
Another problem we have not attacked here, is that the levels of detail do not 
always match across the description domains. The physical implementation enforces 
some packaging levels that may be different from useful behavioral levels. This 
problem can be solved by introducing some intermediate levels at the interfaces 
between domains, with the help of partitioning and composition steps.- These 
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can be seen as special syntheses. Partitioning and composition are nontrivial and 
need additional research. This problem shows that the breakdown of the design 
problem into connected synthesis steps is not as regular and straightforward as it 
may seem from looking at Figures 3 and 4. Figure 6 is more realistic, but still a 
feasible example. 

SUBSYSTEM CLASSIFICATION 
In the introduction we used the terms architectural, subsystem, and logic design. 
These terms make sense in the context of one system, but they mean different 
synthesis problems if we talk about different systems, as for example, a 
distributed system or a traffic light controller. Therefore, we classify the 
synthesis problem by system or subsystem characteristics, rather than by the 
mentioned terms. If we restrict ourselves by excluding logic and physical design, 
two major classes remain: 
 

CONCURRENT SYSTEMS 
SYNCHRONOUS SYSTEMS 

 
CONCURRENT SYSTEMS include distributed systems, multiprocessors, data flow 
machines, and macro pipelines. Primitives are at the level of processing units, 
memories, devices and communication channels. 
 
SYNCHRONOUS SYSTEMS include processing units, controllers, memory units, device 
drivers, and communication interfaces. Internal synchronous and asynchronous 
parallisms, like pipelining, are possible. Primitives are typically at the 
register-transfer level. 
 
We will deal with these-two classes separately. In the following chapters, we will 
show the state-of-the-art, and pose some questions to our knowledge. In doing so, 
we will only refer to selected publications, without covering the entire area. 
 
CONCURRENT SYSTEMS SYNTHESIS 
 
In determining the synthesis problem, we must first discuss the DESIGN SPACE. One 
degree of freedom is the choice of architecture. The decision between central and 
decentral control in distributed systems is only one example. It is already 
difficult to even specify 
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the behavior of a system, independent of the architecture. Therefore, we are far 
from considering the automation of this step, but the provision of analysis tools 
would be a very appropriate step forward. 
Another degree of freedom is the partitioning of the behavior into concurrent 
subtasks. We have the same problem as above: to find an unpartitioned specification 
for the behavior. Languages like CAP /4/, SARA /5/ and CSDL /6/ assume a 
partitioning. An achievable goal would be the evaluation of a partitioning, and the 
use of a synthesis tool to repartition. Synthesis tools could be used to generate 
model structures for the evaluation. 
 
Accepting the behavioral partitioning and the communication between subtasks, the 
mapping on a structure allows considerable design space. If the cited concurrent 
system description languages prove to be general enough, they can be used as input 
specification for a synthesis that does this mapping. Again, evaluation of the 
performance and cost of the synthesized structure is very important and can be 
supported by a synthesis tool for the parts of the structure. These parts are 
normally in the class of synchronous systems. 

Let us explain this evaluation, using Figure 7. Let I be the synthesis that creates 
the structure we want to evaluate. Its parts are at the processor level and we 
cannot say much about their parameters in general. In a top-down design, their 
parameters are typically determined by the next design step. Evaluation I can 

either assume 
parameters and pass 
these in the 
specification to  the 
next design step, or, 
as in Figure 7, we can 
use a system 
specification that is 
refined beyond the 
processor level. 
Synthesis I determines 
an intermediate level 
(dashed line). 
Synthesis II generates 
structures for the 
parts based on  the 
information in  the 

original specification. Evaluation II provides rough estimates of the parameters of 
the parts of Synthesis I. Synthesis II does not try to optimize, it is only used 
for fast prototyping. The parameters can be corrected for average optimization, but 
they are normally precise enough to control the design space of Synthesis I. 
Otherwise, this method can be extended hierarchically. 
 
By emphasizing the evaluation first, and then the synthesis, we can learn from the 
human designer, before we try to automate his reactions. Much more experience with 
concurrent systems is necessary before synthesis can become realistic. 
 
Simulation is another possibility for evaluating designs, but certainly not as 
efficient as analytical evaluation, together with synthesis. Simulation is also 
useful for design validation. Combined with constructive correctness by synthesis, 
validation of 
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concurrent systems designs seems to be in reach. 
 
Much work is still needed in the specification of concurrent systems. The current 
description languages still include too many implementation details to really be 
able to use the full design space. Also, the problem of correctness proof of the 
specification has not yet been sufficiently solved. 
 
The state-of-the-art is the manual partitioning of concurrent systems into 
synchronous subsystems, and this leads to the next class of problems. 
 
SYNCHRONOUS SYSTEMS SYNTHESIS 
 
Synthesis of synchronous systems is much more advanced than that of concurrent 
systems. This is due to the fact that many more manual designs have been done, and 
form a basis of design experience for automation. The two oldest implementations 
of synthesis aids are the CMU-DA system /7/ and the MIMOLA Software System (MSS) 
/8/. 
 
We will use the two cited systems as examples. Barbacci already showed the 
importance of the design space, in 1973 /9/. We will, therefore, start with its 
exploration. 
 
The "user" machine can be seen at many different levels. Its behavior can be its 
ability to solve problems, or to execute a high level or intermediate language; its 
behavior can be its instruction set or its state transition diagram. These levels 
form a hierarchy with considerable design space between them. The available design 
space depends upon the application, but it also depends on our specification 
capabilities to be able to make use of the design space in synthesis. 
 
The current capabilities are procedural or nonprocedural CHDL's. ISPS /10/ was 
designed to describe instruction sets. MIMOLA is a high level microprogramming 
language /11/. The uses of applicative languages, petrinets based languages, 
p-notation, calculus-based specification or relational descriptions have not yet 
been successfully demonstrated in synthesis. None of these languages solve the 
problem of describing behavior in a canonical form. There are, for instance, many 
different ways to describe an instruction in ISPS, although the description in the 
processor manual may be quite unambiguous. Only at the state transition level can 
we use truth tables as canonical descriptions of behavior. 
 
One technique to decrease this problem is to allow for behavioral transformations, 
which are very similar to program optimizations. The CMU-DA system uses the 
optimization of the Value Trace /12/ for this purpose. Another technique is the 
specification rule in the MSS, to describe algorithms with much higher parallelism 
than will be implemented. The compiler then transforms from there to a more 
sequential level, during resource binding. 
 
A description at the "problem solving" level opens the largest design space. 
Problems are solved by algorithms, with computers. Currently, this transformation 
from the problem to an algorithm is done manually. We call the output an 
"algorithmic description." In MIMOLA, HLL features, such as loop constructs, 
procedure calls, conditional statements, and user defined macros, support 
algorithmic descriptions. We call all of them macros, because they do not 
represent register-transfers. Only register-transfers can be mapped 
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onto structures. Macros 
must  be 
expanded. 
In MIMOLA the semantic of the macros is design 
space, which is determined by the designer. 
Additional degrees of freedom at the 
algorithmic level are, for example, the 
selection of addressing transformations, 
complex function implementations, data 
representations and event handling. 
 
The transformation from the algorithmic to the 
register-transfer level is a refinement .step 
in the behavioral domain. At the moment, the 
only known synthesis tool is the type of macro 
processor such as that of the MSS (Figure 8). 
We call this transformation mapping, because 
no design decisions are made. The 
specifications of the macros are provided by 
the designer or by a library. The interesting 
feature here is again the evaluation that 
makes use of fast prototyping by synthesis. 
This allows the designer to control the design 
iterations in the feedback-loop. The next 
design step is the transformation of the 
RT-level behavioral description into a 
structural implementation. This can be done by 
either the CMU-DA system or the MIMOLA 
Software System (MSS). 
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The CMU-DA system is shown in Figure 9. As can be seen, it is divided into four 
steps, each of which is a synthesis. The separation into data path and control 
path has grown historically. The problem with this separation is that the. 
performance of the subsystem highly depends on both paths, and they should, 
therefore, be optimized in parallel. This will be done in a future version of the 
DA system /7/. 
 
The MSS is shown in Figure 10. Data path and control path syntheses are not 
separated. The MSS has some internal optimization capabilities, and also provides 
evaluation of generated structures for an external feedback loop. It also accepts 
structural specifications for predefined structural details. This input is also 
used to control the synthesis process, without changing the 

Figure 10 
Structural Synthesis Loop of the MSS 

behavioral specification. Another feature is the generation of microcode as part 
of the controller implementation. This feature can be useful beyond the design, in 
using the MSS as a microprogram compiler with HLL input. We will use this system 
as an example to explain a synthesis tool, and show its positive features and its 
problems. More details can be found in /8, 13, 14, 15, 16, 17/. 
 
Let us again first look at the DESIGN SPACE. Not all of it will be available in 
all designs, but very often a portion of design space is traditionally not used 
because of cost or interconnect limitations, unavailability of off-the-shelf 
parts, or other reasons. Especially using LSI or VLSI techniques,- many of the 
limiting parameters have changed and we should evaluate the total design space for 
every new design. Synthesis and evaluation tools help the designer to do this 
quantitatively and quickly. 
 
The DESIGN SPACE of the register-transfer level can be grouped mainly into 
MEMORIES, OPERATORS, CONTROL and INTERCONNECTS. The following lists are meant only 
to be examples, and are not consistent or complete. 
 
MEMORIES: 

Type: register, randomly, content, or serially addressable, 
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stack, FIFO 
Structure: interleaved, multiport, dimensions, banks 
Speed: technology, register file, cache, mass memory 
Allocation of variables to memories 
Addressing of variables in memories 

 
OPERATORS: 
 Speed, functionality, multiplicity 
 
CONTROL: Type: Moore, Mealy, synchronous, asynchronous, pipelining, 

programmability Interpretation hierarchy Control vector: width, 
decoding, overlapping Condition selection 

 
INTERCONNECT: 
 Selection: bus, multiplexers, time multiplex 
 Speed and width 
 
This is a large design space, even if, for example, the behavior is specified by a 
given instruction set. Let us look only at registers. The instruction set normally 
specifies a set of user-accessible registers, but we still have the choice of 
implementing these as individual registers or as addressable memories (register 
file). Registers can perform functions; register files can have single or multiple 
access (ports). The speed of the registers can vary. This small example already 
shows the manifold of decisions that a designer or a synthesis program must make. 
 
The problem in managing the design space is that the dimensions of freedom are not 
orthogonal. The decision of how registers are implemented influences the data 
paths, the microprogram, the utilization of parallel operators, and the number of 
internal registers that are necessary. This decision will influence the location 
of critical path and the structure of a pipeline, for instance. It is very 
difficult, even for an experienced designer, to watch all of these side affects 
and make the quantitatively best decision. Computer-aided synthesis can help the 
designer get closer to the best decision, or do it faster. Synthesis cannot make 
the optimal decision, because many parts of the optimization problem have been 
proven to be np-complete, and are out of the reach of even fast computers. 
 
STATE-OF-THE-ART OF SYNCHRONOUS SYSTEMS SYNTHESIS 
 
In analyzing the state-of-the-art of computer aided synthesis, we distinguish 
between four tasks: 
 
BEHAVIOR-TO-STRUCTURE TRANSFORMATION Transform any behavioral specification into a 

structure (regardless of physical limitations). 
 
DESIGNER CONTROL Give the designer control over the design space and the synthesis 

process. 
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AUTOMATIC CONTROL 
Give automated synthesis control over the design space, in order to meet 
constraints and design goals. 

EVALUATION Verify that the generated structure meets all requirements of the 
specification (functionality, performance, manufacturability, testability). 
Determine unspecified parameters, and aid decision making. 

 
BEHAVIOR-TO-STRUCTURE TRANSFORMATION 
 
The scope is defined by the register-transfer level behavioral specification. The 
only limit we see in the CMU-DA and the MSS is what can be expressed in the 
languages (ISPS and MIMOLA). Some of these limits have been put in to encourage 
structured design and to enforce certain design rules. MIMOLA, for instance, 
enforces a synchronous clock for all storage devices. This is compatible with 
typical design rules for non-functional testing, using the shift register 
technique. Principally, extensions of the scopes of the specification languages 
will not cause a problem. 
 
In the MSS, the design space is modelled as RESOURCES. The synthesis process is 
the ALLOCATION or binding of RESOURCES to register-transfers in the behavioral 
specification. Figure 11 shows a simple example. The two PASCAL statements are 
manually transformed 

into two MIMOLA statements that are executed in parallel! The data dependency has 
been resolved by inserting the first expression into the second statement. The 
syntax of the MIMOLA statements can be easily understood by comparing it with 
PASCAL, and recognizing the postfix notation for expressions in MIMOLA. S stands 
for storage, and B for a dyadic operator. 
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The transformation into the Flow Graph is done by the MSS. It can also be easily 
understood. The nodes are RT-modules; the arcs are interconnections. The nodes can 
contain control information, which can be either constant or variable (leaves of 
the graph). The graph can be seen as an abstraction of the specification. It is 
nearly independent of the description language. All transformations are done in 
this graph, which also represents the internal data structure of the MSS. ' 
 
Assuming unlimited resources, the ALLOCATION process is straightforward. Scanning 
the graph from top to bottom and from left to right, the MSS binds resources to 
nodes and arcs. This is documented by attaching names to the nodes that identify 
the resources. In doing so, the MSS shares resources as much as possible. For 
example, only two output ports are necessary to read (r) all variables (b,c) from 
memory (S), so the MSS assigns port S>A to address b and S>B to c. In Figure 11, 
there are two operators (B), with exactly identical inputs; the MSS assigns an 
adder B_A. The third operator has a different function, thus, a second module B_B 
is created. Likewise, fields in the microinstruction word I are created. Figure 12 
shows the synthesized structure after the allocation process. In the graph, shared 
resources have been collapsed. Figure 12 also shows the BOUND PROGRAM. This 
represents all structural information contained in the graph and the MICROPROGRAM. 
By a simple assembly step, the microprogram can be converted into microcode for the 
control store, or a PL A. 

The handling of conditional statements is done in nearly the same way, as is shown 
in /8/. The difference is that the detailed implementation depends on the chosen 
control structure. Standard solutions are provided, but are not always 
satisfactory. 
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Sequential use of resources is accomplished by adding multiplexers to module 
inputs, as necessary. 
DESIGNER CONTROL 
Manual control of the design space is mandatory, since full automatic optimization 
is not possible. In the CMU-DA system, the designer has some control, in the way he 
writes the behavioral specification and by changing the Module Data Base. In the 
MSS, the designer can specify resources, put limitations on the number of 
resources, or specify parts of the structure. This gives him nearly complete 
control over the design space that can be expressed in the language. Still, we have 
to work on the interface between designer and synthesis to free him from details 
and allow him to express directly and comprehensively what he wants to control. 
This is a problem of the right design environment for language solutions which 
allow direct interaction. The "Smalltalk" environment /18/ may be a good starting 
point. 
 
Figure 11 may again serve as an example for the control in the MSS. If the 
designer limits the number of operators to one (instead of the three necessary), 
the statements cannot be executed in the parallel fashion. The only operator, B_A, 
would be used sequentially by switching sources and functions. Intermediate values 
are automatically stored in memory locations or registers. Figure 13 

shows a possible structure and 
the generated microprogram. 
The result is a much smaller 
structure, but three state transitions 
instead of one, to execute the same 
function as in  Figure 11. 
 Thus, the designer's  decision to
 use only one operator has resulted in
 trading cost VS. performance. 
 The MSS immediately shows him this 
result. 
 
The designer can control the design space 
in many other ways. Limitations again 
exist in the scope of the languages and 
the ability to automatically react to all 
commands with valid generated structures. 
This is still a field of intense research. 

AUTOMATIC CONTROL 
Automatic control of the design space is valuable, where it frees the designer from 
decisions that involve many details, but that do not need intuition. Such decisions 
are typically based on statistical evaluations. 
 
In the MSS, the statistical basis is the frequency of use of resources. In the 
behavioral specification, the relative frequency of occurance of every instruction 
can be specified, thus showing an approximate dynamic behavior in an assumed 
environment. Resource usage or utilization is thus evaluated dynamically. The 
strategy for 
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selecting resources is principally to use the most highly utilized first. The step 
from zero to greater zero has highest priority, if it involves a new resource. 
Since resources are bound into a structure, this also includes looking at 
connected resources. If we are, for example, requesting an operator, the most 
utilized may have zero utilized connections to the sources. The use would create 
additional interconnections and cost. Avoiding additional cost always has 
priority. This strategy has the ambiguity as to which resource request should be 
considered first. One option is to take the most expensive first. Another is to 
start with the critical path. Another ambiguity lies in the order of statements in 
the specification. In resource selection it may be appropriate to start with the 
most critical first. These may be either those with the highest frequency or those 
with the heaviest time constraint. 
 
The utilization strategy and the "look ahead" to correlated resources 
automatically detects common subexpressions. We have used this feature in Figure 
12. Sharing resources is a mayor cost saving factor in the automatic control of 
the design space. The compiler also utilizes optimization techniques. It tries to 
minimize the number of necessary state transitions and storage cells. Another 
strategy would be to minimize the execution time of individual state transitions. 
 
These examples show that many options and strategies exist to control design space 
automatically. Some options can be selected by the designer in the MSS. It would 
be desirable to let the designer express the strategy. At the moment, however, 
this does not seem feasible, if we look at the programming effort to implement 
only one strategy. Again, we can hope that new programming environments may change 
this. 
 
EVALUATION 
 
Evaluation during the synthesis is used to control the design space automatically. 
Evaluation of the result of synthesis is used to compare manually controlled trial 
designs and to check them against the specifications. 
 
The check for functionality is unnecessary, if we assume a correct specification 
and a correct synthesis. We call this correctness by construction. Since we cannot 
rely on either completely, simulation is used for the behavior and structure, to 
increase confidence in the design. Formal proofs would be desirable and seem to be 
feasible. 
 
Performance evaluations can be done relatively precisely, if the delays of the 
resources are known. The MSS calculates execution times by automatically 
determining the critical path and applying usage statistics. Thus, the dynamical 
timing behavior is measured. Resource delays are not really known before the 
fabrication is completed, but good estimates can normally be achieved. The biggest 
problem is introduced by the uncertainty of media delays in very high speed logic. 
These data are partioning and layout dependent, and we have to rely on models 
derived from experience. These models are an open research problem. 
 
Manufacturability also has to rely on models. Typical limitations are packaging, 
chip area, power dissipation, and cost. Fast prototyping capabilities for physical 
design are the most promising ways to get accurate figures before starting an 
expensive layout cycle. Since technology is changing at a very high rate, this area 
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will be a continuous research problem. 
 
Currently, testability measures are not really existent at the RT-level. The only 
firm basis is the stuck-at fault model. Test generation time or the number of test 
vectors could be used as testability measures. Both are very test generator 
dependent, and rely on gate-level refinements. Better measures must be found. 
 
Parameters that aid design decisions are all of `t he above, plus resource 
utilization figures. The MSS strategy to prioritize the highest utilization in the 
selection of resources has little meaning for the actual usage of a structure, but 
it clearly shows the designer the barely utilized resources. Utilization is an 
indicator of the influence on the overall performance of a device in the case of 
its deletion. Statistics about joint usage of resources point towards possible 
replacements of resources, without performance decrease. Overlay of 
microinstruction fields is a typical example. Thus, these statistics help the 
designer to make his decisions towards meaningful trial designs. In that way, 
random scanning of the design space is avoided. This is very important, since the 
space is much too large to be covered completely. 
 
CONCLUSION 
 
It has been shown that behavioral to structural synthesis still has many 
limitations, and needs additional research efforts. In the case of synchronous 
systems, however, two implementations already offer considerable help to the 
designer. Although it is an additional effort for the designer to become accustomed 
to this new way of thinking about designing, we think that it is now necessary to 
apply these systems to practical problems. Feedback is necessary to evolve these 
prototypes in the right direction, and in Honeywell, we have started to transfer 
the MSS to subsystem designers to let this process begin. 
 
I would like to thank all of the contributors to the MSS at the University of Kiel, 
and my collegues in Honeywell who helped in the difficult technology transfer. I 
expecially have to thank Beth Wolf, who edited and generated the manuscript. 
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