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Microprograms for highly parallel machines have gtati-
stical propertiles different from machine-level progranms.
The paper discusses properties which are relevant to the
design of microarchitectures. We quantify the speedup

by microinstruction pipelining, the speedup by different
timing mechanisms and give some guidelines for the imple-
mentation of condition logic. A software system for the
design of digital processors, based on a computer hard-
ware design language, is used to find these statistical
properties.

1. Characterization of the Considered Architectures

This article discusses various statistical properties of - micropro-
grams. Although the analysing method can be used for any micropro-
gram, we wish to emphasize those properties which can be used in the
top—down design method for the class of microarchitectures we want
to design [1,2].

We want to design cptimized microarchitectures having the following
properties:

a. Highly-parallel: -Our architectures use many function boxes, memo-
ry ports and data paths in order to obtain a significant speedup
over conventional architectures. These hardware units are used by
powerful microinstructions which are able to control complex opera-
tions. Data may pass through several ALU's and memeories before a
result is stored and the next instruction is fetched. There is only
one instruction stream and therefore the fetching of the next in—
struction is a possible synchronization point for loops, jumps and
procedure calls., Therefore we have a high-speed data-flow like
asynchronous operation within one instruction and, at the same time,
a cheap synchronization mechanism.

b. Direct encoding [3]: The microinstruction controls the hardware
units without using a lot of decoders. Only in a few cases is the
microinstruction decoded. It has been shown [4] that the code size
of such microprograms need not be larger than equivalent conventio-
nal machine code if the microarchitecture is carefully designed.
Microarchitectures, which are designed for user microprogramming,
are not harder to program than conventional machines,

¢. Variable duration of instructions: We assume that not all the
microinstructions are completed within the same amount of time. This
is especially true for complex microinstructions. Simple architec-
tures use a constant amount of time for all instructions, which must
be the 'worst-case' time. We assume that instructions may be of aif-
ferent length. Thia length can either be computed at compile time




and stored in a field of the microinstruction or there may be
tokens, which accompany the data, and specify at what time the data
is valid. In the latter case, a microstep is finished I1f all tokens
reached their destination. There are at least three reasons why
architectures using token logic are faster than architectures with
compiled instruction length:

. The length of the instruction may depend upon conditions,
e.g., an instruction may have a fast THEN and a slow ELSE
case. :

8. Parallelism for this kind of architecture needsa multi-
port data memory. When large multi-port memories are rea-
lized by interleaved memory banks, the minimum execution
time of an Instruction depends upon the number of memory
access conflicts. For a compiled instruction length we had
to assume the worst—case access conflict, i.e. all operands
are within the same bank. This would result in no speedup
by interleaving.

Y. There may be data-dependent executlion times of certain
functions, like 'shift until mantissa is normalized'.

The token logic 1s similar to the data-flow concept but needs less
overhead,

d. Complex condition hardware: In hardware, there may be two kinds
of conditions:

a. a conditional write operation intoc a memory
(i.e. either an operand is written or nothing is written},
b. the conditional selection of an operand.

Hardware for both cases is shown in Fig. 1.1. Simple additions have
to be made if -eoken logic is used. Further additions allow multiple
nested conditions [5].
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The microinstruction bits in Fig. 1.1.a are evcke bits, i.e. con-
trol state changes [6]. The microinstruction bits in Fig. 1.1.b are
select bits, they choose a functicn or confiqure the data paths, but
do not modify memory.

2. Method Used for Statistical Studies

Section 4 of this paper contains statistical figures which serve as



guidelines for the design of details of the described class of ar-
chitectures. The design follows our general design methodology. It
requires that all design declsions should be based upon objective
criteria. At present we consider cost and performance as design
criteria. Cur MIMOLA-Software System {MSS) helps the designer to
find cost/performance-optimized digital systems.

The MSS accepts our computer hardware design language MIMOLA [7]
as its input. MIMOLA has dialects for the (procedural) description
of algorithms and for the {(non-procedural) description of computer
hardware structures.

The MSS first converts input algorithms into data-flow trees

{fe.f. Fig. 2.1 and Fig. 2.2). These trees contain sources and desti-
nations of the flow of information, arithmetic, logic and sequencing
operations. The allccator part of the MSS is able to assign hardware
resources to the nodes of the flow tree. The amount of available
hardware resources may be limited or unlimited. The cogEéler part of
the MS5 is able to split parallel parts of the flow graph such that
no rescurce conflicts occur. The hardware resources are declare
using the hardware description dialect of MIMOLA. This declaration
is known tc the allocator and compiler. The MSS expects that the
input algorithms are highly parallel and uses the compiler to adapt
the degree of parallelism to the available hardware,
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The main purpose of the MSS is to find cost/performance relations
within the design space. To this end the MSS computes the cost of
the used hardware and the runtime of a large set of input algorithms,
the so—called test-set. Cost computation in the MSS assumes a hard-
ware realization with discrete TTL circuits [8]. Runtime is computed
by computing the minimum duration of every instruction in the test
set and multiplying by the number of times each instruction is exe-
cuted.

runtime = £ duration of instructicn x lteration count
all instructions

Iteration counts are measured or computed outside the MSS in order
to avoid long simulation runs. They are inserted into the test set
and therefore are known by the MSS.

Computation of instruction durations is faciliated by the flow
graph. For each of the nodes there is an associated time delay. The
longest (slowest} path through the flow graph corresponds to the
minimum instruction duration for architectures with compiled
instruction durations. Throughout this paper we assume that time
delays are equal to one time unit, This may be the time which is
required to add two words. Only for nodes corresponding to the con-
dition logic in Fig. 1.1 do we assume shorter times: Flow graphs
corresponding to Figs 1.la and 1.1b are shown in Fig. 2.3.
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The graph in Fig. 2.3a must be stable after t_  time units:

[ (t£+t

t = max {to cond) } + tmem

ev P

where tDp : time when operand (and address) 1s valid,
tcond: time when condition is wvalid,

tf : delay time of network £,

tmem : memory data-hold time.

The output of the module in Fig. 2.3b is valid after

t 1 = max (t r t (t + tg) } + tmux + tmod

se op2 ! cond

: time when first operand 1s valid,

op

time units, where t0P1



time when second operand is valid,

t : delay time of network g,

t : delay time of multiplexor,
t : delay time of module mod.

For the token logic, the average value of toel ig possibly smaller.
We have

tgel,t = MaX (:;in'topi) r toonat ' Y * Foux * Bmoa
where py is the probability of using operand top .
i

A .realization of £, g and mux, which 1s also applicable for nested
IF-conditions [5], requires twice the delay time of a multiplexor
for t,, the delay time of a decoder for t_and the delay time of a
multiplexor for t . As a first approximﬂtion, the runtime analyser
sets these times mux by default to:

tf = 0.5 time units,
tg = 0,25 time units,
t = 0.25 time units.
mux

Besides merely computing the total runtime, the runtime analyser is
able to gather other statistical data which is relevant to the de-
sign of hardware details. The analyser computes the average nesting
level of IF-conditions, the minimum bandwidth of input ports, data
for the design of an instruction pipeline etc. Results are discussed
in sectich 4, Results concerning the optimum number of memory ports,
function boxes etc. are contained in (8]. This paper discusses
matching the structure of algorithms and some details of the struc-
ture of hardware which were left unspecified in that paper.

Structures of paratlel algorithms have been studied in numerous pa-
pers by Ruck et al. For references zee [9]. However, Kuck's hard-
ware model is different from ours. It assumes a higher-level type of
parallelism, not the low-level type which is provided by microin-
structions.

3. Sample Programs

Five sample programs are used to gather statistical data. We also
refer to these programs as the test set. The programs represent
different application areas and source languages and some

are written for special architectures. All programs ({or ‘algorithms")
have been translated to a register-transfer subset of the computer-—
hardware design language MIMOLA. Insertion of intermediate results
[9] was used in order to increase parallelism, but loops and proce-—
dure calls were not modified. Programs 1 to 3, which were not writ-
ten for special architectures, will normally be compared only after
a transformation to an identical hardware by the MSS compiler. These
transformations generate different versions of programs 1 to 3. Only
one version of each program will be used if we average over the pro-
grams. These versions will be indicated by an asterisk in Table 1.
The functional capabllity of the test set is equivalent to about

10 k instructions of the PDP-10.



The following is a short description of the test set:
1. Part of the MSS

The MSS is written in PASCAL and makes heavy use of PASCAL's data
structures. Therefore this example shows very complex addressing
schemes and the degree of parallelism is very high. Program la is a
part of the PASCAL runtime system written in MIMOLA.

2. Part of the IBM Scientific Subroutine Package (S5P)

The SSP 1s written in PORTRAN and uses a simple addressing scheme,
Its MIMOLA equivalent dces not use the maximum possible parallelism.

3. Operating System BSM [10}

The kernel of the operating system was translated to MIMOLA. The
MIMOLA version contains many conditional jumps but is 'sufficiently'
parallel,

4. CHILL processor [11]

The CHILL processor has a P-Code like instructien set. The microin-
structions for the most common instructions have been converted to
MIMOLA. The underlying hardware was not changed.

5. SIEMENS 7.760

These are the microinstructions of a redesigned SIEMENS 7.760
machine [12]. They contain a large degree of parallelism and complex
condition testing.

4. Results

Table 1 contaihg an excerpt of the data computed by the MSS. It will
be discussed in this section.

4.1 Microinstruction-Pipelining

Quite often, the next microinstruction address is known before all
other expressions in a microstep are computed. At the time when the
next address becomes valid, we may clock the micropregram counter
and start reading the microinstruction memory. The present micro-
instruction is kept in a function register until all operations in
the current instruction are done and the next instruction is wvalid.
See Fig. 4.1 and 4.2 .
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Tucc.

Fig. 4.1 Pipeline Timing



Algo= | Hardware | maltiple | used Tsz speedup by runtime oondit:.m oSt | memory
rithm | limited |use of for (ocrpiled complled [ token | (complled | nesting 8 | input
to hardware | ave- length) length logic | length) |level N bandwidth B
in con- | raging T23=1 max|ave |[var max [ave [var
ditions

1 - yes 7.43 1.840 1.252 | 35217 4 |0.98]0.5419292| 12[1.03|1.27
1 - o 7.35 1.378 1.252 | 34892 4 0.98|0.54[900%( 12]11.01]|1.25
1 DCL.BSM yes * 4.23 1.816 1.066 | 95588 3 |0.22(0.46(4740 2[0.70]|0.64
1 DCL. BSM ns 4.22 1.822 1.067 | 96025 3 |0.22|0.46|4483 2]0.70(0.63
1a yes * 5.42 1.401 1.041 117 7 [1.00]2.04 a1.22[1.02
2 - yes 4,56 1.797 1.069 | 17619 1 [0.70|C.46 5]0.8110.58
2 DCL.BSM ves * 3.78 1.675 1.033 | 30366 1 10.37|0.48 2(0.72{0.43
2a | SPM yes * 4.04 1.487 1.003 | 90998 1 (0.29]0.45 310.93/0.48

{different subset of SSP)
3 - yes 3.37 2.345 1.087 | 64792 2 |0.59|C.54|8757| 13(1.28(1.34
3 - m 3.3 1.973 1.080 | 63859 2 |0.59(0.54|7343| 13]1.22[1.,18
3 LDCL,. BSM yes * 3.19 2.269 1.040 | 94839 2 10.39|0.51|3346 3|0.95(0.60
3 DCL.BSM n 3.19 1.790 1,024 | 9107 2 10.37]0,4913254 3|0.%0}0.59
4 CHILL~Froc. o » 3.13 7.453 1.000 | 17766 1 [¢.50|0.50 1]0.56(0.50
5 7.760 yes * 3.32 1.738 1.016 | 413998 2 [1.26]0.68 1.6(0.52|0.34

Table 1
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The clock C1 may be derived by valid-tokens accompanying the data.
The MSS analyser allows us to study the frequency distributions of
the time-intervals T between clock pulses €1 and C2 for our sample
programs. These dist}fbutions differ from program t¢ program.

Fig. 4.3 shows the most extreme distributlons of our test set.



Example 1 allows a good pipelining. This is due to the complicated
expresgions in this example combined with the PASCAL addressing
scheme of variables. Only few jumps depend on multiple nested con-
ditions. On the other hand the operating system uses simple expres-
sions, a simple addressing scheme and many conditional jumps.

The distributions of the intervals_T4, can be used to find the
relation between the average time T;3 between clocks €2 and C3

and the instruction memory access time Tacc’
T12 = Tacc
Ta3 (Tacc) = ZO B(T,,) ‘Tacc - Tq)

Ty2

where P{T12) is the probability of a certain time interval between
clocks 1 and 2,

Fig. 4.4 shows T23 for some program versions of our test set.

example :

= 3 42 2a1

$ Tos
la

4 | useful _J

™ range |

I
2_
1_

6 7 lacc

Fig. 4.4 Relations between memory access and idle time

The straight line corresponds to the no-pipelining case, i.e.

T23 = Tacc



The average speedup by pipelining for ocur algorithms is

n T32 * Tace
_1 i
Sp =n _E —_— ——
i=1 T32 + T23_
i
where T32 is the average duration of an instruction without instruec-
i
tion fetch for algorithm i1 and T is the average 'idle' time.

23.

Average instruction durations (T, ) are listed in Table 1. Values
range from 3.13 to 7.43 . A val%é of 3 corresponds to reading a
srabch-pad memory (1 time unit), arithmetic or leogic manipulation

{1 time unit) and storing the result (1 time unit). Therefore, a
value of 7.43 indicates very high expression trees. Expression tree
height reduces considerably if the number of hardware resources is
limited.

Using T32 of the lines in Table 1 which are marked by an asterisk
and Ty of Fig., 4.4 (setting T
speedup of .

oo = 1), we obtain an averaqge

8. = 1.125
P

The average access time for the microinstruction memory may also be
reduced if, at the start of each instruction, a fetch of the instruc-
tion with the next higher address is started ('prefetch'). This pre-
fetch will be valid if no jump occurs. The MSS computes jump proba-
bilities for the test set ranging from 25 % to 50 &, resulting in a
prefetch speedup of about 10 %. This speedup is a guideline for the
designer who wants to know if he should implement the prefetch logic.

4.2 Speedup by Variable (compiled) Duration of Microsteps

If we compare architectures with fixed and with variable (compiled)
duration of microsteps, the maximum speedup 1s (1 ranging over all
instructions):

max {(duration of instruction i)* Z mumber of times i is execnted
i i

L (duration of instruction i # rumber of times i is exscuted)

i

Table 1 shows the speedup for various forms of the algorithms. The
speedup is high if there is a small number of slow microinstructions
and a large number of fast microinstructions. The speedup may be as
large as 2.345 . Using only the forms indicated by an asterisk we
. have an average speedup of

SV =

5, = 1,69

4.3 Speedup of Conditional Statements by Tokens

In section 1 we mentioned the speedup of conditional statements by
tokens. If we use formula (1) for the computation of runtimes, we
obtain an average speedup of

5. = 1.028

using again the verslons indicated by an asterisk. This small guan-
tity is not sufficient by itself to justify the additional hardware.



But the main reason for a token logic is the interleaved memory and
the speedup of 1.028 for conditional statements is only a byproduct.

4.4 Average Number of Nested Conditions
This number is defined as (1 ranging over all instructions)

L (maximm condition nesting in i} * (mumber of times i is executed)

N =2

E (mmber of times 1 is executed)
i

.8B 1s about ©.8 for the most parallel programs in the test set and
about 0.3 for examples with a limited number of memory ports and
operators, This indicates that the implementation of one condition
level is sufficient. Only program 5 needs 1.26 condition levels on
the average, this is due to testing for valid data in the cache, in
the address translation memory, in the main menory and many error
conditions.

4.5 Multiple Use of Hardware in Conditions

Within one instruction, the same hardware unit may be used for dif-
ferent purposes under mutually exclusive conditions. E.g. a memory
port may read cell 1 in the THEN-part and cell 2 in the ELSE-part.
An option of the MSS-allocator is available which disables such a
multiple use of hardware. We studied the effects of this option for
programs ! and 3, see Table 2. all values are normalized to one if
the multiple use is not allowed. Lot ’

Tew

Example HNumber of relative relative runtime

Ho. ports runtime cost times
cost

1 unlimited 1.009 1.031 1.041
1 8 0.995 1.057 1.053
3 unlimited 1.014 1.193 1.21¢
3 8 0.977 1.026 1.002

Table 2 Effect of allocator option.

Multiple use of hardware increases speed, if a fixed number of ports
is given, but decreases speed, if the number of ports is unlimited.
The latter is due to an reduced overlapping in the computation of

the condition, the THEN-part and the ELSE-part. Multiple use of hard-
ware increases cost due to more connections and microinstruction
fields, But the effect on the cost-runtime product is so small that
only a more detailed analysis is able to find out the best soclution.

Multiple use of hardware leads to supplying memory ports with more
than one microinstruction address field. What we want to point out
here is that this can be cost—effective.

.

4.6 Bandwidth of Memory Inputs

If at the end of the microsteps the results are stored, some of these
possibly have to be stored in the same memory bank. This conflict
causes a delay. It can be minimized if all results are stored as
early as they are known. Based upon the knowledge of the earliest
possible arrival times of the results, the runtime analyser computes
the minimum number of results the memory must be able to store within
a time unit if ne conflicts shall occur. We call this the minimum




bandwidth B. This bandwidth was averaged over our sample programs
and is shown in Table 1.

4,7 Critical Path Analysis

Slow modules, which are bottle-necks of the whole hardware system,
may be found by a critical path analysis. To this end, the runtime
analyser computes the frequency of finding a module in the critical
{i.e. longest) paths of the flow trees. The designer may replace
the modules, which are found frequently on the critical paths, by
faster modules.

Conclusion

The paper presents a method which may be used in order to gain more
insight into the time behaviour of microprogrammed, low-level parallel
algorithms. It shows that register—transfer and computer-hardware
description languages may be successfully applied in order to com-
pute figures upon which hardware design decisions may be based. The
final design slightly depends upon the main application area of the
processcr. However, the implementation of a variable instruction
duration seems to be valuable in most cases and that the implemen-
tation of nested conditions in hardware is normally not necessary.
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