
 COMPUTER HARDWARE DESCRIPTION LANGUAGES AND THEIR
APPLICATIONS: M. Breuer, R. Hartenstein (eds) North-Holland Publishing
Company © IFIP, 1981

COMPUTER AIDED SYNTHESIS OF DIGITAL-SYSTEMS

Gerhard Zimmermann

Corporate Computer Sciences Center
Honeywell Incorporated
Bloomington, Minnesota

U.S.A.

INTRODUCTION

The design of a digital system can typically be split into phases, which are
defined here as:

Architectural Design: Specification of the behavior and design of the system as
built from subsystems.

Subsystem Design: Transformation of the behavior into a register transfer level

structure.

Logic and Circuit Design: Refinement of register transfer level modules down to
the gate and circuit level.

Physical Design: Transformation of the structure into a physical implementation.

Software design is excluded here. Firmware design is viewed as part of the control
structure design, and thus, is done during the subsystem and logic design phases.

Due to the complexity of all of these tasks, there is a strong need for computer
aids. Historically, the development started with simulators for all phases, and
graphical aids for the physical design. The first synthesis tools were developed
for printed circuit board layout. Currently, an enormous effort is devoted to
synthesis tools for LSI and VLSI. The total physical design area has become of
prime interest for CAD.

In the other design phases, the development of synthesis tools has already begun.
PLA synthesis is a well-known example for logic design aids. Subsystem synthesis
is in progress in a few laboratories; architectural synthesis is still far-off.

Although, or maybe because, the architectural and structural design phases are
critical for the performance and cost of a digital system, designers are hesitant
to believe in synthesis aids. I will, therefore, try to explain what synthesis in
these two phases can do for the designer, where the current limitations are, and
what the topics for further research are. First, the structure of the design
process and synthesis in general will be introduced. Then an overview of the
current status and existing problems in the architectural and subsystem design
phases will be given.

The first three design phases contribute more than 60% to the total design costs,
on the average. Since in VLSI the design costs form a considerable part of the
product cost, small savings made by using design aids can result in considerable
savings in the product cost.

331

332 G. Zimmerman

In addition, decisions made at the architectural or subsystem level strongly
influence the manufacturability of a system. "Front-end" tools at these levels can
help make the right decisions, and reduce the necessity for design iterations
through the total physical design process. Synthesis offers "front-end"
capabilities. Expensive design iterations also result from functionality and
performance failures. Verification by construction (synthesis) is a much stronger
tool than by analysis (simulation) for detecting failures early in the design
process. Thus, computer aided synthesis can provide considerable aids for the
designer, in reducing the design costs or achieving better products.

ANALYSIS is the evaluation and checking of the implementation against the
specification. Typical tools are: simulators, design rule checkers, timing
analyzers, and fault simulators.
SUPPORT functions are necessary to speed up timeconsuming tasks. Examples are
graphical aids, language translators, macro expanders and schematic generators.

SYNTHESIS is the actual design, the transf ormaton:

Computer Aided Synthesis 333

appears to be widely accepted now.
DOMAINS: BEHAVIORAL, STRUCTURAL, PHYSICAL

A BEHAVIORAL description is purely functional. For example, the instruction set
manual of a microcomputer describes its behavior without revealing almost any
information about its internal structure. The behavior of a logic black box can be
described by its truth table.

A STRUCTURAL description contains only information about named boxes and their
interconnections. Only if we know the behavior of a box can we derive the behavior
of the described subsystem. Schematics are examples of structural descriptions.

A PHYSICAL description is the information about the physical implementation. It is
mainly geometric information, as for example, mask data.

The interesting relation between the domains is that for a specified behavior, many
structural implementations exist, but for a specified structure, there is only one
behavior. The same relation exists between the structural and physical domains.
Thus, synthesis involving design decisions only proceeds in the direction:

In each domain we may have subdomains. For instance, the behavior can be expressed
in applicative or procedural languages, as formal specifications or as state
transition graphs. Translations between different subdomains involve degrees of
freedom and thus, can be called synthesis.

In every domain or subdomain, we have another dimension: The LEVEL OF DETAIL. In
structured programming, we make use of a hierarchy of levels of detail to reduce
the complexity of every design step. In hardware we do the same. For example, in
the physical description there are some natural levels, such as cabinet, rack,
board, carrier, chip, and some artificial, such as macro- or microcell. The choice

334 G. Zimmerman

of the artificial levels depends upon the application and comprehensiveness. The
register transfer (RT-level) for instance, has become a useful level throughout
behavior and structure, and is supported by many languages. Figure 1 gives an
overview of the total description structure. The levels of detail are only
examples, and are not meant to be complete.

Applying the structure of description
domains and levels of detail on the
specification of a synthesis step, we
can talk about four parameters (see
Figure 2). The SUBSYSTEM is the module
we are dealing with at this point of the
design. It may be the total system or
any piece of it. We can locate it at a
certain level of detail which it
represents. The SPECIFICATION of the
SUBSYSTEM is composed of PRIMITIVES,
which can be located in a domain and at
a level of greater detail than the
subsystem. The SYNTHESIS creates an
IMPLEMENTATION of the same subsystem.
The subsystem is now described by
primitives or PARTS in another domain
and level. The level of detail of the
parts

cannot be greater than that of the primitives, without additional information.

Locating these four parameters in the description space helps us to understand what
inputs synthesis requires, what outputs it provides, and how several different
syntheses can be connected in a structured design process.

Computer Aided Synthesis 335

We can proceed with the design through subdomains and domains, if we use the
implementation of one synthesis as specification of the next one, as shown in
Figure 3.

We can refine an implementation by
making the parts of a synthesis the
subsystem of the next, as shown
in-Figure 4. It should be noted that we
have to specify every level. Thus,
refinement cannot be done without
additional information) This is often
provided by libraries, by manual
interaction, or by other syntheses.
Synthesis cannot invent the refinement!

So far, we have simplified the
specification.We have only used the part
that can be transformed. Areal
 specification
also contains other parameters, such as
constraints, design objectives, design
rules, and predefined parts. These

parameters are defined in different locations of the description space, or even at
the product level. However, their influence on design decisions is not local. For
instance, a specified chip area and layout rules are important criteria for
evaluating results from system synthesis. This means that the synthesis steps in a
structured design are highly related to each other.

In order to make the synthesis steps as
independent of each other as possible,
and yet consider the relations, we add a
special evaluation capability to the
synthesis that controls the use of the
design space. Figure 5 Shows the
resulting feedback loop. The evaluation
is based on a model of the rest of the
design process. This model can be
analytical, can be based on statistical
evaluations of similar designs, or it
can be a fast simulation of the
following design steps (fast
prototyping). In either case, we get an
approximation of parameters that

cannot be directly measured at the level of the synthesis step. Such an
approximation is normally enough to select a feasible or best version out of
several trials, or to control the synthesis process directly. This is a problem of
global optimization /3/.
Another problem we have not attacked here, is that the levels of detail do not
always match across the description domains. The physical implementation enforces
some packaging levels that may be different from useful behavioral levels. This
problem can be solved by introducing some intermediate levels at the interfaces
between domains, with the help of partitioning and composition steps.- These

336 G. Zimmerman

can be seen as special syntheses. Partitioning and composition are nontrivial and
need additional research. This problem shows that the breakdown of the design
problem into connected synthesis steps is not as regular and straightforward as it
may seem from looking at Figures 3 and 4. Figure 6 is more realistic, but still a
feasible example.

SUBSYSTEM CLASSIFICATION
In the introduction we used the terms architectural, subsystem, and logic design.
These terms make sense in the context of one system, but they mean different
synthesis problems if we talk about different systems, as for example, a
distributed system or a traffic light controller. Therefore, we classify the
synthesis problem by system or subsystem characteristics, rather than by the
mentioned terms. If we restrict ourselves by excluding logic and physical design,
two major classes remain:

CONCURRENT SYSTEMS
SYNCHRONOUS SYSTEMS

CONCURRENT SYSTEMS include distributed systems, multiprocessors, data flow
machines, and macro pipelines. Primitives are at the level of processing units,
memories, devices and communication channels.

SYNCHRONOUS SYSTEMS include processing units, controllers, memory units, device
drivers, and communication interfaces. Internal synchronous and asynchronous
parallisms, like pipelining, are possible. Primitives are typically at the
register-transfer level.

We will deal with these-two classes separately. In the following chapters, we will
show the state-of-the-art, and pose some questions to our knowledge. In doing so,
we will only refer to selected publications, without covering the entire area.

CONCURRENT SYSTEMS SYNTHESIS

In determining the synthesis problem, we must first discuss the DESIGN SPACE. One
degree of freedom is the choice of architecture. The decision between central and
decentral control in distributed systems is only one example. It is already
difficult to even specify

Computer Aided Synthesis 337

the behavior of a system, independent of the architecture. Therefore, we are far
from considering the automation of this step, but the provision of analysis tools
would be a very appropriate step forward.
Another degree of freedom is the partitioning of the behavior into concurrent
subtasks. We have the same problem as above: to find an unpartitioned specification
for the behavior. Languages like CAP /4/, SARA /5/ and CSDL /6/ assume a
partitioning. An achievable goal would be the evaluation of a partitioning, and the
use of a synthesis tool to repartition. Synthesis tools could be used to generate
model structures for the evaluation.

Accepting the behavioral partitioning and the communication between subtasks, the
mapping on a structure allows considerable design space. If the cited concurrent
system description languages prove to be general enough, they can be used as input
specification for a synthesis that does this mapping. Again, evaluation of the
performance and cost of the synthesized structure is very important and can be
supported by a synthesis tool for the parts of the structure. These parts are
normally in the class of synchronous systems.

Let us explain this evaluation, using Figure 7. Let I be the synthesis that creates
the structure we want to evaluate. Its parts are at the processor level and we
cannot say much about their parameters in general. In a top-down design, their
parameters are typically determined by the next design step. Evaluation I can

either assume
parameters and pass
these in the
specification to the
next design step, or,
as in Figure 7, we can
use a system
specification that is
refined beyond the
processor level.
Synthesis I determines
an intermediate level
(dashed line).
Synthesis II generates
structures for the
parts based on the
information in the

original specification. Evaluation II provides rough estimates of the parameters of
the parts of Synthesis I. Synthesis II does not try to optimize, it is only used
for fast prototyping. The parameters can be corrected for average optimization, but
they are normally precise enough to control the design space of Synthesis I.
Otherwise, this method can be extended hierarchically.

By emphasizing the evaluation first, and then the synthesis, we can learn from the
human designer, before we try to automate his reactions. Much more experience with
concurrent systems is necessary before synthesis can become realistic.

Simulation is another possibility for evaluating designs, but certainly not as
efficient as analytical evaluation, together with synthesis. Simulation is also
useful for design validation. Combined with constructive correctness by synthesis,
validation of

 338 G. Zimmerman
concurrent systems designs seems to be in reach.

Much work is still needed in the specification of concurrent systems. The current
description languages still include too many implementation details to really be
able to use the full design space. Also, the problem of correctness proof of the
specification has not yet been sufficiently solved.

The state-of-the-art is the manual partitioning of concurrent systems into
synchronous subsystems, and this leads to the next class of problems.

SYNCHRONOUS SYSTEMS SYNTHESIS

Synthesis of synchronous systems is much more advanced than that of concurrent
systems. This is due to the fact that many more manual designs have been done, and
form a basis of design experience for automation. The two oldest implementations
of synthesis aids are the CMU-DA system /7/ and the MIMOLA Software System (MSS)
/8/.

We will use the two cited systems as examples. Barbacci already showed the
importance of the design space, in 1973 /9/. We will, therefore, start with its
exploration.

The "user" machine can be seen at many different levels. Its behavior can be its
ability to solve problems, or to execute a high level or intermediate language; its
behavior can be its instruction set or its state transition diagram. These levels
form a hierarchy with considerable design space between them. The available design
space depends upon the application, but it also depends on our specification
capabilities to be able to make use of the design space in synthesis.

The current capabilities are procedural or nonprocedural CHDL's. ISPS /10/ was
designed to describe instruction sets. MIMOLA is a high level microprogramming
language /11/. The uses of applicative languages, petrinets based languages,
p-notation, calculus-based specification or relational descriptions have not yet
been successfully demonstrated in synthesis. None of these languages solve the
problem of describing behavior in a canonical form. There are, for instance, many
different ways to describe an instruction in ISPS, although the description in the
processor manual may be quite unambiguous. Only at the state transition level can
we use truth tables as canonical descriptions of behavior.

One technique to decrease this problem is to allow for behavioral transformations,
which are very similar to program optimizations. The CMU-DA system uses the
optimization of the Value Trace /12/ for this purpose. Another technique is the
specification rule in the MSS, to describe algorithms with much higher parallelism
than will be implemented. The compiler then transforms from there to a more
sequential level, during resource binding.

A description at the "problem solving" level opens the largest design space.
Problems are solved by algorithms, with computers. Currently, this transformation
from the problem to an algorithm is done manually. We call the output an
"algorithmic description." In MIMOLA, HLL features, such as loop constructs,
procedure calls, conditional statements, and user defined macros, support
algorithmic descriptions. We call all of them macros, because they do not
represent register-transfers. Only register-transfers can be mapped

Computer Aided Synthesis 339

onto structures. Macros
must be
expanded.
In MIMOLA the semantic of the macros is design
space, which is determined by the designer.
Additional degrees of freedom at the
algorithmic level are, for example, the
selection of addressing transformations,
complex function implementations, data
representations and event handling.

The transformation from the algorithmic to the
register-transfer level is a refinement .step
in the behavioral domain. At the moment, the
only known synthesis tool is the type of macro
processor such as that of the MSS (Figure 8).
We call this transformation mapping, because
no design decisions are made. The
specifications of the macros are provided by
the designer or by a library. The interesting
feature here is again the evaluation that
makes use of fast prototyping by synthesis.
This allows the designer to control the design
iterations in the feedback-loop. The next
design step is the transformation of the
RT-level behavioral description into a
structural implementation. This can be done by
either the CMU-DA system or the MIMOLA
Software System (MSS).

340 G. Zimmerman

The CMU-DA system is shown in Figure 9. As can be seen, it is divided into four
steps, each of which is a synthesis. The separation into data path and control
path has grown historically. The problem with this separation is that the.
performance of the subsystem highly depends on both paths, and they should,
therefore, be optimized in parallel. This will be done in a future version of the
DA system /7/.

The MSS is shown in Figure 10. Data path and control path syntheses are not
separated. The MSS has some internal optimization capabilities, and also provides
evaluation of generated structures for an external feedback loop. It also accepts
structural specifications for predefined structural details. This input is also
used to control the synthesis process, without changing the

Figure 10
Structural Synthesis Loop of the MSS

behavioral specification. Another feature is the generation of microcode as part
of the controller implementation. This feature can be useful beyond the design, in
using the MSS as a microprogram compiler with HLL input. We will use this system
as an example to explain a synthesis tool, and show its positive features and its
problems. More details can be found in /8, 13, 14, 15, 16, 17/.

Let us again first look at the DESIGN SPACE. Not all of it will be available in
all designs, but very often a portion of design space is traditionally not used
because of cost or interconnect limitations, unavailability of off-the-shelf
parts, or other reasons. Especially using LSI or VLSI techniques,- many of the
limiting parameters have changed and we should evaluate the total design space for
every new design. Synthesis and evaluation tools help the designer to do this
quantitatively and quickly.

The DESIGN SPACE of the register-transfer level can be grouped mainly into
MEMORIES, OPERATORS, CONTROL and INTERCONNECTS. The following lists are meant only
to be examples, and are not consistent or complete.

MEMORIES:

Type: register, randomly, content, or serially addressable,

Computer Aided Synthesis 341

stack, FIFO
Structure: interleaved, multiport, dimensions, banks
Speed: technology, register file, cache, mass memory
Allocation of variables to memories
Addressing of variables in memories

OPERATORS:
 Speed, functionality, multiplicity

CONTROL: Type: Moore, Mealy, synchronous, asynchronous, pipelining,

programmability Interpretation hierarchy Control vector: width,
decoding, overlapping Condition selection

INTERCONNECT:
 Selection: bus, multiplexers, time multiplex
 Speed and width

This is a large design space, even if, for example, the behavior is specified by a
given instruction set. Let us look only at registers. The instruction set normally
specifies a set of user-accessible registers, but we still have the choice of
implementing these as individual registers or as addressable memories (register
file). Registers can perform functions; register files can have single or multiple
access (ports). The speed of the registers can vary. This small example already
shows the manifold of decisions that a designer or a synthesis program must make.

The problem in managing the design space is that the dimensions of freedom are not
orthogonal. The decision of how registers are implemented influences the data
paths, the microprogram, the utilization of parallel operators, and the number of
internal registers that are necessary. This decision will influence the location
of critical path and the structure of a pipeline, for instance. It is very
difficult, even for an experienced designer, to watch all of these side affects
and make the quantitatively best decision. Computer-aided synthesis can help the
designer get closer to the best decision, or do it faster. Synthesis cannot make
the optimal decision, because many parts of the optimization problem have been
proven to be np-complete, and are out of the reach of even fast computers.

STATE-OF-THE-ART OF SYNCHRONOUS SYSTEMS SYNTHESIS

In analyzing the state-of-the-art of computer aided synthesis, we distinguish
between four tasks:

BEHAVIOR-TO-STRUCTURE TRANSFORMATION Transform any behavioral specification into a

structure (regardless of physical limitations).

DESIGNER CONTROL Give the designer control over the design space and the synthesis

process.

342 G. Zimmerman

AUTOMATIC CONTROL
Give automated synthesis control over the design space, in order to meet
constraints and design goals.

EVALUATION Verify that the generated structure meets all requirements of the
specification (functionality, performance, manufacturability, testability).
Determine unspecified parameters, and aid decision making.

BEHAVIOR-TO-STRUCTURE TRANSFORMATION

The scope is defined by the register-transfer level behavioral specification. The
only limit we see in the CMU-DA and the MSS is what can be expressed in the
languages (ISPS and MIMOLA). Some of these limits have been put in to encourage
structured design and to enforce certain design rules. MIMOLA, for instance,
enforces a synchronous clock for all storage devices. This is compatible with
typical design rules for non-functional testing, using the shift register
technique. Principally, extensions of the scopes of the specification languages
will not cause a problem.

In the MSS, the design space is modelled as RESOURCES. The synthesis process is
the ALLOCATION or binding of RESOURCES to register-transfers in the behavioral
specification. Figure 11 shows a simple example. The two PASCAL statements are
manually transformed

into two MIMOLA statements that are executed in parallel! The data dependency has
been resolved by inserting the first expression into the second statement. The
syntax of the MIMOLA statements can be easily understood by comparing it with
PASCAL, and recognizing the postfix notation for expressions in MIMOLA. S stands
for storage, and B for a dyadic operator.

Computer Aided Synthesis 343

The transformation into the Flow Graph is done by the MSS. It can also be easily
understood. The nodes are RT-modules; the arcs are interconnections. The nodes can
contain control information, which can be either constant or variable (leaves of
the graph). The graph can be seen as an abstraction of the specification. It is
nearly independent of the description language. All transformations are done in
this graph, which also represents the internal data structure of the MSS. '

Assuming unlimited resources, the ALLOCATION process is straightforward. Scanning
the graph from top to bottom and from left to right, the MSS binds resources to
nodes and arcs. This is documented by attaching names to the nodes that identify
the resources. In doing so, the MSS shares resources as much as possible. For
example, only two output ports are necessary to read (r) all variables (b,c) from
memory (S), so the MSS assigns port S>A to address b and S>B to c. In Figure 11,
there are two operators (B), with exactly identical inputs; the MSS assigns an
adder B_A. The third operator has a different function, thus, a second module B_B
is created. Likewise, fields in the microinstruction word I are created. Figure 12
shows the synthesized structure after the allocation process. In the graph, shared
resources have been collapsed. Figure 12 also shows the BOUND PROGRAM. This
represents all structural information contained in the graph and the MICROPROGRAM.
By a simple assembly step, the microprogram can be converted into microcode for the
control store, or a PL A.

The handling of conditional statements is done in nearly the same way, as is shown
in /8/. The difference is that the detailed implementation depends on the chosen
control structure. Standard solutions are provided, but are not always
satisfactory.

344 G. Zimmerman

Sequential use of resources is accomplished by adding multiplexers to module
inputs, as necessary.
DESIGNER CONTROL
Manual control of the design space is mandatory, since full automatic optimization
is not possible. In the CMU-DA system, the designer has some control, in the way he
writes the behavioral specification and by changing the Module Data Base. In the
MSS, the designer can specify resources, put limitations on the number of
resources, or specify parts of the structure. This gives him nearly complete
control over the design space that can be expressed in the language. Still, we have
to work on the interface between designer and synthesis to free him from details
and allow him to express directly and comprehensively what he wants to control.
This is a problem of the right design environment for language solutions which
allow direct interaction. The "Smalltalk" environment /18/ may be a good starting
point.

Figure 11 may again serve as an example for the control in the MSS. If the
designer limits the number of operators to one (instead of the three necessary),
the statements cannot be executed in the parallel fashion. The only operator, B_A,
would be used sequentially by switching sources and functions. Intermediate values
are automatically stored in memory locations or registers. Figure 13

shows a possible structure and
the generated microprogram.
The result is a much smaller
structure, but three state transitions
instead of one, to execute the same
function as in Figure 11.
 Thus, the designer's decision to
 use only one operator has resulted in
 trading cost VS. performance.
 The MSS immediately shows him this
result.

The designer can control the design space
in many other ways. Limitations again
exist in the scope of the languages and
the ability to automatically react to all
commands with valid generated structures.
This is still a field of intense research.

AUTOMATIC CONTROL
Automatic control of the design space is valuable, where it frees the designer from
decisions that involve many details, but that do not need intuition. Such decisions
are typically based on statistical evaluations.

In the MSS, the statistical basis is the frequency of use of resources. In the
behavioral specification, the relative frequency of occurance of every instruction
can be specified, thus showing an approximate dynamic behavior in an assumed
environment. Resource usage or utilization is thus evaluated dynamically. The
strategy for

 Computer Aided Synthesis 345

selecting resources is principally to use the most highly utilized first. The step
from zero to greater zero has highest priority, if it involves a new resource.
Since resources are bound into a structure, this also includes looking at
connected resources. If we are, for example, requesting an operator, the most
utilized may have zero utilized connections to the sources. The use would create
additional interconnections and cost. Avoiding additional cost always has
priority. This strategy has the ambiguity as to which resource request should be
considered first. One option is to take the most expensive first. Another is to
start with the critical path. Another ambiguity lies in the order of statements in
the specification. In resource selection it may be appropriate to start with the
most critical first. These may be either those with the highest frequency or those
with the heaviest time constraint.

The utilization strategy and the "look ahead" to correlated resources
automatically detects common subexpressions. We have used this feature in Figure
12. Sharing resources is a mayor cost saving factor in the automatic control of
the design space. The compiler also utilizes optimization techniques. It tries to
minimize the number of necessary state transitions and storage cells. Another
strategy would be to minimize the execution time of individual state transitions.

These examples show that many options and strategies exist to control design space
automatically. Some options can be selected by the designer in the MSS. It would
be desirable to let the designer express the strategy. At the moment, however,
this does not seem feasible, if we look at the programming effort to implement
only one strategy. Again, we can hope that new programming environments may change
this.

EVALUATION

Evaluation during the synthesis is used to control the design space automatically.
Evaluation of the result of synthesis is used to compare manually controlled trial
designs and to check them against the specifications.

The check for functionality is unnecessary, if we assume a correct specification
and a correct synthesis. We call this correctness by construction. Since we cannot
rely on either completely, simulation is used for the behavior and structure, to
increase confidence in the design. Formal proofs would be desirable and seem to be
feasible.

Performance evaluations can be done relatively precisely, if the delays of the
resources are known. The MSS calculates execution times by automatically
determining the critical path and applying usage statistics. Thus, the dynamical
timing behavior is measured. Resource delays are not really known before the
fabrication is completed, but good estimates can normally be achieved. The biggest
problem is introduced by the uncertainty of media delays in very high speed logic.
These data are partioning and layout dependent, and we have to rely on models
derived from experience. These models are an open research problem.

Manufacturability also has to rely on models. Typical limitations are packaging,
chip area, power dissipation, and cost. Fast prototyping capabilities for physical
design are the most promising ways to get accurate figures before starting an
expensive layout cycle. Since technology is changing at a very high rate, this area

 346 G. Zimmerman
will be a continuous research problem.

Currently, testability measures are not really existent at the RT-level. The only
firm basis is the stuck-at fault model. Test generation time or the number of test
vectors could be used as testability measures. Both are very test generator
dependent, and rely on gate-level refinements. Better measures must be found.

Parameters that aid design decisions are all of `t he above, plus resource
utilization figures. The MSS strategy to prioritize the highest utilization in the
selection of resources has little meaning for the actual usage of a structure, but
it clearly shows the designer the barely utilized resources. Utilization is an
indicator of the influence on the overall performance of a device in the case of
its deletion. Statistics about joint usage of resources point towards possible
replacements of resources, without performance decrease. Overlay of
microinstruction fields is a typical example. Thus, these statistics help the
designer to make his decisions towards meaningful trial designs. In that way,
random scanning of the design space is avoided. This is very important, since the
space is much too large to be covered completely.

CONCLUSION

It has been shown that behavioral to structural synthesis still has many
limitations, and needs additional research efforts. In the case of synchronous
systems, however, two implementations already offer considerable help to the
designer. Although it is an additional effort for the designer to become accustomed
to this new way of thinking about designing, we think that it is now necessary to
apply these systems to practical problems. Feedback is necessary to evolve these
prototypes in the right direction, and in Honeywell, we have started to transfer
the MSS to subsystem designers to let this process begin.

I would like to thank all of the contributors to the MSS at the University of Kiel,
and my collegues in Honeywell who helped in the difficult technology transfer. I
expecially have to thank Beth Wolf, who edited and generated the manuscript.

References

/1/ Trimberger, S., et. al., "A Structured Design Methodology and Associated

Software Tools," IEEE Trans. CAS-28, 7, pp. 619-634 (1981).

/2/ Allen, J., Penfield, P. Jr., "VLSI Design Automation Activities at M.I.T.,"

IEEE Trans. CAS-28, 7, pp. 645-653 (1981).

/3/ Zimmermann, G., "VLSI Design with the MIMOLA Design System," IEE Conf. Publ.

Number 200, Electronic Design Automation, pp. 277-280, Brighton 1981.

/4/ Dachaner, R. J., et. al, "The CAP/DSDL System: Simulator and Case Study,"

5th Intl. Conf. Proc. Computer Hardware Description Languages, pp. 213-227,
Kaiserslautern 1981.

/5/ Penedo, M. H., Berry, D.M., "The Use of a Module Interconnection Language in

the SARA System Design Methodology," Proceedings of the 4th Software
Engineering, Munich 1979.

Computer Aided Synthesis 347

/6/ Wood, W.T., et. al., "Concurrent System Description Language," Honeywell
Report HR-81-271:17-38, 1981.

/7/ Director, S. E., et. al., "A Design Methodology and Computer Aids for

Digital VLSI Systems," IEEE Trans. CAS-28, 7, pp. 6 3'+-6 45 , (19 81) .

/8/ Zimmermann, G., "MDS - The MIMOLA Design Method," Journal of Digital Systems

Volume IV, Issue 3, pp. 337-369, (1980).

/9/ Barbacci, M. R., "Automated Exploration of the Design Space for

Register-Transfer (RT) Systems," Ph.D. Dissertation, CMU 1973.

/10/ Barbacci, M. R., "Instruction Set Processor Specifications (ISPS): The

Notation and its Applications," IEEE Trans. Comp., Vol C-30 , pp. 24-40
(1981) .

/11/ Marwedel, P., Zimmermann, G., "MIMOLA Report and MIMOLA Software System User

Manual," Report Nr. 2/79, University of Kiel, 1979.

/12/ Snow, E. A., "Automation of Module Set Independent Register-Transfer
Level Design," Ph.D. Thesis, CMU, 1979.

/13/ Zimmermann, G., "The MIMOLA Design System: A Computer Aided Digital

Processor Design Method," 16th Design Autom. Conf. Proc. 1979, pp. 53-58.

/14/ Marwedel, P., "The MIMOLA Design Method: Detailed Description of the

Software System," 16th Design Autom. Conf. Proc. 1979, pp. 59-63.

/15/ Zimmermann, G., "Cost Performance Analysis and Optimization of Highly

Parallel Computer Structures: First Results of a Structured Top-Down Design
Method," Proc. 4th Intl. Symp. on Computer Hardware Description Languages,
Palo Alto 1979, pp. 33-39.

/16/ Zimmermann, G., "Computer-Aided Design of Control Structures for Digital

Computers," Proc. IEEE Intl. Conf. on Circuits and Computers, 1980, pp.
103-106.

/17/ Marwedel, P., "The Design of a Subprocessor with Dynamic Microprogramming

with MIMOLA," Structor and Betrieb von Rechen Systemen, Informatik
Fachberichte 27, 1980, pp. 164-177.

/18/ Goldberg, A., "Introducing the Smalltalk-80 System," BYTE August 1981,

Special Issue.

