A RETARGETABLE MICROCODE GENERATION SYSTEM FOR A HIGH-LEVEL

MICROPROGRAMMING LANGUAGE

L,.

PBTER MARWEDEL

UNIVERSITY OF KIEL,

ABSTRACT

A system for the generation of microco-
de from a high-level microprogramning
language is presented. The system is
independent of the target machine be-
cause it is table-driven by a separate
hardware declaration. It is applicable
for horizontally microprogrammed
machines.

1. Introduction

The last decade showed an increasing im-
portance of microprogramming. Manufac-
turers now use microprogramming for the
interpretation of machine programs, for a
higher regularity of micropreocessor chips
and for enhanced capabilities of diag-
nostic routines. Users are becoming inter-
ested in microprogramming because of the
larger speed of microprograms. Increasing
use of microprogramming is made possible
by largerand writable microinstruction
stores,

An inherent characteristic of micro archi--

tectures is the fact that differences be-
tween machines are larger on the micro
level than they are on the machine level,
e.g. there is a large number of machines
with an identical machine level and a
different micro level., Therefore micro-
programs and microprogramming tools should
be as target machine independent as poss-
ible. Otherwise firmware costs hinder the
ugse of microprogramming. Target machine
independency of tools like assemblers and
and compilers is known as retargetability.

0194-1895/81/0000/0115%00.75 © 1981 IEEE

" wide range of host machines,

115

W-GERMANY

Machine independency of microprograms con- '
sists of two parts: First, the syntax of
the 'used programming language ‘mist be ma- -
chine independent. Second, semantics must
be the same for all used machines. '
Another colisegquence of the necessity to re-
duce firmware coats is the use of a high- -
level microproyramming -language {(HLML).

The advantages of a high level of abstrags«.
tion during programming are. well: known and -
need not be repeated here. However, the. -
use of HLML requires a microcode comgilar%
Such a compiler seems not to exist.

present there is no microcode: translatioﬁf-'
system which may be called both high=level -
and machine independent”?!., It ia still '
even the gquestion 1f suitable HIML'®a exist:’
"The question is still whether it is possg- .
ible to create efficient high level micro<
programming languages (HLML’s) that are :
also machine independent.” "2 pherefore "a -
number of new approaches to the design of
microprogramming languages are needed”,

And "new techniques are also néeded for
microprogram compilers"? A good summary .
of the problems found in creating micro-
programming tools is contained in-a recent
paper by Dasgupta‘.These include the
presence of low-level parallelism, the
need for optimal micrecode, the presence.
of timing constraints and the large dif-'
ferences between the data path structire .
of different machines. To this list we add
the requirement of retargetability and the
need for tools which are available for a -
i.e. machines
on which the code is generated.

The best known _microprogram generator -is
the MPG system®. However, the input programs
for the MPG system are target machine de-
pendent because they contain names of
target machine registers.

Based on our language MIMOLA (= machine
independent microprogramming language) we
implemented a software system \ called MSS
{= MIMOLA Software System)®. This system
was originally intended as a tool for
cost/performance studies during the top~ .
down design of microprogrammable machines?
It was able to show the cost-effectiveness

of parallel machines designed with Mssé,

A parallel machine, called SPDM, which was
. designed with MSS, is about 30 times
faster than a minicomputer using about the
same amount of hardware$. MSS has the
advantage of allowing the user to defipe
the mapping between high-level construgts
like WHILE, FOR etc. and the register
transfer level (RTL). This mechanism can
also be used for defining the meaning of
extensions to the language.

We found that some extensions of the algo-
rithme used by MSS will turn it into a re-
targetable microcode compiler. Code gene-
ration with the extended MSS is described
in this paper. It a step towards an effi-
cient retargetable microcode compiler for
horizontally microprogrammed machines. We
assume that the microcode controls the
gate level without the use of complex de-—
coders. According to Wendt's classifica-
tion'd we consider one level programming
of the gate level. We do not assume that
thare is a machine level above the micro
level.

Before we start with any details of our
method we will summarize the notation used
in MIMOLA.

A MIMOLA program is a sequence of parallel
instructions called esb's (=elementary
statement block). Every esb starts with a
label (whose initial letter is a capital
L) and ends with a semicclon. Esb's con-
tain statements, separated from each other
by a comma. All statements in an esb are
assumed to be executed in parallel if
enough hardware is available. Lower cage
letters dencte identifiers, S(adr) denotes
cell adr of memory § (=storage} and
Benamex(<fct>) is a binary function box
B<nama> executing function. <fet>, Notation
for expressions is postfix. RP is the
microinstruction counter and I is the
current mi¢reoimstruction.

Example
FORTRAN

SuM = TRUE
DG 10 I = J,K,L

10 SUM = A(I) .AND. SUM

MIMOLA .

Lsetup S{sum) := true,

' FOR 1 FROM S(3j) BY 8(k) TO S(1);

Llcop DO{i)
: S(sum)*aS(ati])/S(sum)—>B(AND),
: OD(i). .

Lend P |

This example or parts thereof will be used
troughout chapter 2.

- ‘microprogram generation systems!?

2. Phasés of the Compilation
2.] overview

Stepwise translation of a HLL is a widely
accepted technique for breaking down the
complexity of the translation task into
subtasks and has already been used in early
. Stepwise
tranzlation simplifies formal verification
0f each of the translation steps. In con=
trast to other translation systems, we do
not use a separate 'intermediate language'.
The language MIMOLA is rich enough to be
used as a HLML as well as an intermediate
language on a register tranfer level. This
enables us to use parts of the compilation
system for various steps. For example the’
macro processor can be used in all seven
phases. Another advantage is that the uaer
can directly write. programs which can be -
used as input to each of the phases.

The following seven translation phases nne
used for the code generation with MS8.::

1. Replacement of HLML construtts by
register transfer level constructs. . :
Generation of trees which describe the
flow of data and control (flow treeg) in
the program.

Program transformations ghnerating &
more parallel vergion of the program.
Machine-independent optimizatioch,
Global storage allocation.

Allocation of hardware to software
constructs, including necesgary trans-
formations of thé flow tree. This astep
is also known as

resource binding.
Generation of binary microinstructions

{micro assembly phase).

2.

3.
4.

5.
6.

7.

2.2 Replacement of HLML ctbnst ct;-B
regigter t¥ansfer leve

structs

Mapping the HLML input to tha register- -
transfer level output during phase 1 fe-

- gquires only little more than string re-.

placement with parameters if the HLML is
carefully designed. But the parameter me=.
chanism must be sophisticated and theyre-
fore even elaborate editors cannot serve
as a substitute for our MIMOLA macro pro-
cessor,. Unfortunately, the syntax &f cur-
rently- available editors also depends on
the host machine.

The replacement is cohtrglled by substis -
tutton rules, so~called MACRO rulgs. These
rules, which are read in prior to the :
program, can be changed by the user. They
define the mapping between HLML- and RTL-

* constructs and they define the meaning of

language extensions. A library of standerd

- macros is available. Therefore, users who .

116

do not use language extenslons, need not
write macros. Possible language extensions
are non*standard functions, data struciires

and shorthands with parameters (macros in
the usual sense).
Chapter 2.2.1 shows how macros are- used to
handle DbO-loops:

T

2,2.1 Replacemant of DO-loops

The following substitution rule means:
Replace the string hetween 'MACRO' and
‘4%’ by the string between '&&' and
'ENDMACRO'., &... denotes parameters (any
string, which is a terminal or non-ter-
minal symbol of the MIMOLA syntax, is ac-
cepted as an actual parameter).

MACRO FOR &id FROM ginitial BY &increment
TO &limit. 8& S(&id):=a&initial,

§{&id by):=&increment, S{&id to):=glimit
ENDMACRO

This macro stores the initial value of a
FOR loop in cell &id of memory S, the in-
crement in cell &id by {(the concatenation
of the actual parameter and '_by') and
the upper limit in cell &id_to. This
macro will expand

FOR 1 FROM 5(j) BY s({k) TO S({1)
S5{1}:#8(3), 8(1_by):=S(k), S{i_to):

to
=5(1).

The library contains corresponding macros
for the testing and incrementation of the
control variable i. These macros will
convert the samgle program of chapter 1
to:

Leetup S(sum):=true, S{i):=8(q), S . by}:=8(k),

S(i_to):=5(1);

Woop IF S(1) / S_to) ->B(>)
THEN FP:= lLend "RP is the coumter"
ELSE S{sum):=S(a/S5(i) ~>B(+)) /S(sun)->B{.AD),

8(1) :=8(1i) / S(i by) ->B(+), Rp:=

FI ;

lend ...; -

The macro processor is able to consider the
nesting of DO-~loops. It replaces the specid
parameter L&DO by the label of the esb con-
taining the DO of the current nesting~
level. Furthermore it replaces the para-
meter L&OD1 by the lahel of the esb fol-
lowing the OD of the ‘current nesting 1evel.

2.2. 2 Replacement of procedure calls

COmpared to traditional compilers there
exist three major differences in the code
generated for procedure calls:

1. -Program and data memories are normally

‘separated, have a different width and inr

general the instruction memory can be
addressed only by the program counter.
Therefore the parameter blocks cannot be
gtored behind the procedure call in the
ingtruction memory. Parameter infor-
mation must either be stored in the data
memory or must be included in

the instructions (' in-line’ parameter
passing).

The speed of memories equipped with
parallel ports can only be used if the
parameter information is not moved in a
loop which is executed once for .very
parameter. Same method of parallel’
transmission is needed if code genera-_
tion for highly parallel computers ;ig.
desired.

A run-time system may:be too slow and a
faster parameter passing may be required
This may be passing in registers or an
'in-line' passing, .at least for a small
number of parameters.y

The precise form of macros for procedure
calls depends on the calling mechanism
which is to be implemented, Macros have .
been written which make use of special’
parameters, representing gounters and the
name of the currently anaiysed subroutine.

The next step converts the MIMOLA program
into trees, which express the flow of data
and of control. The flow of control. dex=
scribes which operations may be done in
parallel, which operations depend upon con~
ditions etc. Flg., 2.1 shows the flow tree
for Lloop listed in 2.2.1:

Lioop
{a left operand input _\',= function select inp.
" }= rignt operand input §= address input.
§= operand input

Fig. 2.2 Flow tree for Lloop

Our hardware adaptation works on these
treeg and not on linear lists which are
normally used in microcode algorithms.
Trees have the advantage of automatically
expressing relations between sons of a

117

node ("bundling"). Such trees have already
been useful for target-machine independent’
apsembly-language code generationi?, 2
common notation for these trees could poss—
ibly enable us to generate microcode for
HLL's for which a tree-based assembly -
language code denerator exists. Schmidt

and v8ller1? found that such a common tree
language exists for diverse languages like
FORTRAN, BASIC, PASCAL and COBOL.

Edges, except those which are related to
the sequence of execution and conditional
execution, all describe flow of data (or
'signals'). Associated with the edges is
information abcut the inputs to which the
data is rooted. In Fig. 2.1 this infor-
mation is represented by différent arrows.

Nodes describe hardware units like func-
tion boxes and memories. Single letters
like 'S' and '8' simply describe the type
of hardware units. These letters will be
replaced by the names cf avallable hard-
ware units during step 3.

We define:

A microoperation (MQ) consists of a
signal-describing edge of a flow graph and
the source and destination node. The
description of a MO includes the microcode
which contrels the data flow and the time
which is required to complete the trans-
port.

Linked PASCAL records are used for the
internal representation of the flow trees.
In order to pass these trees to the next
compilation step, files are used which con
tain the trees in a bracket notation.

2.4 Program transformations generating a
more parallel Version of the input

program

Microinstrugctions may specifv many parallel
operations. In order to make effective use
of parallel hardware, the input program
has to be made parallel if the user did
not explicitly specify enough parallelism.
We found out that is best first to make
the program as parallel as possible and
then reduce the degree of parallelism
according to the available hardware. One
reason is that the blocks of parallel
operations form natural blocks for the
code optimization. Optimizing one program
block at a time and not the whole program
at once is a way to reduce compilation times.
This is necessary because ¢generation of
optimal code, even in simplified cases, is
NP-complete 14,

The required program transformations have
been published by Kuck'®and may be applied
to our flow trees.

118

2.5 Machine indegendaﬂ:ogtimization

- Optimization techniques publiahed for the

generation of machine code may also be
applied to the generation of microcode.
At present constant folding is implemented

_Optimization is simplified by the use of
‘flow trees.

2.5 Global storage allocation

If the input programs shall be independent
of the target architecture, storage allo- -
cation must be done by the translation
system (and not by the user).

For every memory in the target architec-
ture we generate a priority list indica-
ting which variables should be assigned

to that memory. Priority computation is
based upon the knowledge of the data
pathsg, the functions of the function boxes
and the expected frequency of use of that
variable. An estimation of the latter may .
be included in the program by the user or.
a high=level. simulator. Actual storage
allocation is done during the next step,
when the required number of temporary
cells is known.

2.7 Allocation of hardware

This step assigns hardware to. the nodes
and edges of the flow tree. The way, how
this is done, iz most important for the
quality of the generated code.

There may exist several possibilities for
the assignment of hardware to the flow
tree of Fig. 2.1. There may be several
alternatives for sources and destinations,
fields of the microinstruction or delay
time., For example reading of a memory

cell can be done by different ports of a
memcory, adding two inputs can be done by
different arithmetic function boxes and a
certain microcode can be supplied by va-
rious fields of the microinstruction. Each
alternative of a MO is called a version
(cf. Mallet'4), :
Formally, a MO consists of an index, '
identifying the MO's location in the flow
tree, and the list of versions:

k,
<kl(D]1(l'S]:t F]1{ :V1 iﬁ):-r-r(nltnr%fﬂcnrﬁr 'Iﬁ)>

where: k is the index of the MO,
n is the nurber of versioms of MD k,
ok is the ardered set of destination bits,

Sf is the ordered set of sources bits,
Ff is the ordered set of microinstr. bits.

f 1is the ordered set of the values of the
microinstruction bits, -

7~

i

We include all microinstruction bits, which
are involved in tke execution of MO k, in
the sets F¥ and V¥. This is necessary 4n
order to r&cogniz all conflicts due to’ a
limited width of the microinstruction.
Further information about our formal defi-
nition of MO's is given a report'S.

is the execution time for version i.

Optimal selection of versions is known to
be NP-complete '*, Mallett gives an overview
over existing microcode compaction algo-
rithms. They are closely related to our
selection problem but cannot be applied
directly because of different assumptions,
boundary conditions and the omission of
tree transformations like the insertion of
buffers.

On the other hand, algorithms used for re-
targetable machine-language code gene-
rators 1217 are also not applicable, because
they assume sequential machines. For se-
quential machines it is possible to com-
plete code generation of one branch of the
flow tree, before code generation of the
next branch is started. If we have a large
degree of parallelism, then we have to
start with the code generation of the
leaves and then proceed down to the root.
Using this order, the input esbs are split
into horizontal slices (c.f. Fig. 2.2)
instead of vertical slices which corre-
spond to a slower microprogram.

The target hardware is defined by a hard-
ware declaration. This declaration speci-

. fies how certain patterns of the flow tree
may be substituted by the "patterns” (the
data paths etc.) of the real hardware. To
this list of valid substitutions we add
agtomatically valid algebraic substitutions,
e.g. the rules of commutativity..

The target declaration needs to be written -
once for every target. .

Our allocation-algorithm first puts an
input esb into the. input buffer and then
computes which @ata paths of the hardware
description are available for the trans-
portation of data described by the MO's of
the flow tree. The list of possible paths
and related timing- and microinstruction-
information is added to the flow tree .
{list of versions). If this list is empty,
then we apply algebraic substitutions until
at least one version exists. Some of the
hardware patterns define detours for
unimplemented direct data paths. There are
non-storing and storing detours, like paths
through arithmetic units and scratch-pad
memories. We replace unimplemented data
paths in the flow tree by detours. Then we
move MO's into the output buffer (starting
with the highest leaf) until the MO to be

moved next cannot be inclqded in the same

.¢control memory.

119

microinstruction. When this occurs, all
temporary results of MO's in the output
buffer have to be written inteo temporary
memory cells. If these are not available,
then MO's are moved back from the output
buffer to the input buffer until temparary
memory cells for the remaining MO's exist.
The output buffer is then written to the
output file and the process is repeated
until the input buffer iz empty. Then, the
next esb is read. A more detailed version
of this algorithm is contained in the
appendix.

This algorithm performs the following

transformations of the flow trees:

1. Assignment of hardware-units to the

nodes of the flow tree

Replacement of the control flow by _

assignments to the program counter and

conditional loading of memories.

Splitting of the input esb where

necessary. This may lead to:

a. Insertion of additional jumps (if

conditional statements are splitted),

insertion of buffering operations-

and

replacement of conditional store

operations by unconditional store

and ¢conditional move cperations.
Insertion of detouxs (additional MO's)
where data paths are missing.
Omission of multiple computations of
common subexpressions. i
Migration of conditional operations
(conditional loading of data, condi-
tional expressions and conditional

© jumps) . : "
Insertion of default bitnumbers (as far .
as these are determined by the width of
the target's hardware modules). :
Replacement of names of functions
{(e.g. '+') by function codes and
insertion of codes controlling multi-
plexers. These codes are known by the
hardware declaration and, together with
immediate values given by the user and
binary address constants they represent
the micoinatruction. ' o

2.

3.

b.

[-

Assume that our target hardware is given
by Fig. 2.3. Then our algorithm will
convert the flow tree shown in Fig. 2.1 to
the flow tree shown in Fig. 2.2:

For some architectures ét.is necessary to
apply Baba's algorithm ® for addresing the

3

18! INSTRUCTION : RP = RP-»ARPLINCR) , SM<A(11) := SM>E(i}/a —>B_A(+) ,
: : ST SM<B(12) := SM>D(i)/SM>Cli_l0) —=B.B{>)"

2"9INSTRUCTION : RP:=RP~>ARP(INCR}, ‘SM<AUNOLOAD), -
.- ' - o SM<B(t3) := SM"D(SM:E(H)) k. BMPC(sum)—>B..B(NAN01

: 3"‘msmucmu RP gur msm>cuza—>s_5(+) THEN Lend ELSE RP—>ARP(INCR) Ft),
. L ;smu(u.) = SM>E(i} | 5M>D(i—by)—>B_A(+], SM<B(NOLOAD)

Il

s
, . . SM<3
«PINSTRUCTION : RP:=lloop , =~ SM<A(sum):= swem).v 0—>B-A(NOT)
' ' C ' : 5M<B(i) = 01 SM>C(t4)—>B.B(+) :

10 1 " Ll
7 1 ; . PR
155 Iyﬁsﬁss MB s SR I
ERREE MR
it-5 - £ L2GF o HAB
SM<A SM<8 ‘
LEGEND - FUNCTiON CODES ASSUMED VALUES OF ADDRESS CONSTANTS '
“{ = LEET DATA INPUT OF At.u : CDBFINED IN TARGET DESCRIFT.) a o L T -
¥ = RIGHT DATA INPUT OF ALY . \NOLOAD (OF MEMORY) : = O PO =4
t = DATA INPUT \LOAD (OF MEMORY) = 1} i by’ s
§ = ADDRESS INPUT OF MEMORY . LOAD. 1F_TRUE =2 i_to . =8
¥ = FuncTION INPUT OF ALy .LOAD_1F_FALSE =3 sum =1
§ = conTREL INPUT OF MEMORY RP:sRP4L (ALE_RP) =0 t1 =8
1 = ASSIGN VALUE TO MINSTR.FIELD + =0 £2 TEMPORARY | = 9
.NAND =1 £3 -LOCATIONS | = 10
> =z td : =11
.NOT =3

Llsap = 21, Lend = 25

F1G6, 2.2 FLOW TREES FOR HARDWARE-ADAPTED SAMPLE PROGRAM

120

I. BIT(ho 33) .

Sy 0

" i ”.;; :

T] (] AT

I.BIT % “I.B

. ~

(h2:u1 o

o . B
I.BIT(L45:43) BY [g” ;

I.BIT(62:60) “worof =]

I.BIT(L6) . ‘ | et
- I.BITéT:O) PE;; RPP‘_
d g eas eontrol- .. “data: Jaddress control = dataifllenp
Akt i port SM<A port SM<B :
data memory SM count :
‘ port SM>C- port SMsD port SM>E ' ,
4] dsta address data address| data address
I,,.s ¥ T ‘
ST el / 0 1 :
M | Nl
RS I.BIT(16) b L
I.BIT(32:25)' I.BIT(15: 8) I.BIT) instruction
)

Fig.

2. 8 Generation of binary microinstruction

Complete microinstructions may be :
assembled by collecting microinstruction
bits in the flow tree:{|'<edges). It is
like ‘picking-apples'. ‘The following four
ingtructions are collected from Fig. 2.2
(x don t care):

microinstruotion bits

64 62 59 57 55 o 45 42 40 32 24
7.46 3. ¢ s
43 41 33 25 17

. . .
e .3 .

65 :
63 60 58 56 48

o} 2

s
wOX O
—iv'.—t o_n

1
X
1
1

pR =g

(o} X
2 o
1 1.

The flow tree may also be converted back
to MIMOLA. This has the advantage of
creating an easiexr to read instruction
ligting.

3. Final reﬁarks

3.1 State of'the implementation ,

Phases 1, 2, 4 and 7 are implemented For
the use of the MIMOLA Software System as
a hardware design tool, a preliminary

version of the code generation system with

2.3 "Example of a target machine

(2L:

memory I . .

less capabilities, exists '8 . A high=level
simulator accepting the. output of phase 4
as its input, has just been: completed.

All programs are implemented in. a portable
subset. of PASCAL and. have been compiled on
several machines. ;

3.2 Quality of the gggerated code i

Hand—compiled examples indicate that faat'
microinstruction sequences. are genevated.
The algorithm computes optimum seduences
for the six (small) examples :in Mallatts
dissertation. There is a case whéxe the:.
current system generatesvan*xnstxuqﬁiun»
sequence requiring 49 time units. and .one
temporary buffer, regardless of the: .-
number of buffers available. If three
hiffers are available .then the new system:.
will generate a sequence requiring 23 time
units. For our SPDM-procegsor we . studied

a sequence of 20 manually generated in- *
structions and found that the new system'
would generate only 18,

Acknowledgment

Our.epeoial thanks. is directed -to fhégoom-
puter architecture -group and the pxo~ . -
g;amming languages group at the Undwversity
of Kiel.

121

References

1. Bushell, R.G., "Higher level language
for microprogramming”, Euromicro Journal,
vol. 4, No. 2, March 1978, pp. 67-75.

2. Patterson, D.A., and Lew, K.; and Tuck,
R., "Towards an Efficient, Machine-Inde-
pendent Language for Microprogramming™,
MICRO=~12, ACM SIGMICRO Newsletter, Vol.
No. 4, Dec.: 1979, pp. 22-35.

10,

3. Habib, 8., "Editor's Overview-Special
Section on Microprogramming”, ACM
Computing Surveys, Vol. 12, No. 3, Sept.
1980, p. 259.

4. Dasgupta, S., "Some Agpects of High
Level Microprogramming®, ACM Computing
Surveys, Vol. 12, No. 3, Sept. 1980,
pp. 295-323.

5. Baba, T. and Hagiwara, N., "The MPG
System: A Machine-Independent Efficient
Microprogram Generator", IEEE Trans.
Comput., Vol C-30, June 1981, pp. 373~ 395.

6. Marwedel, P. and Zimmermann, G.,
“MIMOLA Report Revision 1 and MIMOLA
Software System User Manuwal", Techn.
Report 2/79, Institut fiir Informatik und
Prakt. Mathematik, University of Kiel,
1979, -

7. Zimmermann, G., "The MIMOLA Design
System: A Computer Aided Digital Pro-
cessor Design Method", 16th Design Auto-
mation Conf. Proc.. San piego, June 1979,
Pp. 53-58.

8. Zimmermann, G., "Cost Performance
Analysis and Optimization of Highly
Parallel Computer Structures: First
Results of a Structured Top-Down Design
Method", Proc. 4th Int. Symp. on Computer
Hardware Description Languages, Palo Alto,
Oct. 1979, pp. 33-39.

9. Marwedel, P., "The Design of a Subpro-
cessor with Dynamic Microprogramming with
MIMOLA", in Informatik Fachberichte, Vol.
27, G. Zimmermann, ed., Springer, Heidel-
berg, 1980, pp. 164-177.

10. Wendt, S., "Models and structures for
microprogramming”, Euromicro Symp., Venice,
Oct. 1976, pp. 35-42.)

11. Eckhouse, R.H., "A high-level micro-
programming language (MPL)", Proc. Spring
Joint Comp. Conf., 1971, pp. 169-177.

12. Cattell, R.G.G., "Formalization and
Automatic Derivation of Code Generators",
Ph.D. Thesis, Carnegie Mellon University,
Pittsburgh, 1978.

122

System:

13. Schmidt, U. and V&ller, R., private
communication, Kiel April 1980.

14. Mallett, P.W., "Methods for Compacting
Microprograms", Ph.D. Thesis, University

of Southwestern Louisiana, Lafayette, 1978

15. Kuck, D.J., "The structure of com—
puters and computations", Vol. 1, Wiley,
New York, 1978.

16. Marwedel, P., "Hardware Allocation for
Horizontal Microinstructions in the MIMOIA
Software System", Techn. Report 5/80,
Institut fiir Informatik und Prakt. Math. ,
University of Kiel, 1980. -

17. Glanville, R.S. and Graham, S.L., "A
New Method for Compiler Code Generation",

@nf., Rec. 5th Ann. ACM Symp. on Principles
~ of Programming Languages, ACM, NY,

1978.

18. Marwedel, P., "The MIMOLA Design
Detailed Description of the Soft-
ware System", 16th Design Automation Conf.
Proc., San Diego, 1979, pp. 59-63.

Appendix : Algorithm for hardware
adaptation

After construction of trees like in Fig.
2,1 ocur algorithm will add to the nodes
the list of possible versions and default
values for bitnumbers. Next, we replace
IF-THEN-ELSE conditions by flow of data
from the condition operand to control or
multiplexer inputs. The condition operand
may -either steer the control input of the
memory at the bottom of the data flow
tree, or a multiplexer somewhere else in
the tree. The latter is poassible if THEN-
and ELSE- parts contain similar trees and
only part of the trees depend on the con-
dition. If the hardware does not allow
proper insertion of data switching oper-
ations then conditional jumps must be
inserted. The mapping from the condition
operand and the microinstruction to the
enable-input of memories is assumed to be
done in function boxes which have a name
beginning with 'Aif', For all possible
values of condition operands, jumps must
always be the last executed operation.

Next, we compute for all MO's the minimum
number of time units they must start be-
fore the final store operation is comple-
ted. This may simply be the height of the
destination nodes of the MO's in the tree .
but this number may also include delay-
time characteristics of hardware units
{known by the declaration). In the latter
case, time units are version dependent.
The following algorithm will try to seléct
the fastest version. Therefore the algo- -
rithm will select fast, special purpo:e
hardware if it is declared in terms ‘of

standard functions with low execution time.

Computation of time units also includes the
estimated probability of-condition -eperands
being true or false. The user may include
these probabilities in the input program..

Now we compute pointers to identical.sub-

expressions and to conflicting versions for -

all versions, i.e.
included in the same instruction. These
pointers have a flag bit and can be used in
both directions. Pointers and time units
are updated whenever the tree is modified.

Algorithm
0. Clear flag bits and buffer for output
esb.”

1. Select a 'current' MO from the set of
unallocated MO's. Use a MO whose fastest
version possesses the maximum number of
time units. :

Mark all versions for which the data
path 'is not present in the target hard-
ware.

Find alternative paths if all versionms
are marked. Try to apply algebraic rules
in order to find a flow tree which
matches the hardware pattern. Then try
non-storing detours like buses, ALU's
adding zero etc. and combinations of
these. If not successful try to find
storing detours. If still unsuccessful
then treat the situation like a missing
temporary cell (goto 6) else add detour
to tree, correct time units and pointers
and select the first inserted MO as
current MO.)

Test if current MO will fit into
current output instruction. Move current
MO temporarily to output esb and tempo-
rarily allocate resources for MO's in
the output buffer. First allocate re~
sources for MO's with only one version,
i.e. set the flags on all pointers to
conflicting versions. Then allocate
resources for all versions which do not
point to a conflicting version in the
output buffer. For all MO's with a
dyadic function box as destination try
to commute the inputs. Find out if all
remaining unallocated MO's can be
allocated. Versions, for which the flag
bit on least one conflict pointer is set,
may not be selected.

the

Timing chéck:

Functions of the special register RCLK
are used to declare possible durations
of microcycle and their corresponding
microcodes. Before inclusion of the
current MO in the output esb it is
checked if it does not cause the dura-
tion of the instruction in the output
buffer to be longer than the maximum
allowed one. Functions of general
modules may be declared with the

versions which cannot be

123

attribute 'overlapping'. This means
that the operation within a module need
not be completed at the end of an in-

_struction gycle. This feature is used
‘e.g. for memory writes which last
‘}ohger than a microinstruction. The MSS

maintains down-counters for all modules
which are set such that they indicate
thedel@ly time after which the module
may be used again. Counting assumes the

"Wworst-case jumping between the output

instructions belonging to the current
input esb. Operations in all modules
must be completed before jumping to
other input esb's occurs.

The amount of testing in step 4 depends
upon” the. optimi;ation quality the user
desinee.

Mb does not fit :Lrito the
current instrugtion. then remove it from
the output buffer-and try to find.a ;.

- temporary buffar sfor tha interme&iate

If a temporary buffer does not exi t

 find edges where buffers can:be, i

branches as next MO'srand:goto-2¢

result.

then move up. in the tree and. ;:9

aze
ted. The tree below the inserted buffer
must be removed from the currentwowtput
esb and its Yresourceg must be -d@mlloca-
ted by simply removing the flags from
the pointers to gonflicting versions
(easy backtrackingl!). If necessary
buffers cannot .be found, then the .
complete subtree must be deallocated -
and marked with & flag in order to ..
prevent an immediate retry of alloca-;
tion.

If there are unallocated branches of
the current destination node. then. se-
lect the MO's of the unallocated..

If the MO below the curreht ‘MO “doés not
allow insertion of “temporary bu‘:qfx‘~
then take MO as current MO .and gofo 2,
If all leaves in the input: buffer have
been tested then write:out the current
output esb, clear the flags ‘and+zemove
tests in the input buffer which bedame
redundant due to a jump in the Sufient
output buffer. Goto 1.if.the inpyt .
buffer contains unalloaated Mo's.

