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I. INTRODUCTION

OVERVIEW

The MIMOLA Software System (MSS) 1is a new tool te help the
designer of digital systems, mainly in the initial phases of the
design. Therefore, it is called a front-end or planning tool.
The microprogramming facility can also be used during
implementation and use of the digital system.

This PRIMER is intended to introduce users of the MSS to the
application of this new tocl and to direct them to more detailed
documentation. The FRIMER 1is written 1in a tutorial style,
including examples. The reader 1is encouraged to follow the
examples and to do the exercises,

The PRIMER also explains how some things work 1n the scftware
system. This Knowledge is not necessary to actually use the
system, but it may help explain why certain things are done as
they are. It alsoc helps the designer understand the results s/he
will achieve, which will enable the user to more fully control
the =zoftware.

The Y¥SS should always be viewed as an aid, not as an automatic
tool.

MOTIVATION
Who should read the PRIMER? What will ycu get out of it?

Trazditionally, we would address the digital systems architect,
subsystem and logic designer. However, for VL3I systems we also
address the "tall" designer, who carries the design through all
levels, The MIMOLA System is especieally suited for firmware and
hardware design of processocor-like structures, with complex data
and control units.

Tie PRIMER will teach the initial use of the currently available
tools of the MIMOLA System. New PFRIMERS3 will ©be published for
new software, as necessary. The informaticn in this PRIMER will
help the user evaluate the usefulness of the tools as they apply
to nis special needs. It will alleow him to use the tool and get
some hands-on experience. It will also prepare him to make full
use of the MIMOLA Report /3/.

If you have no idea what MIMOLA is, the authors strongly
recommend that you read the reprint of the paper "What is
MIMOLA?" (Appendix A).

CC3C 4 MIMOLA Primer



WHERE MIMOLA IS USED

We are trying to build a digital system that fulfills given
requirements. The requirements mainly express the behavior, but
can also include an objective function and other parameters, like
cost and size. The first task " in a hierarchical design is to
find a digital systems structure, for example a design in the
form of schematics. The second task is to map this structure
onto a physical design, for example, a layout. As a third task,
we have to fabricate (build) the system. Finally we have to
test, program (if possible), install, and maintain the system.

With the MIMOLA System, we do part of the first task, called
structural design. In a hierarchy of refinement levels, we do
the structural design of synchronous subsystems (for example,
processors), using primitives at the register-transfer (RT)
level.

Now keeping these limitations in mind (structural design,
subsystem to RT level), we first have to specify the
requirements.

II. GETTING STARTED

We now have to decide what we want to design. This "what" will
be called the "System Under Design" or SUD. Some thought should
be given here to: "What is necessary to specify the SUD?"™ We do
not want to specify too many details, and thus limit the design
space. We also do not want to omit information that could cause
unwanted behavior of the SUD, So, the proper specification is a
balance of abstraction level and completeness.

Let us take an example. Suppose we want to design a
microprocessor with the same instruction set as system xyz. The
right abstraction level is the user's handbook that describes the
instructions of xyz. It is also complete in the sense that it
contains all instructions. Further specifications include the
required performance for a given benchmark, and physical
properties, such as the number and size of chips, etc. The
objective function could be the maximum performance for a given
physical configuration, such as a single chip implementation.

Another example might be a traffic 1light controller. We can
completely specify it by a state transition diagram that shows
the visible states, which would be the right abstraction level.
Again we can have additional requirements like reliability, cost,
or temperature range.

The completeness becomes more of a problem if the SUD is more
generic, as for example, an image processing unit. Many image
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processing algorithms are possible, and we may want a machine
that can execute all of them. We cannot possibly enumerate all
of the algorithms, but each may be implemented in terms of more
basic operators. This is also true for instruction set machines.
We have learned that even with very primitive instruction sets we
can execute any executable algorithm.*(1) Thus, primitive image
processing cperations can be easilv implemented in the SUD. So
the question of completeness is more: For which set of
algorithms dc we want to achieve an optimal or some other level
of performance? It is now wup to the architect to decide on a
kind of benchmark of algorithms that should be considered, and
weigh them. This, then, defines a complete set. The correct
level of abstraction is typicallv a description of the algorithms
in a high level programming language or a software design
language.

Fow let us consider an example that we will develon throughout
tnis PRIMER. It should be simple, but still show enocugh
different functions to exercise the basic features of the MIMOLA
System, Unlike the top-down approach of a normal system design,
we Wwill proceed bottom-up in this example. That means we start
with the primitive functions and add more complex ones later.
This makes 1t easier to learn the use of MIMOLA.

DESIGN EXAMPLE:

Requirements: Design a microprogrammable system that can
calculate sin(cyclic_frequency * time). We may later want
to extend the function to a wave form synthesizer.

Refinement {specification of algorithm): More
specifically, we want to calculate sin in the following
manner.

sin(x) = x — x%%¥3 4 yx¥%g5 _
31 51

Let us call

cyclic_frequency
time

then we can write
o0 Antl n
sin(c*t) = S ety G )
n=o (2n+l)!

or a(0)
sin(0)

I 11
00
* X%
(o ey

(1) *Tnhe Turing Machine gives theoretical proof for this.

CCsC 6 MIMOLA Primer



—a(n-1)*(c*t)'*2/(2n*(2n+1))
sin{n-1) + a(n)

a(n)
sin(n)

SELECTION OF THE ALGORITHMS

If the algorithms of the specified functions have not already
been defined, we have to decide now. This decision will somewhat
influence the structure of the SUD, and only experience with the
MIMOLA System can really help. The guideline is: Use a fast
algorithm, and use parallelism and loops as you would in a High
Level Language (HLL).

Algorithm Refinement:

EXAMPLE: We will use an iterative loop based on the
previous recursive equations. The iteration stops when
the a(n) becomes less than 0.004 (we may choose to use
1/256 in order to make it simple in the binary number
system) .

e e e S e P Y G S A S S S e W W e e e W S S S SR S S W U W e RS A ma e

! First, describe the algorithm in a High |
| Level Language (e.g., Pascal, PL/1, H
! Fortran, etc.) i

PR ————————— e L L R R R ok R

Now we write a little BASIC program to verify our algorithm.
LIST PRIMER_1.B

10 print 'This Program calculates sin(c¥t)!

20 print ' ¢ = ';

30 input c

40 print ' £t = ';

50 input t

60 n =1 .

70 x = ¢ #* ¢t

80 s = x

G0 a =

100 if abs(a) < .004 then goto 200

110 a = -a ¥ x * x / (2 % n *® (2% n4+ 1))
120 s = 8 + &

130 print 'n = ';n,’ a= "';a, ! s = ';s
140 n = n + 1

150 goto 100

200 print ‘'sin( ';x;' ) = ';s

210 print ' type: 0 for quit, 1 for new ¢ and 2 for new t'
220 input i

230 if 1 = 1 then goto 20

240 if 1 = 2 then goto 40

250 end
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A typical result is:
LIST PRIMER.RUN
run

BASIC- 3.0-08/02/0700 1982/12708 0932:26 PAGE 1
~ZDA>UDD>DA>ZIMMERMANN>PRIMER_1.B :

This Program calculates sin(c#t)
€ c =71
6t =171

n = 1 a = -.166667 8 = .833333
n= 2 a = ,833333E-2 s = .841667
n= 3 a = -.198413E-3 s = .841468
sin( 1 ) = ,841468

type: 0 for quit, 1 for new c and 2 for new t

0

Checking our pocket calculator gives
sin(1) = 0.841471

Our result is accurate within the error margin of 0.004,

i Note: It is recommended that you try |
i the exercises before checking the |
| answers in the appendix. i

D L YD W R G M s Y S S S e G D et D e e e ) SR vt

"EXERCISE 1
Try ghis algorithm on your system for the numbers 2, 4,
and o’

We see in this exercise that a variable can take on a wide range
of values. The designers should be aware of this, to ensure that
there are no underflow or overflow errors because of wordsize
limitations.

| The selection of the algorithms to !
| describe the behavior influences the H
: structure of the System Under Design, |
SUD |

L]
D RS Sk v - W D G G D G G S D S R U D e W D S i S W A e e
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DESCRIBING THE ALGORITHMS IN MIMOLA

In order to enter the selected algorithms into the MSS, we have:
to describe them in MIMOLA. MIMOLA 1is a procedural Hardware
Description Language (HDL). It has been developed especially for
the task of structural desikn, and therefore, differs slightly
from a High Level Language, as we will see. We introduce here
only the constructs needed for our example in  a step-by-step
fashion. A complete description can be found in the Report /3/.
In the BASIC program lines 60-120 and 140-150 are the parts we
want to map into hardware. The other lines are only necessary
for exercising it.

! The first character of all MIMOLA names {
! is case sensitive. |

—— A O e e S W A Y T v don SAF I G T P e s des w S B B B G G g S S e S S G

EXAMPLE: Let us start by converting line 60 of the BASIC
program into MIMOLA. -

n=1 -_—D S{n):=1
(The n__.>" symbol represents the conversion of BASIC into
MIMOLA.)

In this conversion the variable called n, which implies a storage
location in BASIC, is explicitly declared as a storage location
in the MIMOLA statement. S(n) describes a storage device (a
memory) that is addressed at the location defined by n. The name
of the memory is S, other memories that could exist might be
called: Smain, S1 or SINDEX., All memory names -in MIMOLA start
with an upper case 3. Variable names, however, start with a
lower case letter or the underscore character ("_"). We also see
that ":=" means assignment (as is Pascal).

- : Storage, addressable memory i
| Sname : Specific storage module |
! S(var): Contents of storage location var i
| var : Variable name, first letter lower |
] ‘case or "_" i

In MIMOLA, as in BASIC, we have labels for each instruction, and
each label starts with L. The label name does not define an
order in MIMOLA!
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60 n = 1 -==>  L60 S(n):=1 ;

The ";" denotes the end of the instruction, which can continue
over several lines. MIMOLA is free format, so lines have no
special meaning. ..
Line 70 contains an expression 1in the infix notation used by
BASIC., MIMOLA uses postfix notation.

TOx =c *¢ ——— L70 S(x):= S(¢)/S(t)->B(%);

We assume that ¢ and ¢t were already stored in the memory
locations S(c) and S(t) by some, as yet undefined, statement.

L70 contains some new symbols, so let us first consider "B(¥)",
B(¥*¥) describes a dyadic operator, in this case it performs the
operation "#" ypon its two inputs. The name of this dyadic
operator is B; other names could be Balu, Bt or BMUL. Note that
the first character of a dyadic operator's name is always an
upper case B. The inputs for the operator are immediately to the
left of the "->" symbol that points to the operator name. The
%npu?s are also separated from each other by the slash character
ll/tl .

Expressions: Expressions are postfix notation i
without parentheses i

op / op -> b-operator: dyadic expression (two ;
operands "op") . ]

b-operator: B(function), executes "function" on i
the next two operators to the left E

1

function: “+“, ""‘", “*"’ "uname"' on‘.-
EXERCISE 2
Write the following infix expressions in the MIMOLA postfix
notation.

a=+b
2 + (c + 5)¥5
[(3 + 4)%C1 + 2)) + [3%(a+Db)]

(The solution is in Appendix B.)

The next lines are easy to translate:

80 s

X —-—> L80 S(s) := S(x
.90 & 1= S(x

X ——) L90 S(a)

#"un

cCscC 10 MIMOLA Primer



So far, the +translation seems to be fairly straightforward.
Before we proceed, we will peek into the MSS. Because:

e

- —— e e O O - . - -

| "The Description of-.the Algorithm influences |
i the Structure of the supn |

III. A CLOSER LOOK AT THE MSS

HARDWARE ALLOCATION

Let us see how the MSS allocates hardware for the behavioral:
expressions we have described so far. This process  is also
called resource binding, because we can think of the hardware:
modules and connections as resources that are bound to primitive
operations in our instructions. : :

The MSS scans each instruction from left to right. As necessary,
hardware modules are added to the hardware database. If
possible, hardware modules that already exist in the database,
but are not in use for the current instruction, are reused.
After each instruction 1is processed (a ";" indicates the end of
the instruction) all of the modules in the database are released
for future use. The ";" 1indicates that all assignment operators
for the current statement are to occur and that a state
transition has occured.

EXAMPLE :
L60 S{n) := 1;

Let us skip the translation of the label "L60™ for now. We will
come back to it when we discuss control.

S{n) is a destination, so the Allocator creates a module S with a
data input "A", This can be shown to the designer as:

In the PROGRAM Text
S<A(n) =~ indicates that the operand S(n) is now bound to
input A of memory S (i.e., Port A). '

In the hardware description section
S<A(...) = 1indicates that a port called A exists for the
module S.

The address n has to come from somewhere., The default assumptioh

is that any constant (such as n) is assigned to a microprogram
field. The microprogram vector is called I and the fieldname

CCsC 11 MIMOLA Primer



"I.fieldname"™ 1is generated from the module name, with the
destination type as a first letter.

Destinations (first letter) in I.fieldname:

[} 1
1 1
i i
i A Address !
! D . Data - i
i F Function !
! c Control i
| M Multiplexer Addr. i

S0, the field for n tranlates into
I.ASA
|L____port nan
memory "S¥®
"address"
The "1" in our expression is a constant and is directly assigned
to the data port S5<A. Therefore, the "1" is stored in another
microprogram vector field DSA.
1 translates to I(1).DSA
So far we have, in a long bound form,:

L60 S<A(I(n).ASA} := I(1).DSA ;

This implies connections, which we can show in structural MIMOLA
as (destination <- source_list)}.

S<A.DAT <- I.DSA
S<A.ADR <- I.ASA

or as schematic

I DSA ASA

CcCse ' 12 MIMOLA Primer



When the MSS produces structural MIMOLA it is placed in the "SCR"
file. '

Here again we have seen the. use of the construct:
port.attribute - |
Where DAT and ADR stand for the data and address connections to

the A" port, Therefore, an attribute can be used to define
fields of a vector and also types of ports. .

I
I
1
1
]
1
]
L]
1
1
1
1
1
1
1
|
H
]
]
]
]
1
1
1
)
1
1
1
]
1
1
1
]
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
I
I
t
1
'
]
]
]

S name < portname
S name > portname

Input port of S name
Output port of S name

*r e

1

]

]

i I : Microinstruction control vector
i port.name : Attribute, e.g., field of a
P vector or port

| «DAT : Data field attribute

i  <ADR ¢ Address field attribute

] .

1

Let us now see if the MIMOLA Software System yields the same
result. We use the Allocator called MIMB and look at the SCR
file. (The examples were generated on a Honeywell L66/GCOS
system.):

#LIST/GEZ/PRA.SCR

$ADDMODULE

s8(0:0),

S<A.DAT.WORD,

S<A.,ADR.WORD;

$ADDCONNECT

S<A.DAT.WORD <- . I>.DSa,
S<A,ADR.WORD . <= I>.ASA;

Under the key-word ADDMODULE we see a list of the modules and
respective ports. S{(0:0) means a memory S with an addressing
range 0:0. This is because we did not tell the system how large
the memory should be, and it defaults to the smallest possible
size. We also see that for the ports DAT and ADR the system
assumed a default bitsize called word, which is undefined at this
point.

The ADDCONNECT section, which shows the connections between the
hardware devices, is exactly what we predicted.

CCSC 13 ‘MIMOLA Primer
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STRUCTURAL SPECIFICATION

This uncertainty about the bitsize and the zero number of words
in the memory may confuse the system (it could lead to zero
length vectors, which are then suppressed). At this point in a
design, we probably have some idea about these parameters. We
can specify a value now and chaage it later, if necessary. .

EXAMPLE:
Let us assume an 8K memory and a 16 bit wordsize. We
specify this by preceding our program with

$ADDMODULE
S(8191:0) .BIT(15:0)WORD ;

We wuse the same syntax as in the SCR file that we looked at
before. Actually, the 3SCR output 1is designed to be used as an
input in the next iteration. We only have to add or delete
details to create an input specification that reflects what we
want to describe.

BIT (a:b) name 1is a bit range attribute and can be used in both
the structure and the program part. The optional "name" defines
an attribute called "name"™ that can be used instead of BIT(a:b)
from there on. . :

MORE SYNTAX

To run our design through the MSS, we need some more information.
The behavioral section must start with $PROGRAM, and it must be
enclosed by a BEGIN END pair (to give it the appearance of an
HLL). The $ tells the system that PROGRAM is a "monitor
keyword", '

EXAMPLE
The file INP, the input to MIMB, looks like this:

%L1ST/GEZ/PRC.INP
$ADDMODULE

S(8191:0) ,BIT(15:0)WORD;
$PROGRAM

BEGIN

L60 S{n) := 1;
END

Now, running MIMB again, we get as a structural output:
#LIST/GEZ/PRC.SCR

$ADDMODULE
I>.BIT(12:0)ASB,
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I>.BIT(28:13)DSB,

S>A(8191:0),

S>A.BIT(15:0),
S<B,DAT.BIT(15:0),
S<B.ADR.BIT(12:0); -

$ADDCONNECT :
S<B.DAT.BIT(15:0) <-'; I>,DSB,
S<B.ADR.BIT(12:0) <- I>,ASB;

This is much more than we expected, but we will see that it makes
sense, The  first two 1lines define ¢two fields of the
microinstruction word: Address ASB with 13 bits - for 8K memory
- . and DSB with 16 bits, as a data input to S.

The third line defines an output >A of the memory. This is a
system default, because if a memory is named without a port (line
3 of our input program), the port >A is assumed. The address
range and word size are what we defined.

The input port 1is now <B, which changes our naming, but nothing
else. Also, the address port ADR for S<B is 13 bits, as it
should be.

In ADDCONNECT only WORD has been replaced by the correct bitsize.
Looking at the GEN file, we see the same syntax as in the INP
file. Thus, this could be used as an input if necessary. We
also see that in the bound program the input <B has been
selected, as expected.

*LIST/GEZ/PRC.GEN

"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"

$PASS 1
$PROGRAM

BEGIN

L60.1
S<B(n):=1;

END

CCSC 15 MIMOLA Primer



IV. BACK TO OUR EXAMPLE

MORE HARDWARE ALLOCATION

Now let us see what the next 1lipe of the BASIC program, line 70,
adds to the hardware structure.: Of course we will try to reuse
the structure we have so far: :

L70 8(x) := S(e)}/S(t) => B(#*);

Scanning it from left to right, we first assign existing Port <B
“to S(x), then port >A to S(ec), then create a new port, >C, for
S(t). We have to interrupt here to make a note: If we define a
module or port in ADDMODULE, this implies that it is the only one
allowed, unless we state otherwise. Thus, the only allowed ports
of S would be >A and <B. We can give more freedom by adding the
standard attribute "MOREPORT" to S.

S(8191:0) .BIT(15:0)WORD.MOREPORT

Now back to the L70 example. An ALU called B is needed to
perform a multiplication, so we create one. We also have to
create new inputs of B, called B<a and B<b.

Input S<A had been used before. Can we still use the data or
address connections to it? If we 1look at the last SCR file, the
address input ADR still seems to be ok, because we again address
S with a variable name. The data input DAT was connected to a
constant before, and now needs to be connected to the output of
B,

MULTIFLEXERS

A multiplexer (MUX) must be introduced at the input to S<B.DAT.
(The term muiltiplexer is used here; however, a bus structure
could work as well.) Multiplexer names are automatically
generated by the system, Every MUX name starts with a ngn
followed by a character that indicates the information being
switched by the MUX (D, A, F or C for the data, address, function
or control). The rest of the name identifies the module and port
that are connected to the output of the MUX. For the current
example, the MUX at the data input port "B"™ of the memory called
"S" would be UDSBH:

UDSB

l___Port "pn
Module "S™"
"data®

wMUX®
The INP input to MIMB:

cesce 16 MIMOLA Primer



#LIST /GEZ/PRD.INP

$ADDMODULE

S(8191:0) .BIT(15:0)WORD.MOREPORT;
$PROGRAM .
BEGIN

L60 S(n) :=
L70 S(x) :=
END

S(e) /7 s(t) => B(%);

generates the following GEN file.
#LIST /GEZ/PRD.GEN

"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/ 80"
$PASS 1
$PROGRAM

BEGIN

L60.1
S<B(n):=1;

L70.1
S<B(x):=8>A{c)/8>C(L)->B(*);

END

Note that the MUX does not appear in this file. L70.1 1in the
output is the bound instruction, as we would expect. In the SCR
file, we noWw see the new structure, which includes the
multiplexer.

¥, IST /GEZ/PRD.SCR

$ADDMODULE
B>(*[1,0]),
B>.BIT(15:0),
B<a.DAT.BIT{15:0),
B<b.DAT.BIT(15:0),
I>.BIT(12:0)ASB,
I>.BIT(28:13)DSB,
I>.BIT(41:29)ASA,
I>.BIT(54:42)ASC,
I1>.BIT(55:55)MDSB,
S>A(8191:0),
S>A.BIT(15:0),
S>A.ADR.BIT(12:0),
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S<B.DAT.BIT(15:0)
"?,UDSB<a.DAT.BIT(15:0),
UDSB<b.DAT.BIT(15:0),
UDSB>.MPX.BIT(0:0),
UDSB>.BIT(15:0) 7",
S<B.ADR.BIT(12:0),
S>C.BIT(15:0),
S>C.ADR.BIT(12:0);
$ADDCONNECT
B<a.DAT.BIT(15:0) <=  S>A.BIT(15:0),
B<b.DAT.BIT(15:0) <-  S>C.BIT(15:0),
S>A.ADR.BIT(12:0) <=  I>.ASA,
S<B.DAT.BIT(15:0) <-  "?UDSB>.BIT(15:0),7"
"2UDSB<a.DAT.BIT(15:0) <~ ?"I>.DSB/
"2UDSB<b.DAT.BIT(15:0) <- 2"B>.BIT(15:0)
"?,UDSB>.MPX.BIT(0;:0) <-  I>.MDSB?",
S<B.ADR.BIT(12:0) <~  I>.ASB,
S>C.ADR.BIT(12:0) <=  I>.ASC;

DETAILS OF THE SCR FILE
More information has now been added that must be explained. The
first line of the ADDMODULE section describes the dyadic operator
llBll.
B>(*[1])
| L _execution time for "*" (default is 1)
function "®#" of function list of "B)"

output of "B"; no name has been added
to B, because it is the first copy.

The next lines describe the three ports of B.

The microinstruction I has been extended by two more address
fields, ASA (for port S>A) and ASC (for port S>C), and for the
MUX address field called MDSB. MD3B, you will recall, refers to
the Multiplexer select field for the Data port of the storage
module S called <B.

The next new module is the MUX UDSB with two input ports, one
address port and the output port. ’

The "? ++. 2" comments the MUX out for the purpose of using
this description as input to other MSS tools. In some the MUX U
is not explicitly known. For our purpose of looking at the
structure, we simply ignore the comment characters.

ADDCONNECT shows all the connections necessary to execute L60 and
L70 sequentially. Note the connections made to the MUX inputs.
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EXERCISE 3

Draw a block diagram that describes (or is described by)
the above SCR file.

The next two MIMOLA statements should not cause us any problem.

EXERCISE 4 : ‘
Bind instructions L80 and L90, using as much hardware as
is described in the last SCR file. Write the expected:
additional lines in the GEN and the SCR files. IThen
compare your result with the following listings.

¥ IST /GEZ/PRE.INP

$ADDMODULE

S(8191:0) .BIT(15:0)WORD,MOREPORT;
$PROGRAM
BEGIN

L60 S{(n)
L7T0 S(x)
L80 8S(s)
L90 S(a)
END

1;

S(c) / S(t) -> B(%);
S(x),
S(x

s as os e

L, IST /GEZ/PRE.GEN
"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"

$PASS 1
$PROGRAM
BEGIN
L60.1
S<B(n):=1;
L70.1
S<B{x):=8>A(c)/S>C(t)=->B(%*);
L80.1
S<B(s8):=S>A(x);
L90.1
S<B{a):=S>A(x);
END

*LIST /GEZ/PRE.SCR
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$ADDMODULE

B>(%*[1,0]),

B>.BIT(15:0),

B<a.DAT.BIT(15:0),

B<b.DAT.BIT(15:0),

I>.BIT(12:0)ASB,

I>.BIT(28:13)DSB,

I>.BIT(41:29)AS4,

I>.BIT(54:42)AS8C,

I>.BIT(56:55)MDSB,

S>A(8191:0),

S>A.BIT(15:0),

S>A.ADR.BIT(12:0),

S<B.DAT.BIT(15:0)
"?,UDSB<a.DAT.BIT(15:0),
UDSB<b,DAT.BIT(15:0),
UDSB<c.DAT.BIT(15:0),
UDSB>.MPX.BIT(1:0),
UDSB>.BIT(15:0)?",

S<B.ADR.BIT(12:0),

S>C.BIT(15:0),

S>C.ADR.BIT(12:0);

$ADDCONNECT

B<a.DAT.BIT(15:0) <~  S>A,.BIT(15:0),

B<b.DAT.BIT(15:0) <-  S>C.BIT(15:0),

S>A.ADR.BIT(12:0) <=  I>.ASA,

S<B.DAT.BIT(15:0) <-  "2UDSB>.BIT(15:0),7?"
"20DSB<a.DAT.BIT(15:0) <- ?%"I>.DSB/
"2UDSB<b.DAT.BIT(15:0) <~ ?"B>,BIT(15:0)/
"?2UDSB<c.DAT.BIT(15:0) <= ?"S>A.BIT(15:0)
"?,UDSB>.MPX.BIT(1:0) <- I>.MDSB?",

S<B.ADR.BIT(12:0) <~ 1I>,ASB,

S>C.ADR.BIT(12:0) <= 1I>.ASC;

Simple, isn't it? This may be the time to try running MIMB on
your own input file. Refer to Appendix D for a 1isting of
available systems and documentation.

V. PARALLELISM

WHAT CAN BE DONE IN PARALLEL?

In instruction LT70 we saw that three memory ports were used
simultaneously. Is this all we can do in parallel? Definitely
not. Let us have a look at the 1last INP file /GEZ/PRE.INP.
There is no data dependency between instructions L60 and L70, so
we Wwill combine them.

L60OP S(n) := 1, 5(x) := S(e)/8(t) -> B(*);
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The comma separates parallel statements; both are executed in the
same clock cycle. Note that the cycle ends when storing the
results into S(n) and S(x). All storage operations occur at the
same instant, so an exchange of values between two locations in a
memory may be expressed in MIMOLA as:

Lex S(a) := S(b),
S{b) := S(a);

Now let us run L60P through MIMB:
*[,IST /GEZ/PRF.INP

$ADDMODULE
S(8191:0) .BIT(15:0)WORD.MOREPORT;
$PROGRAM
BEGIN
L60P S(n) := 1,

S(x) := S(c) / S(t) => B(®);
END

%[ IST /GEZ/PRF.GEN

"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"
$PASS 1 :
$PROGRAM

BEGIN

L60P. 1
S<B(n):=1,
S<D(x):=8>A(c)/S>C(t)->B(%*);

END

The GEN file shows us that another port S<D was created and the
mux was not needed; otherwise nothing has changed. It should be
obvious that the execution time 1is now less than -in the
sequential version.

®*[IST /GEZ/PRF.SCR

" $ADDMODULE
B>(*[1,01),
B>.BIT(15:0),
B<a.DAT.BIT(15:0),
B<b.DAT.BIT(15:0),
I>.BIT(12:0)ASB,
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I>.BIT(28:13)DSB,
I>.BIT(41:29)AS4,
I>.BIT(54:42)ASC,
I>.,BIT(67:%55)ASD,
S>A(8191:0),
S>A.BIT(15:0),
S>A.ADR.BIT(12:0),
S<B.DAT.BIT(15:0),
S<B.ADR,BIT(12:0),
S>C.BIT(15:0),
S>C.ADR.BIT(12:0)
S<D.DAT.BIT(15:0)
S<D.ADR.BIT(12:0)
$ADDCONNECT
B{a.DAT.BIT(15:0) <= S>A.BIT(15:0),
B<b.DAT.BIT(15:0) {=- S>C.BIT(15:0),
S>A.ADR.BIT(12:0) {= I>.ASA,
S<B.DAT.BIT(15:0) {= I>.DSB,
S<B.ADR.BIT(12:0) {~ I>.ASB,
S>C.ADR.BIT(12:0) <= I>.ASC,
S<D,DAT.BIT(15:0) <= B>.BIT(15:0),
S<D,ADR.BIT(12:0) {- I>.ASD;

e W

PARALLELISM WITH DATA DEPENDENCIES

Now, let us go back to our sequential program, /GEZ/PRE.INP. It
looks like L80 cannot be executed before L70 has been completed,
because the new value of S(x) has to be used. However, there is
an alternative: Instead of using S(x), we can use the expression
of L70 as a source! This 1is possible only because MIMOLA allows
multiple assignments to occur in a single statement. The same
technique may be wused with L90 also. There are no data
dependencies, and thus, we can execute all four statements in one
instruction:

*L.IST /GEZ/PRG.INP

$ADDMODULE
S{8191:0) .BIT(15: O)WORD MOREPORT;
$PROGRAM
BEGIN:
L60OPP S(n) := 1,
S(x) := S(c) / 8(t) => B(¥®),
S(s) := S(ec) /7 S(t) -> B(¥%),
. S(a) := S(c) / S(t) -> B(¥);
END

This looks like it may be very expensivel! Three B operators and
a total of 10 memory ports could be used. The M3SS system is
intelligent enough to recognize that the same expression is
calculated in three places and that the result from one could be
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shared with the other two., If we look at the corresponding GEN
file, we see that the allocator has assigned the same memory
ports and B operator to the three expressions. Since this all
occurs in a single cycle, the sharing of hardware is implied.

#*LIST /GEZ/PRG.GEN B

"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/ 80"
$PASS 1
$PROGRAM

BEGIN

L60PP.1
S<B(n):=1,
S<D{x):=5>A(c)/S>C(t)->B(¥*),
S(E(S)::S)A(C)/S>C(t)->5(*},
S<F(a):=S>A(c)}/S>C(t)->B(%*);

END

Everything in the file has been explained before. This may be a
good time to review some of the earlier explanations 1if you do
notAunderstand all of it.

#*.IST /GEZ/PRG.SCR

$ADDMODULE
B>(%*[1,0]),
B>.BIT(15:0),
B<a.DAT.BIT(15:0),
B<b.DAT.BIT(15:0),
I>.BIT(12:0)ASB,
I>.BIT(28:13)D3B,
I>.BIT(41:29)A54,
I>.BIT(54:42)ASC,
1>.BIT(67:55)ASD,
I>.BIT(80:68)ASE,
I>.BIT(93:81)ASF,
S>A.BIT(15:0),
S>A.ADR.BIT(12:0),
S<B.DAT.BIT(15:0),
S<B.ADR.BIT(12:0),
$>C.BIT(15:0),
S>C.ADR.BIT(12:0),
S<D.DAT.BIT{15:0)},
S<D.ADR.BIT(12:0),
S<E.DAT.BIT(15:0),
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S<E.ADR.BIT(12:0),

S<F.DAT.BIT(15:0),

S<F.ADR.BIT(12:0);

$ADDCONNECT

B<a.DAT.BIT(15:0) {- S>A.BIT(15:0),
B<b.DAT.BIT(15:0) <~ S$>C.BIT(15:0),
S>A.ADR.BIT(12:0) <= I>.ASA, ,
S<B.DAT.BIT(15:0) {- 1>.DSB,
S<B,ADR.BIT(12:0) <- I>.ASB,
S>C.ADR.BIT(12:0) <- I>.ASC,
S<D.DAT.BIT(15:0) <-  B>.BIT(15:0),
S<D.ADR.BIT(12:0) <~ I>.ASD,
S<E.DAT.BIT(15:0) <~ B>.BIT(15:0),
S<E.ADR.BIT(12:0) {- I>.ASE,
S<F.DAT.BIT(15:0) <- B>,BIT(15:0),
S<F.ADR.BIT(12:0) <-  I>.ASF;

Sure, we added two more memory ports, addresses and the necessary
data paths, but the hardware will also execute much faster. The
actual increase will be determined later.

VI. WHAT HAVE WE LEARNED SO FAR?

We have seen two types of devices, memories (8) and dyadic
operators (B), and how we define their properties, such as bit
width and number of ports. The behavioral descriptions we have
seen use a postfix notation and may express both parallel
(indicated by a comma) or sequential (indicated by a semicolon)
operations.

We have learned how to interpret the GEN file, which contains the
bound program (the microprogram). We also learned how to read
the structural description in the SCR file. We saw how the
Allocator transforms behavioral descriptions into structures that
can execute the behavior (microprogram).

So far all changes that were made to the design Wwere due to
modification of the hardware structure or the combination of
sequential operations into parallel. These changes were made
manually. What we will see now is an automatic process performed
by the MSS. .

VII. AN INTRODUCTION TO THE COMPILER

The Compiler is the part of the MSS that sequentializes an
elementary statement block (ESB), if there is not enough hardware
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available to execute it. One method of restricting hardware is
to define it in the ADDMODULE section. Other methods will be
discussed later.

REGISTERS

Before providing an example of the Compiler 'in action', we
introduce the wuse of registers. Registers are single vector
storage units, and their namép always begin with a capital 'R'.
For example, R1, Rtemp, and RSTATUS are all valid register names.

A NEW EXAMPLE

We will present a new example in this discussion of the Compiler
for a number of reasons. First, the reader will see the use of
registers. Second, we do not want to obscure the focus of the
sin example. Finally, the sin example is used later to
demonstrate a slightly different aspect of the Compiler.

First we look at a very simple example. We want to sum the
contents of R2, R3, R4, and R5 and put the result in R1.
Obviously, this requires three adds, and thus, three B-operators
in hardware.

[ IST /MGA/G.INP
$PROGRAM
BEGIN

LO R1:=R2 / R3 -> B(+) / R4 => B(+) / RS => B(+);
END

After rﬁnning this file through the MSS, the GEN file is what we
would expect.

#L,IST /MGA/G.GEN

"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"

$PASS 1
$PROGRAM

BEGIN

LO.1 '
R1:=R2/R3->B(+)/RU=>B_A(+)/R5->B_B(+);

END
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Note that the three B-operators are named B, B_A, and B_B..
Remember that the first letter of the device defines what kind of
device it is.. Thus, B 1is a two-input device. The hardware is
bound with the names _A, _B, _C, ... 1in alphabetical order.
Since we did not name the B-opérator, it is just called B. If we
had named it, say Badd, the bound devices would have been called
Badd, Badd_A, Badd_B,... s

We said that we could limit the amount . of hardware generated in
the ADDMODULE section. To limit the number of B-operators, we
use the attribute .DUPLICATE(n), where n 1is the number of
duplicate modules the compiler is allowed to create:

¥LIST /MGA/G1.INP

$ADDMODULE
B(+) .DUPLICATE(1);

$PROGRAM

BEGIN

LO R1:=R2 / R3 => B(+) / R4 => B(+) / R5 => B(+);
END '

This says we will be using a two-input operator, called B, that
can perform the function addition. Further, we are limiting the
number of those devices to two. The first is B, which we get by
declaring it. The second would be B_A, if it was needed.

If the device is not declared, or if .DUPLICATE is not specified,
up to 27 devices are available, as needed (B, B_A,...,B_Z). Also
available is the attribute .NODUPLICATE, which is equivalent to
.DUPLICATE (0)}.

Now we have limited the number of adders to two. Let's see what
happens to the .GEN file:

% IST /MGA/G1.GEN
nMIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80m

$PASS 1
$PROGRAM

BEGIN
LO.1

RHLP_101:=R2/R3~>DB(+)/R4->B_A(+);

LO.2
R1:=RHLP_101/R5->B(+);
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END

We now have two ESBs when we had started with one. We also have
something called RHLP_101. The name of this register is HLP_10%;
HLP means HELP, and the _101 1is a numbering system. The next
RHLP will be _102. The Compiler created a register to hold
temporary values. This was necessary to store the intermediate
result of adding the contents of registers R2, R3, and R4. This
addition required all adders that are allowed.

So, we see that in one statement we could add R1, R2, and R3 in
parallel and put the result in a temporary register, RHLP_101.
In another statement we could add R5 to this temporary result and
put the final answer in R1. Note that 1in this case, we could
have added R2, R3, and R#4, and put that result in R1 and then
added R5 to R1. This would eliminate the need for an extra
register. However, this cannot be done 1in all cases, and the
compiler 1is not smart enough to know when it has to use the
temporary register and when it can store an intermediate result
in the destination. At a later stage in the design, the user
could detect this special case and modify the .GEN file to reduce
the use of intermediate storage registers.

We now use .DUPLICATE(O) to allow only one adder:
¥ IST /MGA/G2.INP

$ADDMODULE
B(+) .DUPLICATE(O);

$PROGRAM

BEGIN

LO R1:=zR2 / R3 => B(+) / R4 => B(+) / R5 => B(4+);
END

The .GEN file shows that the Compiler created three sequential
statements to do our addition. This makes sense; we can only do
one add with one adder, and we have three adds to do.

#LIST /MGA/G2.GEN

"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"

$PASS 1
$PROGRAM

BEGIN

LO.1
RHLP_101:=R2/R3->B(+);
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LO.2
RHLP_101:=RHLP_101/R4->B(+);

L0.3 L
R1:=RHLP_101/R5~>B(+); _

END

By now you are probably wondering where the LO.1, L0.2 and LO.3
came from. The LO is the label of the statement in the input
file. The 1, 2, or 3 appended to LO shows a count of the
statements generated by the single input statement. In the
no-limitations case, the GEN file had only statement label LO.1
(only one bound statement). 1In the last example, we see three
bound statements. More will be said about labels later.

This section demonstrates what the Compiler does: split an ESB
with a number of parallel operations. Depending on the hardware
limitations imposed by the designer, various degrees of
sequentialization can be achieved. The next sections explain
more about how the compiler works. It also discusses other ways
to limit the hardware.

VIII. CONTROLLING THE ALLOCATOR

Remember when we added the MOREPORT attribute? We said that we
wanted the Allocator to create more ports. Let us see what would
have happened if we did not allow more ports. If we do this in
two steps it will be easier to understand.

First we limit the number of ports to three by allowing only two
more ports: '

®*LIST /GEZ/PRH.INP

$ADDMODULE
8(8191:0).BIT(15:0)WORD.MOREPORT(2);
$PROGRAM '
BEGIN
L60PP S(n) := 1,
S(x) 1= S(e) / S(t) -> B(¥),
S(s) := 8(c) / S(t).-> B(*%),
S(a) := 8(c) / S(t) -> B(#);
END

The result is a bound microprogram:
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*LIST /GEZ/PRH.GEN
"MIMOLA PART B (GCOS VERSION CH) VERSION 3.0 OF 02/27/80“

$PASS 1
$PROGRAM
BEGIN
L60PP. 1 . |
S<B(n):=1%;
L60PP.2 . . '
S<B(x):=5>A(c)/S>C(t)~->B(¥);
L60PP. 3 A ’
‘ S<B(s8):=8>A(c)/S>C(t)->B(%*);
L6OPP. 4
S<B(a):=5>A(c)/S>C(t)=->B(%);

END

It has four sequential steps, as did the sequential version we
started with (/GEZ/PRE.INP). The difference is in the third and
fourth lines. The expression is evaluated three times, instead
of being copied out of S(x). From a resource standpoint, this is
not bad. The ports and B operator are there anyway. We even
save a data path from S>A to S{B (L90 in /GEZ/PRE.INP) by doing
it this way. The penalty lies in the longer execution time of
L60PP.3 and.4, compared with L80 and L90.

Here we see how the insertion of a single limit "(2)" in the
defined structure controls the Allocator very efficiently.

IX. THE M3SS COMPILER

HOW THE MSS COMPILER WORKS

When the Allocator tried to bind resources to the second
statement in L60PP it could have created a second input port,
then one output port. When it then tried to create the necessary
second output, it hit the resource 1limit., Since nothing useful
could be done in parallel to the first statement, the Allocator
called the Compiler for help. The Compiler decided to start a
new instruction and gave the ball back to the Allocator.
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With all resources available again, because it was now working on
a new instruction, the Allocator could find enough resources for
the second statement. However, it had to call the Compiler again
for the third statement. Control alternates back and forth until
we obtain the result shown..

Naturally, the Compiler task is npt always so easy and much more
checking for data dependencies has to be done. For instance,
recall the exchange example.

Lex S(a) := S(b),
S(b) := S(a);

.Here the Compiler would have to insert an intermediate storage
cell.

MORE WORK FOR THE COMPILER

Now we go one step further and allow only one input and one
cutput port. We could do this by setting MOREPORT to 1.
However, a8 better way is to name the ports, otherwise we might
end up with two output ports and no input, if it happened that
two outputs were required before an input. We define ports in
ADDMODULE by simply listing them. The INP file shows how:

¥LLIST /GEZ/PRI.INP

$ADDMODULE

S<A(8191:0).BIT(15:0)WORD,

S>B;

$PROGRAM

BEGIN

L60PP S(n) :=z 1,
S{(x) := S(e) / S(t) => B(¥®),
S(s) := 8(c) / S(t) => B(*),
S(a) := S{(c) / S(t) => B(%*);

END

Now we are curious about what the Compiler does with only two
ports. The expression with the B-operator now cannot be executed
as shown; the Compiler has to split the expression. Instead of
guessing what the Compiler will do, we can just look at the
results.

*LIST /GEZ/PRI.GEN
"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"

$PASS 1
$PROGRAM

BEGIN
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L60PP. 1

S<A(n):=1,

RHLP_101:=S>B(c);
L60QPP.2 f

S<A(x):=RHLP_101/8S>B(t)=>B(#%*);
L60PP.3

S<A{s8):=RHLP_101/S>B(t)->B(¥);.
L60PP. 4

S<A(a):=RHLP_101/S>B(t)->B(¥*);
END

This solution 1is not too bad. Only four instructions are
necessary. The only thing that has changed, compared with
PRH.GEN, is ‘that the value of the variable ¢ 1s stored in
RHLP_101 in the first instruction L60OPP.1. That is exactly what
a normal HLL compiler would do. A rather inefficient feature is
that the same expression is evaluated three times.

We have already seen RHLP wused for temporary storage when a
statement is being split. In this example we are limited by the
number of memory ports allowed. In the example where we added
four numbers, we were limited by the number of B operators. It
does. not matter to the Compiler what the hardware limitations
are; it only knows that the ESB must be split.

Let us nowWw have a look at the SCR file:
#,IST /GEZ/PRI.SCR

$ADDMODULE
B>(*[(1,0]),
B>.BIT(15:0),
B<a.DAT.BIT(15:0)
B<b.DAT.BIT(15:0),
I>.BIT(12:0)AS4,
I>.BIT(28:13)DSA,
I>.BIT(41:29)ASB,
I>.BIT(42:42)MDBa,
I>.BIT(43:43)MDSA,
RHLP 101<.DAT.BIT(15:0),
RHLP_101>.BIT(15:0),
S>B(8191:0),.
S<A.DAT.BIT(15:0)
"?,UDSA(a.DAT.BIT(15:0),
UDSA<b.DAT.BIT(15:0),
UDSA> .MPX.BIT(0:0),
UDSA>.BIT(15:0)7?",
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S<A.ADR.BIT(12:0),

S>B.BIT(15:0),

S>B.ADR.BIT(12:0);

$ADDCONNECT

B<a.DAT.BIT(15:0) <-  "?UDBa>.BIT(15:0),?"

B<b.DAT.BIT(15:0) <-  S>B.BIT(15:0),

RHLP_101<,DAT.BIT(15:0) <~  S>B.BIT(15:0),

S<A.DAT.BIT(15:0) <-  "2UDSA>.BIT(15:0),?"
"2UDSA<a.DAT.BIT(15:0) <- 72"I>.DSA/
"2UDSA<b.DAT.BIT(15:0) <- 2"B>.BIT(15:0)
"2, UDSA> .MPX.BIT(0:0) <= I>.MDSA?",

S<A.ADR.BIT(12:0) <- I>.ASA,

S>B.ADR,BIT(12:0) <~  I>.ASB;

This should be compared to file PRE.SCR, which showed the
structure for the sequential version of our bhehavioral
description. The difference is not very large; we saved a memory
port at the cost of an additional register. In most technologies
this would be a cost saving. Compared with PRE.SCR, this version
requires 13 fewer bits for the microinstruction vector.

Also gained through the parallel description of the algorithm is
the flexibility to generate three different hardware structures
(PRG, PRH, and PRI), with only a small change in the ADDMODULE
section of the input. The three versions represent different
solutions for c¢ost and speed. In real examples, the number of
possible versions is naturally much higher.

X. . TRANSLATING THE LOOP

LOOK FOR PARALLELISM

So far we have only translated four lines of our BASIC program.
The next line, 100, is the beginning of a loop that ends at line
150.

# IST PRIMER_1.B

10 print 'This Program calculates sin(c®*t)’'
20 print ' ¢ = ;

30 input c

40 print ' t = '
50 input t

60 n =1

70 x = ¢ % ¢

80 s = x

90 a =

" _
100 if abs(a) < .004 then goto 200
110 a = -a * x ® xy / (2% n ® (2%n4+1))
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120 5 = 8 + &

130 print 'n = ';n,'’ a= ';a, ! s = ';s

140 n = n + 1

150 goto 100

200 print 'sin( ';x;' ) = ';s

210 print * type: 0 for quit, 1 for new ¢ and 2 for new t'
220 input i L

230 if 1 = 1 then goto 20

240 if 1 = 2 then goto 40

250 end

Since we have seen that MIMOLA can express much more parallelism
than BASIC, we first analyze the loop for possible parallel
execution. In line 100 we use variable 'a', and in line 110 we
change 'a ', Since the change of 'a' occurs synchronously at the
end of instruction 110, ‘'a' has its old value during the
instruction, and thus, we can execute 100 and 110 in parallel.

Lines 110 to 150 are executed only if "ABS(A)<.O04" is false. If
it is true, control jumps to line 200. This can be expressed as:

#*LIST /GEZ/PRJ.T

L100 IF S(a) -> A(.abs) / .004 => B(>=)
THEN "EXECUTE LINE 110 IN BASIC PROGRAM™
FI; :

Let us explain this 1line by line. First we see the
"IF...THEN...FI" construct. The only unusual thing is the "FI",
which closes the THEN clause. Other HLL's use the BEGIN-END
construct for this purpose. In MIMOLA the "FI"™ must be in the
same instruction, because the condition value is not stored!

We have'exchanged the‘BASIC THEN GOTO with a THEN followed by the
executable code. Therefore, we must invert the condition from <
tO >=|

Let us digress at this point to discuss operators.
MONADIC EXPRESSIONS
The function abs(a) has been translated into a monadic

expression. This means that there is only one operand, S(a), for
the monadic operator A.

| monadic expression: operand -> A-operator |
| A-operator : A name (function) !
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The function of the opefator A has been selected as ".abs"™. (We
do not need to worry about how ".abs"™ is implemented.)

abs(a)  ===> S(a) -> A(.abs)
DYADIC OPERATORS

The comparison translates into a dyadic expression. The first
operand is now the expression "3{(a) -> A(.abs)". In hardware we
could think of wusing the ocutput of the functional unit A as the
left input of the functional unit B.

abs(a) < .004 —_——> S(a) => A(.abs)/.004 > B(>=)

EXERCISE 5
Translate another expression:
(a+b) ¥ c + d _
Do it operator by coperator from left to right!

See Appendix B for the solution. No problems yet? Then try some
more examples.

EXERCISE 6
Translate

- a+ b
abs (a + b)
(- abs (a + b)) ¥*¥ ¢

Do it stepwise!

Any problems? Then 1look at the solutions in Appendix B and try
to simulate the MIMOLA expressions by hand. Remember, this is
postfix notation. 'That means that the operands are followed by
the operator. Thus, start scanning from left to right until you
find the first operator (A or B), take one (or two, respectively)
cperand to the left and execute the function. Then replace
operands plus operator with the result, which is now an operand,
and proceed to the next operator. If the expression was correct,
only one coperand will be left at the end.

GOTO

The rest of 1line 100 is the GOTO 200, which simply translates
into GOTO L200 in MIMOLA. GOTO is considered a MACRO and is not
converted to hardware by the Allocator. Later we will have to
replace it by an expression modifying a program counter. We will
handle that when we design the control part.
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GOTO is a MACRO ' ' : "-i

i |
| MACROS do not generate hardware ]
| MACROS have to be replaced or expanded i
| Other MACROS are: WHILE |
| + FOR FROM BY TO DO OD i
| CALL |

THE FIRST TRY

Now we are ready to translate line 110 of the BASIC program: S

110 A= -A®X %X/ (2% N#® (2%8N+1))
With the above procedure we get:

% IST /GEZ/PRJ.T1

S{a) := S(a) => A(-) / S{(x) => B(%) : g

/ S(x) => B(¥%)

/ 2/ S(n) => B(%)

/ 2/ 8S(n) => B(®) / 1 <> B(+)
~> B(#%)

~> B(/)

Line breaks have no significance in MIMOLA. Now we can combine
lines 100 and 110 to get:

®LIST /GEZ/PRJ,T2

L100 IF S(a) -> A(.abs) / .00k => B(>=)

THEN S(a) := S(a) => A(-) / S(x) => B(%) !
: / S(x) => B(%®) _ :
/ 2/ S{(n) => B(#%) -
/ 27 S(n) => B(*) / 1 => B{+) <
-> B(#%) : 3
-> B(/) :

FI;

As we did before, we try toc extend the parallelism agains{

Although line 120

120 8 = 8 + a

¥
§

uses the result "a" of line 110, we already know how to deal with
such problems (see Parallelism With Data Dependencies, above).
All we have to do 1is replace "a"™ by the expression for "a" in
line 110. This could require a large amount of typing, but there
is a short hand method supported by the MSS.

CCsC ' 35 MIMOLA Primer’



TEMPORARY STORAGE

We can give the result of an expression any name starting with
"W" and then wuse this V name instead of the expression in
following expressions. It is important to note that "Vname" is
only valid throughout the instruction in which it is defined!
"V" is not a storage device. 'In hardware, "V" can be interpreted
as a temporary name for a data path or signal. The syntax for
assigning a temporary value (of an operand) to V is

operand = Vname

and in MIMOLA, any expression can be an operand. After its
definition, V can be used as if it were an operand.

In our exémple we can now extend instruction L100 by édding line
120 as foldows:

$LIST /GEZ/PRJ.T3

L100 IF S(a) -> A(.abs) / .004 -> B(>=)
THEN S(a) := S(a) -> A(=) / S(x) =~> B(#%)
/ S(x) => B(¥%)
/ 27 S(n) => B(¥%)
/ 2/ S(n) => B(%) / 1 <> B(+)
-> B(#%)
-> B(/)
= Vi,
S(s) := S(s) / V1 => B(+)
F1; -

We skip line 130, because it is really not part of the hardware
it is wused only to ‘'see! what the answer is, Line 140 is
independent of all other lines in L100, and thus, it can be
executed in parallel, We will also put line 150 in as another
parallel statement. Since 150 was a Jjump to line 100, it is now
converted to & jump on itself, signaling that the program counter
'is not to be incremented,

*LIST /GEZ/PRJ.INP

$ADDMODULE
S<A(8191:0) .BIT(15:0)WORD,
S<B, S<C, S<D, S>E, S>F, S>G, S>H;

$PROGRAM

BEGIN :

L60PP S(n) := 1,
S(x) := 8(e) / 8(t) -> B(¥),
S(s) :=z= S(c) / S(t) -> B(*),

S(a) := S(c) 7 S(t) -> B(#);
L100 IF S(a) => A(,abs) / .004 > B(>=)
THEN S8(a) :z S(a) -> A(-) / S(x) => B(#%)
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/ S(x) => B(¥)
/ 2/ 8(n) -> B(*)
/ 2/ S(n) -> B(#*) / 1 => B(+)

-> B(#%)
-> B(/)
..V'l, ~
S(s) := S(s) / V1 = B(+),
S(n) := 8(n) /7 1 => B(+),
GOTO L100
FI;
L200 X;
END

DUMMY OPERANDS

In the above listing we added an instruction, L200, &s an exit:
for the loop. Since our BASIC program did not contain anything
we wanted to include in MIMOLA, we make this instruction a NOP,
In order to fulfill MIMOLA syntax, we use the dummy operand "XW¥,
which tells the allocator not to create any hardware. The X can
be wused anywhere that an operand is necessary for syntactic
reasons. An example is the use of a B-operator for a monadic
operation.

S(a)/X -> B(.abs_a)
would be anotheb way to execute the function abs(a).

The function .abs_a calculates the absclute value of the left
operand of B.. The right operand of B has no influence on the
result, and thus, is a don't-care.’

! X is a NO-OP used for 'filling' i
| to satisfy syntax rules. i

. G R g o b S O A S G S i S R S T R R N S e i

XI. THE EXAMPLE COMPLETED

In the PRJ.INP file shown above, you may have noticed a small
change in the ADDMODULE section. Instead of saying "MOREPORT" we
have explicitly listed eight ports of S, which gives us more
control over the naming of ports.

We now have a complete behavioral description of an algorithm to
calculate sin(c®*t). We can imagine that 1in a real problem we
would not build a machine for just this one function. We might
add more algorithms to the description or embed this one as a
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macro or subroutine inte a larger program. Hopefully, the
example has shown us that we are able to manage the use of MIMOLA
to describe algorithms.

Let us now use our program as an input to MIMB. The GEN file
will immediately tell us if we have allocated encugh resources:

*LIST /GEZ/PRJ.GEN
"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"

$PASS 1 |
$PROGRAM
BEGIN
L6OPP. 1 |
S<A(n):=1,
S<B(x):=S>E(c)/SO>F(t)->B(*),
S<C(s):=S>E(e)/SOF(t)->B(%),
S<D(a}:=8>E(c)/S>F(t)->B(¥*);
L100.1 |

IF S>E(a)->A(.abs)/.004->B(>=)

- THEN
S<A(a):=S>E(a)=->A_A(=)/S>F(x)->B_A(#*)/3>F(x)->B_B(¥%)
72/5>G(n)->B_C(*)/2/8>G{(n)->B_C(#*)/1->B_D{(+)->B_E(%)
->B_F(/)=V1,

S<B(s):=8S>H(3)/V1->B_G(+),
8<C(n):=8>G(n)/1->B_H(+),
GOTC L100.1 FI1

L200.1

END

Since none of the instructions have been split, we know that we
had enocugh resources, namely memory ports.

Taking a close look at L100, we can see that the expression 2 #
n, which appears twice, has been allocated to the same hardware
in both cases:

2/5>G{n) -> B_C(¥)

Additionally, the system has allocated port S>E to both
occurrences of "a" in the condition, and in the expression. If
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you look carefully you will find further examples of the
allocation of the same hardware to common subexpressions. Thus,
we would not have saved anything by extracting these common
subexpressions manually.

We also count nine B-operators. - What we expect, therefore, is
that the SCR file with the structare is quite long. It is, so we
have printed it in Appendix C as /GEZ/PRJ.SCR. Be sure to take a
look at it; it should be self-explanatory by now. The main thing
we see 1is a very expensive hardware configuration for a single
function. What we want to know now is if this c¢an really be
Justified.

XII. MEASURING PERFORMANCE

MIMB has to know two things in order to calculate'performance:

- Logic delays
-~ Dynamic behavior of the algorithm

LOGIC DELAYS

Let wus first enter the logic delays. In the last SCR file
(Appendix C) we saw a list of functions of each operator in the

ADDMODULE section These functions take different times to

?x?cute, and the default assumption. is one wunit, as in ".abs
1 n . . R

Let us now assume that the units used are nanoseconds. Let us
also assume execution times for the functions, e.g., 20 for the
.abs function. To define the delay we simply write:

.absf20]

The ADDMODULE section now shows all function execution times of
the A and B operators. In this example, we simply guessed at the
times. If the technology is known, these can be determined more
precisely.

#LIST /GEZ/PRL.T

$ADDMODULE

S<A(8191:0) .BIT(15:0)WORD,

S<B, S<C, S<D, S>E, S>F, S>G, S>H,

A(.abs[20], -[15]).DUPLICATE,
B(+[25], ~[30]1, *[100], /[150], <[30]).DUPLICATE;
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Notice the attribute .DUPLICATE after the declaration of
functional modules. This allows duplicates ¢to be made, 1if
necessary. Otherwise A and B would be the only operators.

The memory read and load delays are still missing. We simply add
a line and use the standard functions .READ and .LOAD to define
times. Delays for multiplexers cannot be declared, so we assume
we have included these delays into the already defined ones.

! J.DUPLICATE allows hardware modules |
I to be created as necessary. i

AN EXAMPLE

In order to better understand the time calculation, we now return
to our simple example with only one instruction:

#LIST /GEZ/PRL.INP

$ADDMODULE
S<A(8191:0).BIT(15:0)WORD,

S<B, 3<C, 3<D, S>E, S>F, 8>G, 5>H,
S(.READ[50]1, .LOAD[75]),
A(.abs[20], -[15]).DUPLICATE,

$PROGRAM

BEGIN

L60PP S(n) := 1,
S(x) := 8(c) /7 S(t) => B(¥®),
S(s) := 8(e) / 3(t) => B(¥*),
S(a) := S(e¢) / S(t) -> B(¥*);

END

Let us try to calculate the resulting execution time. We assume
that it takes no time to read fields in the microinstruction.
Thus, the first statement "S{(n) := 1" takes only 75 units (.LOAD)
to store the 1 (which is in a microinstruction field) . in S(n).

The next three statements are equal, from a timing standpoint.
The two operands are read in parallel, requiring only 50 units to
read S. 100 units have to be added- for the multiplication, and
75 for loading S. This is a total of 225 units.

Since 225 is more than the 75 for the first statement, and Since
both are executed in parallel, the longest time is chosen to
determine the necessary execution time of L60PP.

In a design with more than one ESB, we calculate the time of each
ESB in a similar fashion. The micro-instruction cycle time may
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vary, as the timing requirements of a particular ESB change.

Thus, assume wWwe have a two ESB design and one ESB takes 10 units
to execute, and the other, 20. The total amount of time to
execute these two ESBs would be 10 + 20 = 30 units. If we had a
constant cycle time, our design would require 20 + 20 = 40 units.

The MSS always adds one time funit for the microinstruction
handling, which we can ignore at this point. We can find the
"ESTIMATED RUN TIME" in a file called OTB.
®LIST /GEZ/PRL.OTB

MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80
(< nuu® CHARACTERSTRING ACCEPTED #%8#3555

N 1 ESBS READ ( 1 WEIGHTED)
B 0 ESBS CREATED ( 0 WEIGHTED)
suE 1 ESBS TOTAL  ( 1 WEIGHTED)

{KKK®%u% CHARACTERSTRING ACCEPTED #*®%#3535 _
"0 HELP-STORAGECELLS (OR REGISTERS) USED IN PROGRAM
ESTIMATED RUN TIME: 226

This file contains much more information, which we will partially
explain later. .

{ Input and Output files we have looked at:

' INP - the MIMOLA input

! GEN - the bound statements (output)

v SCR - hardware and connections (output)

1 OTB - statistics about program and hardware
i (output)

—————————————————————— e e A D TN S O S S W W

—— el o —

MODELING THE DYNAMIC BEHAVIOR

In order to determine how 1long it takes to execute the total
program, we have to enter information about the dynamic behavior
of the program. Remember that the MIMOLA program has not yet
been executed or simulated; we have only executed the equivalent
BASIC program. So, 1let us go back and 1look at the number of
iterations necessary to achieve the result. We carried the
variable n and incremented it in the loop for this reason. The
results are listed in the following table.
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1O

Assuming that the argument is between 0 and 2pi = = 6.28 (one
full ecycle of sin), a mean value of five 1iterations seems
reasonable,. We can then say that for every time sin is
calculated, L60PP is executed once and L100 five times.

THE FACTOR COMMAND

We specify this relationship by inserting the following line
before L100.

$FACTOR = §

This FACTOR' will be used for all succeeding instructions until
another $FACTOR command is found. So we enter a

$FACTOR = 1

in front of L200, which 1is outside of the loop. Now we have
declared the dynamic behavior of the algorithm. ’

There are other ways to determine the FACTORs. One 1is to
alculate them by analytical or statistical means. Often the
umber of 'iterations of loops is known to the programmer. A

second way is to use the MIMOLA simulator, which is described

elsewhere /11/. This simulator collects dynamic behavior
figures. - :

®LIST /GEZ/PRN.INP

$ADDMODULE

S<A(8191:0) .BIT(15:0)WORD,

S<B, S<C, S<D, S>E, S>F, $>G, S>H,

S(.READ[50], .LOAD[T751),

A(.abs[20}, -[15]).DUPLICATE,

B(+[25), -[301, *[100], /[150], >[301).DUPLICATE;
$PROGRAM '

BEGIN
L60PP S{(n) := 1,
- 8(x) := S(e) / S(t) => B(¥),
S(s) := 8(e) / S(t) => B(¥%),
SCa) := S(e) /7 S(t) -> B(#*);
$FACTOR=5

L100  IF S(a) => A(.abs) / .004 => B(>)
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THEN
S(a) := S(a) => A(-) / 8{(x) «> B(¥)
: / S(x) => B(*%)
/ 2/ S(nY =-> B(%) :
/ 27 S(n) => B(*) / 1 => B(+)

-> B(#)
-> B(/) =
= V1,
S(s) := S(s8) /7 V1 => B(+),
S(n) := S(n) / 1 => B(+},
_ GOTC L100 -
FI;
$FACTOR=1
L200 X;
END

With this input file, the first few lines of the OTB file look
;ike this: - :

®LIST /GEZ/PRN.OTB

MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80 '
(<K Run® CHARACTERSTRING ACCEPTED ##&#3555

EE 3 ESBS READ ¢ 7 WEIGHTED)
13 0 ESBS CREATED ¢ 0 WEIGHTED)
EE 3 ESBS TOTAL ( 7 WEIGHTED)

{{KKunx% CHARACTERSTRING ACCEPTED ##&#%%5555
0 HELP-STORAGECELLS (OR REGISTERS) USED IN PROGRAM
ESTIMATED RUN TIME: 2858

The dynamic runtime of our program is 2858 ns for each
calculation of sin(x). This is our performance figure. This is
as fast as we can get with the declared function execution times,
However, another 1look at  the structure (file /GEZ/PRJ.SCR in
Appendix C) will convince us that the hardware cost is much too
high.

XIII, REDUCING THE COST

We have lowered the cost before by reducing the number of
hardware resources., But instead of doing it blindly, we now have
a means to find the resources that are not used very often. If
we get rid of these resources, we probably will not affect the
performance as much as if we delete highly used resources.
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EXPLAINING THE OTB FILE

We find the

information to do this in the

OTB fiie. Because of

its size, we can only look at parts of it here.

#&% GROUP : B _
B 18 FREE DUPLICATES , §: 5.0 + 4.5 = $ 9.5
U/C: 9.0226 FREQ: 6 = 85.71%
FUNCTIONS : =[30], *[100], /01501, >[30], +[25], ‘
PORT USE: OUTPUT O : 6X 1 :
~INPUT O : 1X 2 : 6x
> LAUTO(.READ ) FREQ: 6 = 85.71%
‘ 5 FUNCTIONS(EXCL .LOAD&.READ) :
DATA ., 15: 0 FREQ: 1 = 14.29 %
FUNCTION 2: © ADR D-BITS MODULE&PORT S-BITS FREQ
' 0 2: 0 I> FB 6 = 85.7%
{ a .AUTO({NONE ) FREQ: 6 = 85.71%
DATA 15: O ADR D-BITS MODULE&PORT S-BITS FREQ
0 15: O A> 15: 0 5 = T1.4%
1 15: 0 S>E 15: 0 1 = 14.3%
<b +AUTO(NONE ) FREQ: 6 = 85.71%
DATA 15: 0 ADR D-BITS MODULE&PORT S-BITS FRE
0 15: 0 I> REAL 5 = T71.4%
1 15: 0 3>F 15: 0 1 = 14.3%
We get this block of information for every module. We will now
look at the module B, which is one of the dyadic operators in
group B.
Let us first look at the frequency of use of module B. We can
see that

FREQ: 6 = 85.71%

This information is repeated for

same for each, because we used
functional unit all of the time.

each of the three
the output >, and the two inputs <a and <b.

all
This is usually true for A and

ports of B:
The frequency is the
of the ports of this

B type operators, but may not be true for multi-port memories.

The percentage of 85.71% is
total number is 7, because
L100 five times.
X:

n ESBS TOTAL (X WEIGHTED)

*LIST /GEZ/PRN.OTB

CCSC 4y

| calculated by dividing the number of
uses of B (6) by the total number of executed instructions.

This

we execute L60PP and L200 once, and
We see this information in the header of OTB as
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MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80
{<<H#n% CHARACTERSTRING ACCEPTED ####5555

dadel 3 ESBS READ ( . 7 WEIGHTED)
ool 0 ESBS CREATED ( .0 WEIGHTED)

21 3 ESBS TOTAL ( 7 WEIGHTED)

w

The symbol n represents the number of ESBs before the FACTORs are
applied, so n is the number of microinstructions that have to be
stored. X is the factored or dynamic number of microinstructions
executed. : '

The line ESBs READ provides the same information about the input
(the INP file). The ESBs CREATED line is for the additional
instruction generated by the Compiler. A zero in the CREATED
line means that enough hardware resources were given and the
Compiler did not have to be called.

Now let us look back at the GROUP B output of OTB. The line
‘FUNCTIONS:' lists the set of functions that can be executed by
this module, together with the assigned delays.

For Port > (the output) the interesting line 1is FUNCTION. This
describes the function select input of B, and says that it is
three bits wide (2:0), as 1is necessary for encoding the five
functions of B. The next line shows that I>FB is a source for
the function control input. This is, as we already know, the
field FB of the microinstruction vector.

Input port <a has only a DATA connection that is 16 Dbits wide
(15:0). We find two sources in the following lines, with the ADR
(multiplexer address) O and 1: A> and 3>E. The interesting
information is how often these sources, and thus, the data path
to the sources are used. We find these data at the end of the
lines, 71.4% and 14.3% in this case.

Two inputs to the same port require the creation of =&
multiplexer. We see this if we look at the proper section of the
SCR file:

$ADDCONNECT

A>.FCT.BIT(0:0) <- I>,FA,

A<.DAT.BIT(15:0) <-  S>E.BIT(15:0),

A_A> . FCT.BIT(0:0) <~ I>.FA_A,

A_A<.DAT.BIT(15:0) <= S>E.BIT(15:0),

B>.FCT.BIT(2:0) <- I>,FB,

B<a.DAT.BIT(15:0) <=  "?UDBa>.BIT(15:0),7"
"?UDBa<a.DAT.BIT(15:0) <~ 2"S>E.BIT(15:0)/
"2UDBa<b.DAT.BIT(15:0) <= 7"A>.BIT(15:0)
n? UDBa>.MPX.BIT(0:0) <~ ~ I>.MDBa?",

B<b.DAT.BIT(15:0) <=  "?UDBb>.BIT(15:0),2"
"2UDBb<a.DAT.BIT(15:0) <~ 7"S>F.BIT(15:0)/
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"2UDBb<b.DAT.BIT(15:0) <- ?"I>, REAL
n2, UDBb> .MPX,BIT(0:0) <- I>.MDBb?",

The most useful information in the OTB file 1is the frequencies,
which give wus an understanding of the dynamic wutilization of
resources, In our example there are no dramatic differences,
because the sample 1is too small. In real designs we see a much
larger variance and are able ¢to find . infrequently utilized or
expensive devices, which would be candidates for deletion and the
assignment of their functions to other modules.

SOME HARDWARE RESTRICTIONS

Let us try an experiment. We chose to restrict the hardware to
two B-operators and three ports for S. This can be done with the
following declaration: _

*LIST /GEZ/PRO.T

$ADDMODULE

S<A(8191:0) .BIT(15:0)WORD,

S>B, S>C,

S(.READ[50], .LOADL751),

AC.abs[20], -[15]).DUPLICATE,

B(+[25], -[30]1, *[100], /[150], >[301).DUPLICATE(1);
$PROGRAM

Now we are anxious to lock at the performance:
*,IST /GEZ/PRO.OTB

MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80
(L H%%* CHARACTERSTRING ACCEPTED ##%%>3>3>

s 3 ESBS READ ( 7 WEIGHTED)
b 9 ESBS CREATED ( 33 WEIGHTED)
#%% 12 ESBS TOTAL ( 40 WEIGHTED)

{K(K*x%% CHARACTERSTRING ACCEPTED ####5555
2 HELP-STORAGECELLS (OR REGISTERS) USED IN PROGRAM
ESTIMATED RUN TIME: 7381

The execution time is now 7381. Compared with 2858 from the
design without hardware restrictions, this 1is slower by a factor
of 2.6. We also see that we have to store 12 instructions
instead of three, but this fact 1is partly compensated by a
reduction of the microinstruction vector size from 218 to 137.

We can find the width of the I vectors by looking in the SCR
file:

#LIST /GEZ/PRO.T2
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I>.BIT(135:134)MDB_Ab,
I>.BIT(136:136)MDRHLP_101,
RHLP_101<.DAT.BIT(15:0)
"7 UDRHLP_101<a.DAT.BIT(15:0),
UDRHLP_101<b,DAT.BIT(15:0),
UDRHLP_101> .MPX.BIT(0:0),
UDRHLP_101>.BIT(15:0)7",
RHLP_101>.BIT(15:0),
RHLP_102<.DAT.BIT(15:0),
RHLP_102>.BIT(15:0),

We alsc see that two registers had to be added for intermediate
results.

The number of dynamically executed instructions (ESBs WEIGHTED)
increases from seven to 40. This is a factor of 5.7, or twice as
much as the increase in run time, and can be explained with the
decrease in execution time per instruction. In the following
listing of the GEN file we can see that the instructions have
become much less complex, which is what we expected.

%L IST /GEZ/PRO.GEN
"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80"

$PASS 1
$PROGRAM
BEGIN
L60PP. 1 '
S<A(n):=1;
L60OPP.2 .
S<A(x):=8>B(e)/S>C(t)=>B(%);
L60PP.3
S<A(s):=S>B(c)/S>C(t)->B(#*);
L60PP. 4
S<A(a):=S>B(c)/S>C(t)~->B(%);
$FACTOR = 5
L100.1
IF S>B(a) >A(.abs)/ .004->B(>)
THEN
X
ELSE

GOTO L200.1 FI
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L100.2 | :
RHLP_101:=S>B(a)=>A(-)/S>C(x)->B(#)/5>C(x)->B_A(*);

RHLP_102:=2/8>C(n)->B(#*)/1->B_A(+) ;
L100.4 o o
RHLP_102:=2/S>C(n)->B(*¥)7RHLP_102->B_A(%);
L100.5 | | |
S<A(a):=RHLP_101/RHLP_102->B(/)=V1,
RHLP_101:=V1;
L100.6 | -
S<A(s):=5>B(s)/RHLP_101->B(+);
L100.7 ' _
S<A(n):=5>B(n)/1->B(+),
| GOTO L100.1;
~ $FACTOR = 1
L200.1
X;
END
EXERCISE T

Verify that the GEN file still is a correct program for
calculating sin (c¥*t). Write a BASIC program that is a
one~to-one translation of it, and add the Input/Output
features from the original BASIC program. Run on your
machine and compare the results.

XIV. CONTROL

HOW THE CONTROLLER HARDWARE IS GENERATED

Until now we have ignored one important question: How does the
controller for this hardware work? We have seen several
interfaces to it already: the labels, the IF THEN, the GOTO and
the instruction vector I, but no clear explanaticn of what it
does.

To understand the controller, let us assume 2 simple
implementation of 1it. Let the microprogram be stored 1in a
microprogram memory SM, with an output port >A. In the simplest
case we could replace all occurrences of I by SM>A, The current
address of SM>A would be the label, '

CCSC 48 MIMOLA Primer



S<A(x):=S>B(c)/S>C(t)->B(¥%),
RP:=RP->A(.increment);
L6OPEZ3
S<A(s):=8>B(ec)/S>C(t)=->B(¥%*),
RP:=RP->A(.increment);
L60PP. 4 ;
S<A(a):=S>B(c)/S>C(t)->B(¥%),
RP:=RP->A(.increment);
$FACTOR = 5
E100%:
IF S>B(a)->A(.abs)/.004->B(>)
THEN
RP:=RP->A(.increment)
ELSE
RP 2=1:200 ]
FI

RHLP_101:=5>B(a)=>A(-)/S>C(x)->B(*¥)/S>C(x)->B_A(¥%),
RP:=RP->A_A(.increment);

L100.2

300,38
RHLP_102:=2/38>C(n)=->B(¥*)/1->B_A(+),
RP:=RP->A(.increment);

L100.4
RHLP_102:=2/S>C(n)=>B(*)/RHLP_102->B_A(%*),
RP:=RP->A(.increment);

L10B:i5
S<A(a):=RHLP_101/RHLP_102->B(/)=V1,
RHLP_101:=V1,
RP:=RP->A(.increment);

L100.6
S<A(s):=S>B(s)/RHLP_101->B(+),
RP:=RP->A(.increment);

L100sT
S<A(n):=S>B(n)/1->B(+),

RR:=L100.1

’

$FACTOR = 1
L2805 4

X,
RP:=RP->A(.increment);
END

SECOND PASS THROUGH MIMB

If you look closely at the INP file shown (prp.inp), you see that
it is already fully bound. That means that all functions have
hardware resources bound (allocated) to it. The reason for this
is that in order to enter all the RP := RP -> A (.increment) we
replaced all ";"s with this expression followed by an ";" with
one command of the editor, and then deleted the expressions where
RP was already assigned. This did not result in a nice printing
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format, so we ran it through MIMB once to get a formatted GEN
file, which we used here. The ADDMODULE section was added after
formatting.

In the header of INP we notice a command
$OPTION 7 ‘

This directs MIMB to create enable or control type connections to
storage devices. They are marked Dby the attribute

.CON

In order to declare the width of the CON vector, we added
declarations in the $ADDMODULE section. For example:

$<.CON.BIT(0:0)

tells us that the control (enable) input for input ports (<) of S
is one bit wide.

We also declared RP with 10 bits for 1K microprogram memory, and
RHLP with two duplicates: RLHP_101 and RHLP_102. If we do not
declare enough duplicates we could get a warning in the OTB file:

46 L100.2.1
W7 RHLP_101:=

+++++ ERROR AT L100 41 MODULE NOT DECLARED PARAMETER: RHLP_101
In the next section we Wwill talk more about error messages.
ANOTHER LOOK AT THE SCR FILE

With all of these details, the SCR file illustrating the
structure is now getting quite long, SO we put it in Appendix C,
file PRP.SCR. This 1s also a good reason for talking about the
control section so late in the design. It does not add much to
the cost or performance. Therefore, in initial phases of rough
cost performance estimates, we simply neglect the details, but
insert them as Wwe approach the final solution. Thus, we save
designer time for all the detailed declarations and also computer
time to deal with the details.

Let us now look at the end of SCR.

#,IST /GEZ/PRP.SCR

RHLP_101<.CON.BIT(0:O) = I>.CRHLP_101,
RHLP—102<.DAT.BIT(15:O) - B_A>.BIT(15:0),
RHLP#102<.CON.BIT(O:O) {= I>.CRHLP_102,

RP<.DAT.BIT(9:0) <~ ®2UDRP> .BIT(9:0),7"
"?DRP<a.DAT.BIT(9:0) <= ?"A>.BIT(9:0)/

CCSC 51 MIMOLA Primer



"2UDRP<b.DAT.BIT(9:0) <= 7?"A_A>.BIT(9:0)/
"P2UDRP<c.DAT.BIT(9:0) {-= ?"I)>.DRP
- "?,UDRP>.MPX.BIT(1:0) <~ -~ I>.MDRP?",

RP<.CON.BIT(0:0) <~ I>.CRP, -
S<A.DAT.BIT(15:0) {- "2UDSA>.BIT(15:0),7?"

"2UDSA<a.DAT.BIT(15:0) {- "2?"I>.DSA/

"?2UDSA<b,.DAT.BIT(15:0) <= ?"B>.BIT(15:0)

"?,UDSA> MPX,.BIT(0:0) <~ I>.MDSA?Y,
S<A.ADR.BIT(12:0) <= I>.ASA,
S<A.CON.BIT(0:0) <~ I>.CS4,
S>B.ADR.BIT(12:0) <~ I>.ASB,
S>C.ADR.BIT(12:0) <~ I>,.ASC;

All registers and the memory input port S<A now have their .CON
input connected to fields of the microinstruction vector. Also,
the data input of the program counter RP has a multiplexer with
three sources.

What we do not see is how the condition in L100.1 controls the RP
mux to either increment or Jjump to L200.1. The hardware
structure does not show that this is achieved by another
multiplexer for the address input UDRP>.MPX. If we 1look at the
I-field declaration in SCR:

I>.BIT(96:94)MDBb,
I>.BIT(98:97)MDRP,
I>.BIT(100:99)MDRPEA,
I>.BIT(103:101)FB_A,

we see two multiplexer address fields: MDRP and MDRPEA. In the
case of THEN, the first is selected to address the mux UDRP, the
second in the case of ELSE (the € indicates additional fields in
cases where more than one is necessary for the same destination).
The selection 1is controlled by the conditional value, in our
example by the compare output of B(>),

Besides this one little piece of control logic, and the actual

declaration of the microprogram memory, the controller is now

complete. :

The microprogram memory is difficult to declare in MIMB. The

easiest way 1is to use an editor and replace all "I."s by

"SM>A(R)."™ and add in the ADDCONNECT section the connection:
SM>A.ADR <- RP

The OTB file does not significantly differ from the last one, and
we include a complete copy of it in Appendix C.
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XV. ERRORS

WHAT HAPPENS IF WE MAKE AN ERROR?

The beginner especially will make many errors, but even the
experienced MIMOLA wuser will: make some, because his designs
become more complex as he progresses. Therefore, we will see how
MIMOLA can help in this important problenm.

We can distinguish between syntactic and semantic errors.
Syntactic errors are deviations from the language definition of
MIMOLA, and are always detected by the syntax analyzer of the
MIMOLA system and reported to the user. This does not mean that
the user can always tell what he did wrong. This depends on the
quality of the reported error message.

Semantic errors can only be partially detected automatically. In
many cases:it is up to the designer to find these errors. '

A semantic error that can be detected is, for example, a double
assignment to a storage device in one instruction: '

R1 := t, R1 := 2;

Since both are executed in parallel, we do not know if the
resultant value in R1 is 1 or 2. MIMOLA will report this as
Yeonflict at destination",

Other semantic errors, such as an incorrect algorithm, can be
found most of the time by simulation. The M35 simulator is
explained in /711/. :

Errors 1in hardware declaration are normally caught by careful
examination of the SCR or OTB files. A close look at the GEN
file and the allocated hardware is also very helpful.

This examination of the outputs is also important not only for
finding errors, but also for discovering improper ways of
describing an algorithm. Such "mistakes" sometimes cause
unnecessary hardware to be generated. This 1is often not the
user's fault, but a limitation of the MIMOLA System. :

HOW TO MAKE AND FIND SYNTACTIC ERRORS

We probably do not need to help anyone make errors. However, for
the purpose of learning about the responses, we will lead you
through some examples. '
If you tried some of the examples in the text and something went

wrong, you should have been able to find the problem by comparing
your work with the printed versions in this text. We will use
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the same technique now by

examples.
®LIST /GEZ/PRQ.T

$ADDMODULE
S(8191:0).BIT(15:0)WORD;
$PROGRAM

BEGIN ' -

L60 3(n) := 1;

END

*LIST /GEZ/PRQ.INP

$ADDMODULE
S(8191:0).BIT(15:0)WORD;
$PROGRAM

BEGIN

L60 S(n := 1;

END

By now our trained eye
second version., Will MIMB find it? Where does

If we are lucky and run MIMB interactively, the

inserting errors

on the terminal and in the OTB file.
mode, errors are reported only in the OTB
provides much information about the error, so let's look at it.

#LIST /GEZ/PRQ.OTB

immediately detects

If we

into the following

the error 1in the
it show up?

error will appear
run 1in the Batch
file. This file

MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80

SECL LI CHARACTERSTRING ACCEPTED ##%%5555

5 BEGIN
6 L60 S(n :

+++++ ERROR AT L60, 4 NO MATCHING RULE OF SYNTAX PARAMETER: 113

+4++4++ ':? NOT EXPECTED
SYMBOL

"left"(bottom of stack)

{program head>
<label>

S

(

=> "low letter or id strng"

"right"(top of stack)
REPAIRED STACK
SYMBOL

"left"(bottom of stack)

CCsC

DATA

L60

DATA

54

PORT

PORT

HI LO
-1 0
-1 0
-1 0
-1, 0
-1 0
-1 0°
-1 0
-1 0

HI Lo
-1 ¢
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~-> <program head> ~ : -1 Q

END A -1 0

"right"(top of stack) -1 0
LA A 0 ESBS READ (- 0 WEIGHTED)
R 0 ESBS CREATED ( 0 WEIGHTED)
hER 0 ESBS TOTAL ( 0 WEIGHTED)

1 ERROR(S) DURING COMPILATION

The first line specifies the part of the MIMOLA Software System
that was used (in .this case MIMB - Part B) and version.
information. Since the MSS is still being improved, it is
important to notice which version was wused, because results can
change slightly in format and contents.

The second line (CHARACTERSTRING ACCEPTED) tells us that the .
first section, here the ADDMODULE section, was actcepted as .
syntactically correct.

The forth line is the line in which an error was detected. Line
numbers and the preceding line are always shown for orientation

in the program, The """ points to the location in the string
above which the error is suspected. In our case this is as close
as it can get.  In more complicated cases the """ may point to :
where the error was detected, not where it occured.

The next line gives us the label of the faulty instruction and
the reason for the error. In the case of syntactic errors, it is
nearly always error number 4 or "no matching rule of syntax".
The parameter number comes from the "chemistry" of syntax
analysis. Normally we can skip this information, but for the
curious: 113 stands for the nonterminal symbol <operand> in the
BNF rules. Appendix F of the MIMOLA Report /3/ has the
conversion table.

The message "':' not expected"” tells us what we need to know.
What was expected was either a continuation of the expression for
the address (o6perand) or a ")",

In this case, even without the correct program for comparison, we
would easily have found the error.

However, let us 1look at the additional output. This is still
related to the same error and gives us the state of the syntax
analysis stack at the moment of the detection of the error. Do
not panic now, even if you are not a syntax analysis specialist.
Some of the information can be easily understood.

#LIST /GEZ/PRQ.T1

SYMBOL DATA PORT HI LO
Meft"(bottom of stack) -1 0

{program head> -1 0
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<label> L60 -1 0
S S -1 0
( ) -1 0
-> "low letter or id strng" n -1 0]
: : -1 0
"right"(top of stack) : -1 0

The stack stands on its head and its current ends are marked by
the tokens: left, right. Therefore, the ":" was on top of the
stack when the M35 detected that there was no way to apply a
syntax rule. The pointer -> points to the entry before that,
saying that something like an identifier had been found and that
this was "n", The " "™ +{ells us that some preprocessing with the
string has been done, for example, that a "name" or an "attribute
identifier™ was found.

Going two steps down the stack we now have
| S("Low letter or id string":
We also know from the message
parameter: 113

that "Low Jetter or id string" was reduced to symbol 113 or
<operand>. Now the only rules with "S" that apply in the PROGRAM
section are:

S ( <operand> )
S"name" ( <operand> )

(If you want to check this, the rules are listed in Appendix B of
the Report /3/.)

Since the syntax analyzer looks ahead one symbol (it is a LR(1)
grammer), it sees that the ":" is not possible in this situation.
Therefore, it reports the error.

Otherwise the stack looks fine. It starts with <program head>
and <label>, which is a correct situation, and there are rules
waiting to proceed.

Most of you will be confused by now and we can only tell you that
this is normal. Look at the information this way: try to get as
much out of 1t as you c¢an to find the error. With more
experience this will make it easier to find errors. Otherwise,
you have to 1look more closely at your file and compare it to
MIMOLA syntax.
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REPAIRING THE STACK

One of the problems of syntax errors is that the analyzer cannot
continue. The current stack situation would 1lead to error
messages for any further symbol. Therefore, the program tries to
repair the stack, and that is what it says in the OTB file. It
does so by skipping around the :error. In our case it skips
instruction L60 and goes on to "END", This is now a correct end
of the program and we get the usual output information. This is
correct, in addition to the fact that erroneous instructions have
been skipped.

If the MSS cannot recover, it stops reading the input and gives
the message:

"STOP FOR ERRORS™
*LIST /GEZ/PRR.OTB

MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80
c $ADDMOGULE

+++++ ERROR AT O 31 INVALID MONITOR KEYWORD PARAMETER: ADDMOGULE
¥#%%% STOP FOR ERRORS, ERNR= 31 ERCOUNT= 1

The message should be clear enough. The keyword was misspelled.

Sometimes the analyzer goes a 1long way before it detects the
error, as in the following example. :

*LIST /GEZ/PRS.INP

$ADDMODULE

$(8191:0) .BIT(15:0)WORD.MOREPORT;
$PROGRAM
BEGIN

L60 S(n)
L70 S(x) :
L80 S(S8)
L90 S(a)
END

1,

S(c) /7 S(t) => B(¥*);
S(x);
5S¢

There are two errors, but when first looking at the error message
we are confused (at least the author was when he first saw it)

¥ IST /GEZ/PRS.O0TB

MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80
(KRR ® CHARACTERSTRING ACCEPTED ##®%%5555

6 L70 S(x) := S(ec) / S(t) => B(#);

7 L80 S
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+++++ ERROR AT L60, 4 NO MATCHING RULE OF SYNTAX PARAMETER: U4

+++++ '; ' NOT EXPECTED ,',' (CODE=44) EXPECTED
SYMBOL - DATA PORT
"left"(bottom of stack) -
<{program head>

<label> - L60 r

{statement block> S ' B

¢labeld L70

{statement block> S B
=>

L L80

"name" L80

S S

"right"(top of stack)
REPAIRED STACK
SYMBOL DATA PORT

"left"(bottom of stack)
~> <program head>

L L80
"name" A L80
S S
( .
"right"(top of stack)
6 L70 S(x) := S{e¢) / S(t) -> B(#);
7 L80 S(S) :

HI LO
-1
-1
-1

=1
-1
-1
-1
-1
=1
-1
-1
-1

Hl
-1
-1
-1
-1
-1
-1
-1

QOOOOOOS CO0OO0ODOOCOOCOO

+++++ ERROR AT L80, U4 NO MATCHING RULE OF SYNTAX PARAMETER: 40

+++++ ')Y' NOT EXPECTED ,'(* (CODE=40) EXPECTED
SYMBOL : DATA PORT
"left"(bottom of stack)
{program head>

{label> L80
S S

( :

S S -

>

"right"(top of stack)

REPAIRED STACK
SYMBOL DATA PORT

"left"(bottom of stack)
-> <{program head>

L L90

"name" Lg0

S S

"right"(top of stack)
+++++ ERROR AT L90, 54 UNDEFINED LABEL:

e 1 ESBS READ ( 1 WEIGHTED)
13 0 ESBS CREATED ( 0 WEIGHTED)
e 1 ESBS TOTAL ¢ 1 WEIGHTED)

3 ERROR(S) DURING COMPILATION
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HI LO
-1 0
-1 0
-1 0
-1 0
-1 0
-1 -0
-1 0
-1 0
-1 0

HI Lo
-1 0
-1 0
-1 0
-1 0
-1 - 0
-1 0

PARAMETER: LT70
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The """ points at LSO, but the message right below says "Error at
L60". Which should we believe? Then it says "';' not expected,
'y' expected"”. ‘ : _ B -

Let us first look at L60 in the INP file: The error is that an
'y! was used instead of an *';'. After it saw the ',' it tried to
find more parallel executable statements. The construct <label>
can be used 1in many different contexts. Since it can appear
within a statement, no error was flagged after the 'v'. The
error bécame obvious when the ';' was found at the. end of
instruction L70. The syntax analyzer, however, correctly assumed
it was still in instruction L60 and reported the error correctly.
We included this example so the reader will not be discouraged if
he encounters a similar problem.

The system then recovers to find another error in L80. The
second "3" is not an 1identifier, so it can only be  a nested
reference to another memory location 1in 8. The expected
character is a "(" for the address of this memory, and this is
stated in the error message. The system thus proposes a
solution. In our case, the system could not know that the "S"
should be an "s", but it eclearly points to the correct location.
The system immediately recovers from this error and finally finds
one correct instruction, L90. The report of the error at L90:
"Undefined Label"™ results from the above confusion and is only a
warning that can be skipped for now. This is a typical semantic
error message.

If we look at the GEN file we see that L90 is the only
instruction that made it correctly through the system. All
others have been skipped.

*LIST /GEZ/PRS.GEN

"MIMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80“

$PASS 1
$PROGRAM.

BEGIN

L90.1
S<B(a):=S>A(x);

END
SEMANTIC ERRORS
Semantic errors change the meaning of the input. Since there are

various error messages to point out what could be caught or looks
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like an error, the designer has to decide which ones apply to nis
situation. Appendix G in the Report /3/ explains the messages.

Some messages refer to limitations in the version of the Software
Systen. The user can ohly ¢try to understand what might have
caused the error and work around the problem. With future
revisions of the MSS, these limitations will be reduced.

XVI. CONCLUSION

We hope that this PRIMER has been helpful to the reader. as an
introduction to the MIMOLA Design Methodology, language and
Software System. It was not intended to be complete or to be a
reference manual. It only covers part of the available software
- MIMB. At this point the reader should be able to make extended
use of the capabilities by reading the listed documentation.
Also, there 1is no L substitute for hands-on experience, and we
again encourage the use of the software,

We want to express our thanks at this point for the excellent
editing and text processing that Beth Hurd did on the PRIMER.
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APPENDIX A

"WHAT IS MIMOLA?"

R. Cloutier and d. Zimmermann

Many people have heard about "MIMOLA", but few understand what it
really is, Documentation is available, courses have been taught,
and numerous presentations have been given, but still MIMOLA is
nebulous. Why is i® so difficult to understand? We believe it
is Dbecause MIMOLA is new to most people and new concepts are
difficult to comprehend. A new programming language is
‘relatively easy to explain to experienced programmers, by
relating it to features found in existing languages. A new
hardware description language is alsc easy to understand if the
constructs it describes are already familiar to the hardware.
~designer. If however, the language provides features that do not
directly relate to implementable hardware, these features may be
difficult to imagine.

MIMOLA might be difficult to understand because the new features
it provides are unexpected. However, MIMOLA is based on some
common concepts that can be related to existing tools. For
example, MIMOLA is a hardware description language (HDL). It
also includes a simulator that can operate with the design
description. Unfortunately, this is where the similarity with
existing tools ends. MIMOLA may also be used to express
algorithms and may be considered a programming language. This
combination of an HDL and programming features is difficult to
visualize. MIMOLA also includes a software package that can do
hardware synthesis, design analysis, and microcode generation.
Each of these .may generally be comprehended by relating them to
what one already knows, but the terms are sufficiently vague that
they are of 1little value when describing the function of the
tool. Because of this lack of clarity, it is difficult to
describe what MIMOLA is needed ~for, but if this need was
understood, perhaps the view of MIMOLA itself would become clear.
With this in mind, we will first explain the problem that MIMOLA
can be used to solve, before explaining MIMOLA itself.

NEED FOR DESIGN AUTOMATION

While digital system design is still an art, it does involve some
tasks that are well understood. If these tasks were to be
automated, the productivity of the designer would be vastly
increased. Design automation may also be applied to the
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resolution of problems caused by new technologies and  new
requirements. '

Examples oflproductivity improvements by DA include:

o Pre-fabrication error dgteétion by simulation, timing
analysis or design rule checking

o Schematic entry and editing of systems for documentation
o Automatic printed circuit board layout

Examples of difficulties and new. requirements impbsed- by
technology: :

o VLSI layout complexity
o GaAs signal synchronization
o Distributed systems reliability requirements

The productivity examples are related in that they are all well
understood and do not require complete designer attention. The
second set of examples are related in that they must be resolved
during the planning phase. MIMOLA was designed to aid planning
and to increase productivity.

THE IMPORTANCE OF PLANNING

Three activities are strongly related in designing a new product:
planhing, implementation and - analysis. Planning requires
experience, creativity and design decisions, and is based on
assumptions about the implementation. The implementation is the
plan translated into reality, and should be more or less
automatic, or at least predictable. Analysis is used to evaluate
the plan and the implementation and to compare the results with
the requirements. .

It should then be obvious that planning determines the quality of
the product and assures that the requirements are met and the
plan is implementable. Nevertheless, most tools for integrated
circuit design support only the implementation and analysis.
Planning is left to the designer. Examples are automatic layout,
design rule checkers and test generators.

Because of this lack of planning tools, the implementation stage
is often started before planning is completed so that assumptions
made during the planning stage can be checked against the actual
results. This is a rather expensive method of checking
assumptions. The expense of a reimplementation dictates that
whatever assumptions were made first become the standard, and
alternative choices are not considered. In such a top~-down

cCsSC 63 MIMOLA Primer



design path, optimal designs are a rarity. Every decision must
be correct the first time, because it is difficult and expensive
to go back and modify a design once it has been implemented. It
is unreasonable to expect that a correct and optimal design for a
large digital system could be achieved in a single design cycle;
the complexity is too great. :

FRONT-END DESIGN TOOLS

Tools for planning (or front-end design tools as they are
sometimes called) may operate at several levels., The basic level
would be planning data entry, editing and documentation aids.
The addition of plan analysis and evaluation tools that examine
the design and access the planning data would be the next level.
Automatic model generation and then fully automatic synthesis of
plans would be the ultimate goal, but it is currently far off.
In fact, very few tools currently exist that even address the
planning problem.

Chip planning is an excellent example of a front-end tool. It is
also one of the central issues 1in VLSI desigh, because of the
difficulty in arranging 100,000 elements optimally and
economically on a chip surface. Chip planning 1is:an approach
that partitions the problem into many smaller designs (cells) of
manageable complexity. The planning tasks then involve the
organization of these cells. Currently this task is performed
manually, but work is being done to aid in the manipulation of
cells, and the estimation of cell size.

Now let us step back to the architectural and logic design
levels. Decisions made here are even more important to the final
product than those to be made during chip planning. An aid to
planning at this level is the MIMOLA Software System (MSS).
Although it is still used mostly for research, the MSS may also
be used for architectural planning and evaluation.

THE MIMOLA SOFTWARE SYSTEM

Assume, for example, we want to design a very fast processor for
image processing. We have a Dbasic knowledge of the algorithms
and know how much time it takes to process one picture. The goal
is to develop the minimum number of VLSI chips needed to do the
processing. . This is certainly not a basic logic design problem,
because any general purpose computer could be programmed to
execute the algorithm, However, it would be far too slow and too
expensive to have enough processors in parallel. Therefore, we-
are dealing with the optimization problem of finding a system
with the least cost for the required performance. This problem
can be solved with proper planning.
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Now assume several designers get together and brainstorm about
parallel and pilpelined architectures., Processor structures are
drawn on the back of envelopes, but how do they decide which
design has the lowest cost and yet fulfills the requirements?
Build prototypes? - Too expensivel Simulate? - A lot of work!
Guess? - Possible, but only if the designers are very
experienced. Use MIMOLA? - But what can it do for the designer?!

The MIMOLA Methodology structures the design process. The first
step is to specify the behavior. 1In our example, the algorithms
for image processing are the desired behavior, so we have to
express them in the programming language MIMOLA,. Now we make
certain that the MIMOLA programs execute correctly. This is
accomplished by using the MIMOLA simulator. Only the behavicoral
description is simulated, since nothing has been specified in the
hardware area., For example, the behavioral description of an
instruction set processor is the collection of behavioral
descriptions of each instruction, not the algorithm that would be
executed on the processor.

The next step is to compare different architectures. This
requires that the algorithm be totally rewritten, yet still
describe the same function. As an example, a sorting algorithm
could be described as a bubble sort or as a merge sort; both
would produce the same sorted results. However, theilr approach,
speed, and required hardware could be very different. The MSS
could be used to compare the architectures by calculating the
dynamic' performance and estimated maximum cost. The designer
interaction is very important at this stage of the design. Both
the creation of algorithms and the interpretation of the results
require the designer; they cannot be automated.

Once a decision on the system architecture is made, the task of
designing the processor is again supported by MIMOLA. MIMOLA is
able to generate several processor structures that all have the
desired . behavior. Differences are 1in the amount of parallel
hardware used, which is controlled by the designer. He can also
propose and enter structures that reflect his own ideas and let
the system analyze them. The output of real interest 1is the
dynamic performance, the cost estimate and the the dynamic
utilization of resources. The wutilization figures are very
important for deciding whether to add or remove hardware
resources. The MIMOLA system optimizes the utilization ¢to
achieve a good cost - performance tradeoff. Thus, the designer
is able to reach an acceptable processor structure.

After a structure has been defined, more checking 1is needed.
First we make sure that the generated microprogram for this
structure is still behaviorally correct, again using the MIMOLA
simulator. Then we check that the processor structure can
execute the microprograms correctly. For this purpose, there is
a MIMOLA to DL translator that generates a complete description
of the structure in Honeywell's Hardware Description Language,
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DL. The MIHOLA microcode generator creates a list of zeros and
ones representing the microcode. Th%s code, together with the DL
deseription, is fed into the DL simulator to simulate the design.

Simultaneously, we enter this design into the chip planner. This
provides more reliable figures regarding the necessary chip area
than earlier estimates. In fact, we should already be using the
chip planner for selected trial structures during the design, to
make certain that we can fulfill the requirements. Chip planning
also provides us with wire 1length calculations to improve our
delay estimates. Thus, we get closer to the real performance.

Chip planning may show us that we still haven't reached our goal
and_must go back a few steps, The advantage of the MIMOLA system
is that these iterations do not take much time. In the future,
the designer will be able to do all of these activities at his
workstation and let the computer do the work for him. This gives
the designer more time for creating new architectures and
hardware configurations, and the system helps him to evaluate his
jdeas. Documentation will be automatic, because the MIMOLA and
DL descriptions can be used for this purpose.

CONCLUSION

It is our hope that the reader now has a better understanding of
what MIMOLA is and what front-end tools can accomplish for the
designer. Much work still needs to be done, but designers should
be able to take advantage of what is already available.
Therefore, we strongly encourage the use of the MIMOLA system and
will give every possible support. For more information contact
Rich Cloutier or Gerhard Zimmermann (HVN 554-4077 and 554-4067,
respectively).
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APPENDIX B

ANSWERS TO EXAMPLES

Example 1 |
“ZDA>UDD)DA>%LBERT>HAN>PRIH.B
list

10 print !

20 print !

30 input c

40 print !
- 50 input t

60 1

70 c ® t

80 X '

90 X

100 if abs(a) < .004 then goto 200

110 -a % x ® x /(2% pn ® (2% 4 1)

120 S + &

130 print 'n = ';n,' a= ";a, ! s

140 =n + 1 ‘

150 goto 100

200 print t'sin( ';x;' ) = ';s

This Program calculates sin(c¥*t)!
c = "'; '

LRI R I
0o

[ [ I 1]
1]

),

210 print ' type: 0 for quit, 1 for new ¢ and 2 for new t'

220 input i

230 if i = 1 then goto 20
240 if 1 = 2 then goto 40
250 end

run

BASIC- 3.0-08/02/0700 1982/12/08 0932:26
“ZDA>UDD>DA>ALBERT>MAN>PRIM.B

his Program calculates sin(c%*t) € ¢ = 72 1 8 ¢t

a = -.166667
.833333E-2

P
1
2
3 -.198413E-3

/- e |

[ ol o
S s SH N

o nn

a
a
1 ) = .8414
0 for quit,

6

oo~
1]

EWN = e

-1.33333
.266667
-.0253968
. 181093E~2

[ B B = e

-
wo o oo

colt 1

i

~
n

~—
]

.909
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.833333
841667
.841468

2@ ¢t =172
666667
.933334
.907937
.909348
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0 for quit, 1 for new ¢ and 2 for new t €7
-10.6667
8.53333
-3.2508
.722399
-.105076
LO10777
-.821108E- 3

type

~I OV E W = e
UL n®
R ERE

WO e u it n

a
a
a
a
a
a
a
8

3= B == R R R o

o -

‘l ) = = 'r 55 Es l‘

e: 0 for quit, 1 for new c and 2 for new t €
- -85.3333

273.067

-416.102
369.868

-215.196
B88.2856

-26.9061
6.33085

_1o18472

o o~
I Nt in -

[o e o B Se Jie B B S )
gD aussIangnun
W o~ Imwhy =
mmmmmmmmm
uHaagonunnnoun

e wwinh

o
O
=

. 180529
--0228337
.2U43559E-2

SS90
— -

w w
nnwu

- I

0 a
1 a
2 a
sin( 8 ) = .9895
type: O for quit,

END AT 250

- L)

for new ¢ and 2 for new t @7

Example 2

These are some possible answers, other correct solutions exist.

S(a)/S(b) => B(+)
2/8(e)/5 => B1(+)/5 => B2(#®) -> B3(+)
3/4 -> Ba{+)/1/2 => Bb(+) => Be(#)/3/8(a)/S(b)

2@t =17?14

-6.66667

1.86667
-1.38413
~-.661729
-.766805
~.756028
~. 756849

268t =178

-77 -3333
195.734
-220.368
149.5
-65.6962
22.5894
-4,31673
2.01412
“r

1.00993
.987095
.989531

=> B1(+) <> B2(%*) -> B3(«+)
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ccse

55 54 41 28 12

0
MDSB ASC ASA 'DSB ASB
J l
TN
P e UDSB<b .DAT}
UDSB<a.DAT [16 {16
NV,
UDSB> .MPX \
16
UDSB>
<B,DAT kB.ADR
116 M3
B<a.DAT B<b.DAT ' <B
/16 - 16 '
B //// 5
B> V16 | )
>A 3 >C
16 13 16 n3
>A.DAT / >A.ADR C.DAT |>c.ADR
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Example 4

in_line

Example 5

a+b — S(a)/S(b) -> B(+)
(a+b)¥c - mmud S(a)/S(b) -> B(+)/S(e) => B(¥)
(a+b)*c+d N S(a)/S(b) -> B(+)/5(c) -> B(*)/5(d) -> B(+)

Example &

-a _———) S(a) -> A(=)
-a+b _—D S{a) > A(-)/5(b) -> B(+)
abs(a+b) ~==>  S(a)/S(b) => B(+) => A(.ABS)
-abs(a+b) e==> S(a)/S(b) => B(+) => A(.ABS) => A(-)
(-abs(a+b))%*ec - S(a)/S(b) ~> B{+) -> A(.ABS)

-> A(=)/8(c) =>B(¥%)

Example 7
UDD>DA>ALBERT>MAN>PRIMER. ANST

list

10 print 'This Program calculates sin(c¥*t)’
20 print ' ¢ = ';

30 input
40 print
50 input
61 n 1
62 «x c * ¢
63 s = x _
64 a x

110 if abs(a) < .004 then goto 200

120 r1 ~a % x #

130 r2 2 ®n +1

140 r2 2 ¥ n & p2

150 a =r1/ r2

155 r1 = a

160 s = s + r1 :
165 print 'n = ';n,! a=';a, ! 5 = ;s
170n =z n + 1 '

175 goto 110

-0

t =1

ot

200 print 'sin( ';x;' ) = ';s

210 print ' type: O for quit, 1 for new ¢ and 2 for new t!
220 input i

230 if 1 = 1 then goto 20

240 if 1 = 2 then goto 40

250 end
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run

This Program calculates sin(c¥t)

€ c = 7 1
at=172 ’
n= 1 a = -1,33333 3 = .666667
n= 2 a.= .266667 8 = .933334
n= 3 a = -,0253968 8 = .907937
h = 4 a = .141093E=2 s = ,909348
sin( 2 ) = .909348 : ' ‘

type: O for quit, 1 for new ¢ and 2 for new t
87 2
8t =714
n = 1 a = -10,6667 8 = -6.66667
n= 2 a = 8.53333 s =z 1.86667
n = 3 a = -3,2508 g8 = -1.38413
n= 4 ac .722399 8 = -,661729
n= 5 a = -.105076 $ = -,766805
n= 6 a= .010777 s = -.756028
n= 17T ' a = -.821108E-3 s = -.7T56849
sin{ 4 ) = -.756849 ,

type: 0 for quit, 1 for new ¢ and 2 for new t

et 2
6t =728
n= 1 a = -85.3333 s = =77.3333
n= 2 a= 273.067 8 = 195.734
n = 3 a = -416.102 ° 8 = -220.368
ns= 4 a = 369.868 8 = 149.5
n= 5 az -215.196 8 = ~65,6962
n= 6 a = 88.2856 8 = 22.5894
n = 7 a = "26-9061 s = "‘“.31673
n= 8 a = 6.33085 s = 2.01412
n= 9 a=z ~-1.,18472 s = 8294
n= 10 a z .180529 s =z 1.00993
n = 11 a =z -,0228337 3 = .98709%
n= 12 a = .243559E-2 5 = .989531
sin( 8 ) = .989531 '

type: 0 for quit, 1 for new ¢ and 2 for new t
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APPENDIX C

®*LIST /GEZ/PRJ.SCR

$ADDMODULE
A>(.abs[1,0]),
A>.BIT(15:0),
A<.DAT.BIT(15:0),
A_A>(-[1,0]),
A_A>.BIT(15:0),
A_A<,DAT.BIT(15:0),
B>(>=[1,0],%[1,1]),
B>.BIT(15:0),
B>.FCT.BIT(0:0),
B<a.DAT.BIT(15:0)
m?, UDBa<a.DAT.BIT(15:0),
UDBa<b.DAT.BIT(15:0),
UDBa> .MPX.BIT(0:0),
UDBa>.BIT(15:0) 7",
B<b.DAT.BIT(15:0)
n? UDBb<a.DAT.BIT(15:0),
UDBb<b.DAT.BIT(15:0),
UDBb> .MPX.BIT(0:0),
UDBb>.BIT(15:0)7?",
B_A>(*[1,0]),
B_A>.BIT(15:0),
B_A<a.DAT.BIT(15:0),
B_A<b.DAT.BIT(15:0),
B_B>(*[1,0]),
B_B>.BIT(15:0),
B_B<a.DAT.BIT(15:0),
B_B<b.DAT.BIT(15:0),
- B_C>(¥[1,01),
B_C>.BIT(15:0),
B C<a.DAT,BIT(15:0),
B_C<b.DAT.BIT(15:0),
B_D>(+[1,01),
B_D>.BIT(15:0),
B_D<a.DAT.BIT(15:0),
B_D<b.DAT.BIT(15:0),
- B_E>(%*[1,0]),
B_E>.BIT(15:0),
B_E<a.DAT.BIT(15:0),
B_E<b.DAT.BIT(15:0),
B_F>(/[1,01),
B_F>.BIT(15:0),
B_F<a.DAT.BIT(15:0)},
B_F<b.DAT.BIT(15:0},
B_G>(+[1,01),
B_G>.BIT(15:0),

|
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B_G<a.DAT.BIT(15:0),
B_G<b.DAT.BIT(15:0)},
B_H>(+[1,0]),
B_H>. BIT(15 0),
B_H<a.DAT.BIT(15:0),
B_H<b.DAT.BIT(15:0),.
I>.BIT(15:0)REAL,
I>.BIT(28:16)ASA,
I>.BIT(u41:29)ASB,
I>.BIT(54:42)ASC,
I>.BIT(6T7:55)AS3D,
I>.BIT(83:68)DSA,
I>.BIT(96:84)ASE,
I>.BIT(109:97)ASF,
I>.BIT{122:110)ASG,
I>.BIT(135:123)ASH,
I>.BIT(136:136)FB,
I>.BIT(152:137)DB_Ca,
I>.BIT(168:153)DB_Db,
I>.BIT(184:169)DB_Hb,
I>.BIT(185:185)MDBsa,
I>.BIT(186:186)MDBb,
I>.BIT(187:187)MDSA,
I>.BIT(188:188)MDSB,
I>.BIT(189:189)MDSC,
S>E(8191:0),
S<A.DAT.BIT(15:0)
n?, UDSA<a.DAT.BIT(15:0),
UDSA<b.DAT.BIT(15:0),
UDSA> .MPX.BIT(0:0),
UDSA>.BIT(15:0)1?",
S<A.ADR.BIT(12:0),
S<B.DAT.BIT(15:0)
®7,UDSB<a.DAT.BIT(15:0),
UDSB<b.DAT.BIT(15:0),
UDSB> .MPX.BIT(0:0),
UDSB).BIT(15:0)?",
S<B.ADR.BIT(12:0),
8<C.DAT.BIT(15:0)
n?,UDSC<a.DAT.BIT(15:0),
UDSC<b.DAT.BIT(15:0),
UDSC> .MPX.BIT(0:0),
UDSC>.BIT(15:0)?",
S<C.ADR.BIT(12:0),
S<D.DAT.BIT(15:0),
S<D.ADR.BIT{12:0),
S>E.BIT(15:0),
S>E.ADR.BIT(12:0),
S>F.BIT(15:0),
S>F.ADR.BIT(12:0),
$>G.BIT(15:0),
S>G.ADR.BIT(12:0),
S>H.BIT(15:0),
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S>H.ADR.BIT(12:0);
$ADDCONNECT
A<.DAT.BIT(15:0)
A_A<.DAT.BIT(15:0)
B>.FCT.BIT(0:0)
B<a.DAT.BIT(15:0)

B<b.DAT.BIT(15:0)

"2UDBb<a.DAT.BIT(15:0)
"2UDBb<b.DAT.BIT(15:0)
"2, UDBb> .MPX.BIT(0:0)

B_A<a.DAT.BIT(15:0)
B_A<b.DAT.BIT(15:0)
B_B<a.DAT.BIT(15:0)
B_B<b.DAT.BIT(15:0)
B_C<a.DAT.BIT(15:0)
B_C<b.DAT.BIT(15:0)
B_D<a.DAT.BIT(15:0Q)
B_D<b.DAT.BIT(15:0)
B_E<a.DAT.BIT(15:0)
B_E<b.DAT.BIT(15:0)
B_F<a.DAT.BIT(15:0)
B_F<b.DAT.BIT(15:0)
B_G<a.DAT.BIT(15:0)
B_G<b.DAT.BIT(15:0)
B_H<a.DAT.BIT(15:0)
B_H<b.DAT.BIT(15:0)
S<A.DAT.BIT(15:0)

I

]

"?UDSA<a.DAT.BIT(15:0)
"2UDSA<b.DAT.BIT(15:0)
"?,UDSA>.MPX.BIT(0:0)

S<A.ADR.BIT(12:0)
S<B.DAT.BIT(15:0)

"?UDSB<a.DAT.BIT(15:0)
"2?20DSB<b.DAT.BIT(15:0)
"?,UDSB> .MPX.BIT(0:0)

S<B.ADR.BIT(12:0)
S<C.DAT.BIT(15:0)

"?UDSC<a.DAT.BIT(15:0)
"?UDSC<b.DAT.BIT(15:0)
n?,UDSC>.MPX.BIT(0:0)

S<C.ADR.BIT(12:0)
S<D.DAT.BIT(15:0)
S<D.ADR.BIT(12:0)
S>E.ADR.BIT(12:0)
S>F.ADR.BIT(12:0)
S>G.ADR.BIT(12:0)
S>H.ADR.BIT(12:0)

cCsc

{=

e

<

I
"?UDBa<a.DAT.BIT(15:0)
"2UDBa<b.DAT.BIT(15:0)
"7, UDBa>.MPX.BIT(0:0)

-

<=

<=
<

<=
<=

-
o
€ na
-
-
=
€=

S>E.BIT(15:0),

S>E.BIT(15:0),

I>.FB, _

-
=
<=
<
=
<=
<=
<=
{=
<=
<=
{-
-
<=
{-
e

"?UDBa>,.BIT(15:0),2"

<= 7"S>E.BIT(15:0)/
<« 2"A>.BIT(15:0)
= I>.MDBa?",

"2UDBb>.BIT(15:0),72"

<- ?"S>F.BIT(15:0)/
<- ?"I>,REAL
<- I>.MDBb?",

A_A>.BIT(15:0),
S>F.BIT(15:0),
B_A>.BIT(15:0),
S>F.BIT(15:0),
I>.DB_Ca,
S>G.BIT(15:0),
B_C>.BIT(15:0),
I>.DB_Db,
B_C>.BIT(15:0),
B_D>.BIT(15:0),
B_B>.BIT(15:0),
B_E>.BIT(15:0),
S>H.BIT(15:0),
B_F>.BIT(15:0),
S>G.BIT(15:0),
I>.DB_Hb,
"2UDSA>.BIT(15:0),2"
<= ?"I>,DSA/
<- 2"B_F>.BIT(15:0)
<- I>.MDSA?",
I>.ASA,
"2UDSB>.BIT(15:0), 7"

<= 2?"B>.BIT(15:0)/
<- ?"B_G>.BIT(15:0)
<- I>.MDSB?",
I>.ASB,
"2UDSC>,BIT(15:0),2"
<- ?"B>.BIT(15:0)/
<~ ?"B_H>.BIT(15:0)
<~ I>.MDSC?",
I>.ASC, |
B>.BIT(15:0),
I>.ASD,
I>.ASE,
I>.ASF,
I>.ASG,
I>.ASH;
74
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*LIST /GEZ/PRP.SCR
$ADDMODULE

A>(.absf20,0],-015, 11,.1ncrement[20 21),

A>.BIT(15: 0),
A>.FCT,.BIT(1:0),
A<.DAT.BIT(15:0) '

‘ "2 ,UDA<a.DAT.BIT(15:0),
UDA(b DAT.BIT(15:0),
UDA>.MPX.BIT(0:0),
UDA>,BIT(15:0)1?",

A_A>(.abs[20,0],-[15,1],.increment(20, 2]).

A_A>.BIT(15:0),
A_A>.FCT.BIT(1:0),
A_A<.DAT.BIT{15:0),

B>(-[30,01,%(100, 1] ,/ (150,21, >[30 31,+(25,4]),

B>. BIT(15 0),

B> .FCT.BIT(2:0),

B<a.DAT.BIT(15:0)
v? ,UDBa<a.DAT.BIT(15:0),
UDBa<b.DAT.BIT(15:0),
UDBa<c.DAT.BIT(15:0),
UDBa<d.DAT.BIT(15:0),
UDBa>.MPX.BIT(1:0),
UDBa>.BIT(15:0) 7",

B<b.DAT.BIT(15:0)
®?,UDBb<a.DAT.BIT(15:0),
UDBb<b.DAT.BIT(15:0),
UDBb<c.DAT.BIT(15:0),
UDBb<d.DAT,.BIT(15:0),
UDBb<e.DAT.BIT(15:0),
UDBb> .MPX.BIT(2:0),
UDBb>.BIT(15:0)1?",

B_A>(-[30,0],%[100,11,/0150,21,>(30,3],+[25,4]),

B 4>.BIT(15: 0),
B_A>.FCT.BIT(2:0),
B_A<a.DAT.BIT(15:0),
B_A<b,DAT.BIT(15:0)
n?, UDB_Ab<a.DAT.BIT(15:0),
UDB_Ab<b.DAT.BIT(15:0),
UDB_Ab<c.DAT.BIT(15:0),
UDB_Ab> .MPX.BIT(1:0),
UDB_Ab>.BIT(15:0}7",
I>.BIT(15:0)REAL,
I>.BIT(28:16)ASA,
I>.BIT(44:29)DSA,
I>.BIT(45:45)CSA,
I>.BIT(4T:U46)FA,
I>.BIT(48:48)CRP,
I>.,BIT(61:49)ASB,
I>.BIT(T4:62)ASC,
I>.BIT(T77:75)FB,
I>.BIT(78:78)MDSA,
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I>.BIT(80:79)FA_A,
I>.BIT(90:81)DRP,
I>.BIT(91:91)MDA,
I>.BIT(93:92)MDBa,
I>.BIT(96:94)MDBD,
I>,BIT(98:97)MDRP,
I>.BIT(100:99)MDRPEA,
I>.BIT(103:101)FB_A,
I>,BIT(104:104)CRHLP_101,
I>,BIT(120:105)DBa,
I>.BIT(136:121)DB_Ab,
I>.BIT(137:137)CRHLP_102,
I>.BIT(139:138)MDB_AD,
I>.BIT(140: 140)MDRHLP_101,
I>.BIT(156:141)DBD,
RHLP_101>.BIT(15:0)},
RHLP_101<.DAT.BIT(15:0)
"?,UDRHLP_101<a.DAT.BIT(15:0),
UDRHLP_101<b.DAT.BIT(15:0),
UDRHLP_101>.MPX.BIT(0:0),
UDRHLP_101>.BIT(15:0) 2",
RHLP_101<.CON.BIT(0:0),
RHLP_102>.BIT(15:0),
RHLP_102<.DAT.BIT(15:0),
RHLP_102<.CON.BIT(0:0),
RP<.DAT.BIT(9:0)
"?,UDRP<a.DAT.BIT(9:0),
UDRP<b.DAT.BIT(9:0),
UDRP<c¢.DAT.BIT(9:0),
- UDRP>.MPX.BIT(1:0),
UDRP>.BIT(9:0) 7",
RP<.CON.BIT(0:0),
RP>.BIT(15:0),
S>B(.LOAD[75,0], .READ[50,1])},
S>B(8191:0),
S<A.DAT.BIT(15:0) '
n?, UDSA<a.DAT.BIT(15:0),
UDSA<b.DAT.BIT(15:0),
UDSA>.MPX.BIT(0:0),
UDSA>.BIT(15:0)7",
S<A.ADR.BIT(12:0),
S<A.CON.BIT(0:0),
S>B.BIT(15:0),
S>B.ADR.BIT(12:0),
S>C.BIT(15:0),
S>C.ADR.BIT(12:0);
$ADDCONNECT |
A> . FCT.BIT(1:0) <= I>.FA,
A<.DAT.BIT(15:0) {= "2UDA>.BIT(15:0),7"
n?ypA<a,DAT,.BIT(15:0) {= "RP>.BIT(15:0)/
"?2UDA<b.DAT.BIT(15:0) <= ?"8§>B,BIT(15:0)
n?,UDA> . MPX.BIT(0:0) <= I>.MDA?M,
A_A>.FCT.BIT(1:0) <= I>.FA_A,
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A_A<.DAT.BIT(15:0) <~ RP>.BIT(15:0),

B>.FCT.BIT(2:0) <~ 1I>.FB,

B<a DAT.BIT(15:0) <~ "?unBa> BIT(15:0),?"
"2UDBa<a.DAT.BIT(15:0)° <= 2%S>B.BIT(15:0)/
"?UDBa<b.DAT.BIT(15:0) <~  2"A>,BIT(15:0)/
"?UDBa<c.PAT.BIT(15:0) <~ “I"I>.DBa/
"2UDBa<d.DAT.BIT(15:0) <- "I"RHLP_101>. BIT(15 0)
#?. UDBa>,MPX.BIT(1:0) <- I>.MDBa?",

B<b.DAT.BIT(15:0) <=  "?UDBb>.BIT(15:0),?"
"?UDBb<a,DAT.BIT(15:0) <= FMS>C.BIT(15:0)/
"?2UDRb<b.DAT.BIT(15:0) <= ?"1»,REAL/
"?UDBb<e¢.DAT.BIT(15:0) <~ 7?"RHLP_102>.BIT(15:0)/
"2UDBb<d.DAT.BIT(15:0) <- T7PRHLP_101>.BIT(15:0)/
"?UDBb<e.DAT.BIT(15:0) <~ 17%1>.DBb
"?,UDBb> . MPX,BIT(2:0) <~  I>.MDBb?",

B_A>.FCT.BIT(2:0) <- I>.FB_A

B_A<a.DAT.BIT(15:0) <=  B>.BIT(15:0),

B_A<b.DAT.BIT(15:0) <~  "?UDB_Ab>.BIT(15:0),?"
n2UDB_Ab<a.DAT.BIT(15:0) <~ ?"S>C.BIT(15:0)/
"2UDB_Ab<b.DAT.BIT(15:0) <- 2"I>.DB_Ab/
"2UDB_Ab<c.DAT.BIT(15:0) <= 7?YRHLP_102>.BIT(15:0)
®?,UDB_Ab> .MPX.BIT(1:0) <~  I>.MDB_Ab?%,

RHLP_101<.DAT,BIT(15:0) W?UDRHLP_101>.BIT(15:0)
"?2UDRHLP_101<a.DAT.BIT(15:0) <~ 17%B A>.B:T(15:6
"2UDRHLP_101<b.DAT.BIT(15:0) <= 7"B>.BIT(15:0)
®? UDRHLP_101>.MPX,BIT(0:0) <-  I>.MDRHLP_1017",

RHLP_101<.CON.BIT(0:0) <-  I>.CRHLP_t01,

RHLP_102<.DAT.BIT(15:0) B_A>,BIT(15: 0).

RHLP_102<.CON.BIT(0:0) <~ I>.CRHLP_102,

RP<.DAT.BIT(9:0) <~  "?UDRP>.BIT(9:0),?"
"2UDRP<a.DAT.BIT(9:0) <= PWA>,BIT(9:0)/
*2UDRP<b.DAT.BIT(9:0) <~ PWA_A> BIT(9:0)/
"?UDRP<c.DAT.BIT(9:0) <- P"I>.DRP -

w? UDRP>.MPX.BIT(1:0) <~  I>,MDRP?",

RP<.CON.BIT(0:0) - <-  I>,CRP,.

S<A.DAT.BIT(15:0) <=  "?UDSA>.BIT(15:0),?"
"2UDSA<a.DAT.BIT(15:0) <= PWI>.DSA/ .
"?UDSA<b.DAT.BIT(15:0) <= 7T"B>,BIT(15:Q)
"?,UDSA> .MPX.BIT(0:0) <« I>.MDSA?",

S<A.ADR.BIT(12:0) <= I>,ASA,

S<A.CON.BIT(0:0) <~ I>,CSA,

S>B.APR.BIT(12:0) <~  I>,.ASB,

S>C.ADR.BIT(12:0) <= I>.ASC;
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[Lfsr /GEZ/PRP.OTB

IMOLA PART B (GCOS VERSION CM) VERSION 3.0 OF 02/27/80
({KCW#*E% CHARACTERSTRING ACCEPTED #¥%¥3555

ol 12 ESBS READ ( 40 WEIGHTED)
bl 0 ESBS CREATED ( 0 WEIGHTED)
ol 12 ESBS TOTAL ( 40 WEIGHTED)

{¢cuuud CHARACTERSTRING ACCEPTED #¥#¥3555
0 HELP-STORAGECELLS (OR REGISTERS) USED IN PROGRAM
ESTIMATED RUN TIME: 7406
k% GROUP : A :
F 25 FREE DUPLICATES y $: 3.0+ 2.5=8% 5.5

u/cC: 15.9091 FREQ: 35 = 87.50%
FUNCTIONS : .abs[20], -[15], .increment{20], :
PORT USE: OUTPUT O : X 1 : - 35X
INPUT O : EX 1 35X :
> +AUTO(.READ ) FREQ: 35 = 87.50%
3 FUNCTIONS(EXCL .LOAD&.READ)
DATA 15: 0 FREQ: 35 = 87.50 %
FUNCTION 1: O ADR D-BITS MODULE&PORT S-BITS FREQ '
0 1: 0 I> FA o 35 = 87.5%
< .AUTO(NONE )} FREQ: 35 = 87.50%
DATA 15: O ADR D-BITS MODULE&PORT S-BITS FREQ
0 15: 0 S>B 15: 0 10 = 25.0%
3 1 15: © RP> 15: 0 25 = 62.5%
h ------------------------------------------------------------- S W i A o — i S -
A_A . 0 FREE DUPLICATES , $: 3.0 + 1.0=$% 4.0
U/C: 6.2500 FREQ: 10 = 25.00%
FUNCTIONS : .abs[20], -[15], .increment[20],
PORT USE: OUTPUT 0O : 30 1 : 10X
INPUT O : 30X 1 : 10X
> LAUTO( .READ ) FREQ: 10 = 25.00%
3 FUNCTIONS(EXCL .LOAD&.READ)
DATA i5: © FREQ: 10 = 25.00 %
FUNCTION 1: ©0 ADR D-BITS MODULE&PORT S-BITS FREQ
: 0 1: 0 I> FA_A ' 10 = 25.0%
< .AUTO(NONE ) FREQ: 10 = 25.00% '
DATA 15: 0 ADR D-BITS MODULE&PORT S-BITS FREQ
0 15: 0 RP> 15: O 10 = 25.0%
e o o ot i i e e o e e e e o e e e e e e o e o e e A e O L L e S L S S . -
k%% GROUP : B
B 0 FREE DUPLICATES , §&: 5.0 + 9.5 = $§ 14.5
u/c: 6.5517 : FREQ: 38 = 95.00%
FUNCTIONS : -[30]1, *®[1001, /[150]1, >{30], +[25],
PORT USE: OUTPUT O : X 1 : 33X
INPUT O : 2X 2 : 38X '
> +AUTO(.READ ) FREQ: 38 = 95.00%
5 FUNCTIONS(EXCL .LOAD&.READ)
DATA 15: 0 ' FREQ: 33 = 82.50 %
FUNCTION 2: 0 ADR D-BITS MODULE&PORT S-BITS FREQ
0 2: 0 I> - FB ' 38 = 95,0%
< a +AUTO(NONE ) FREQ: 38 = 95.00%
DATA 15: 0 ADR D-BITS MODULE&PORT S-BITS FREQ -
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0 15: O RHLP_101> 15: 0 5
1 16: © I> DBa 10
2 15: 0 A> 15: 0 10.
3 15 0 S>B 15: O0 13
<b »AUTO(NONE ) FREQ: 38 = 95.00%
DATA 15¢ O ADR D-BITS-. MODULE&PORT S-BITS FREQ
0 15: O I> ~ . DBb - 5
1 16: 0 ° RHLP_101> ~15: O 5
2 15; O RHLP_102> 15: 0 5
3 15: 0 I> REAL 5
Yy 16: 0 S>C 15: 0 18
3_A 0 FREE DUPLICATES , $: 5.0 « 4.0 = $ 9.0
u/c: 44,1667 - FREQ: 15 = 37.50%
FUNCTIONS : -[301, *[100]1, /[150]1, >([30], «[25],
PORT USE: OUTPUT O : 25X 1 : 15X
INPUT O : 25X 2 3 15X ‘ ’ :
> +AUTO( ,READ ) FREQ: 15 = 37.50%
5 FUNCTIONS(EXCL .LOAD&,READ) : .
DATA 15: 0 FREQ: = 37.50 %
FUNCTION 2: 0 ADR D-BITS MODULE&PCGRT S=-BITS FREQ
0 2: 0 I> FB_A : 16 =
< a .AUTO(NONE ) FREQ: 15 = 37.50%
DATA 15: O© ADR D~BITS HODULE&PORT S-BITS FREQ
0 16: 0 B> 15: 0 15 =
< b _ . AUTO(NONE ) FREQ: 15 = 37.50%
DATA 15: 0 ADR D-BITS MODULE&PORT S-BITS FREQ
0 15: 0 RHLP_102> 158: © 5
1 15: O I> DB_Ab 5
2 t5: 0 S>C 15: 0 5
k%% GROUP : F
##% GROUP : I :
I WIDTH=157 ® ESB= 1884, $: 7.5+« 0. = 8% 7.5
u/C: 13.2696 , : FREQ: 40 = 100.00%
PORT USE: OUTPUT 1 : 40X
INPUT O : 40X ‘
> ‘ LAUTO(.READ ) FREQ: 0 = 100.00%
DATA REAL WIDTH= 16 FREQ: 5 = 12.50 %
DATA A3A WIDTH= 13 FREQ: 19 = 47.50 %
DATA DSA WIDTH= 16 FREQ: 1t = 2.50 %
DATA CSA WIDTH= - 1 DISABLE FREQ: 19 = 47.50 %
DATA FA WIDTH= 2 .increment FREQ: 35 = 87.50 %
DATA CRP WIDTH= 1 enable FREQ: 40 = 100.0 %
DATA ASB WIDTH= 13 FREQ: 23 = 57.50 %
DATA ASC WIDTH= 13 FREQ: 18 = 45.00 %
DATA FB WIDTH= 3 FREQ: 38 = 95.00 %
DATA MDSA WIDTH= 1 FREQ: 19 = 47.50 %
DATA FA_A WIDTH: 2 FREQ: 10 = 25.00 %
DATA DRP WIDTH= 10 FREQ: 10 = 25.00 %
DATA MDA WIDTH= 1 001 FREQ: 35 = 87.50.%
DATA MDBa WIDTH= 2 FREQ: 38 = 95.00 %
DATA MDBb WIDTH= 3 FREQ: 38 = %
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DATA MDRP WIDTHz 2 002  FREQ: 40 = 100.0 %
DATA MDRP@A WIDTH= 2 FREQ: 9 = 22.50 %
DATA FB_A WIDTH= 3 FREQ: 15 = 37.50 %
DATA CRHLP_1 1 WIDTH= 1 DISABLE  FREQ: 10 = 25.00 %
DATA DBa WIDTH= 16 FREQ: 10 = 25.00 %
DATA DB._Ab WIDTH= 16 . FREQ: 5 = 12.50 %
DATA CRHLP_102 WIDTH= 1 DISABLE  FREQ: 10 = 25.00 %
DATA MDB_Ab WIDTH= 2 . FREQ: 15 = 37.50 %
DATA MDRHLP_101 WIDTH= 1 FREQ: 10 = 25.00 %
DATA DBb WIDTH= 16 FREQ: 5 = 12.50 %
®%% GROUP : R
RHLP_101 , $: 1.0+ 2.5z 8 3.5
U/C:  10.7143 FREQ: 15 = 37.50%
PORT USE: OUTPUT 0 : 30X 1 : 10X
INPUT O : 30X 1 : 10X
< CONTROLBITS:1 .AUTO(.LOAD ) FREQ: 10 = 25.00%
DATA 15: 0 ADR D-BITS  MODULE&PORT  S-BITS FREQ
0 15: 0 B> 15: 0 5 = 12.5%
1 15: 0  B_A> 15: 0 5 = 12.5%
> .AUTO( . READ ) FREQ: 10 = 25.00%
DATA 15: 0 FREQ: 10 = 25.00 %
RHLP_102 , $: 1.0+ 1.0=z8$ 2.0
U/C:  18.7500 FREQ: 15 = 37.50%
PORT USE: OUTPUT 0 : 30X 1 : 10X
INPUT O : 30X 1 : 10X
< CONTROLBITS:1 .AUTO(.LOAD ) FREQ: 10 = 25.00%
DATA "15: 0 ADR D~-BITS  MODULE&PORT S-BITS FREQ
0 15: 0  B_A> 15;: 0 10 = 25.0%
> .AUTO( . READ ) FREQ: 10 = 25.00%
DATA 15: 0 FREQ: 10 = 25.00 %
RP . $: 1.0+ 3.5=$ 4.5
U/C:  22.2222 | FREQ: 40 = 100.00%
PORT USE: OUTPUT O : 5X 1 : 35X
INPUT 1 : 40X
< CONTROLBITS:2 .AUTO(.LOAD ) FREQ: 40 = 100.00%
DATA 9: 0 ADR D-BITS  MODULE&PORT S~-BITS FREQ
o 9: 0 I> DRP 10 = 25.0%
1 9: 0  A_A> 9: 0 10 = 25.0%
2 9: 0 A> 9: 0 25 = 62.5%
| > AUTO( . READ ) FREQ: 35 = 87.50%
DATA 15: 0 ‘ FREQ: 35 = 87.50 %
"** GROUP : S
S ( 8191: 0) -3 FREE PORTS, $: 27.0 + 4.0 = $ 31.0 .
u/c: 3.1452 FREQ: 39 = 97.50%
' FUNCTIONS : .LOAD[75], .READ[50], -
" PORT USE: OUTPUT O : X 1 : 25X 2 : 8x
INPUT 0 : 21X 1 : 19X
< A CONTROLBITS:1 .AUTO(.LOAD ) FREQ: 19 = 47.50%
DATA 15: 0 ADR D-BITS  MODULE&PORT S-BITS FREQ
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##% GROUP :
AV. # OF FIXED OR EQUIV BITS :

>B

>C

DATA
ADDRESS

ADDRESS

DATA ;
ADDRESS

X

0 0 B> 15: 0 18 = 45.0%
1 HE ¢ I : DSA 1= 2.5%
i2: 0 ADR D-BITS MODULE&PORT ~ S~-BITS FREQ
0 12: 0 D> ASA 19 = 47.5%
AUTO( READ ) FREQ: 23 = 57 .50%
15: O FREQ: 23 = 57.50 %
12: 0 ADR D-BITS -. MODULE&PORT - S-BITS FREQ
0 : 0 I> ASB 23 = 57.5%
15: 0 ' FREQ: 18 = 45.00 %
12: O ADR- D-BITS MODULE&PORT S-BITS FREQ
0 : 0 I> ASC ' 18 = 45.0%
0.000e+00, STD. DEVIATION :' 0.000e+00
1.265e+01, STD. DEVIATION : 2.209e+00

AV. # OF NOT EQUIVAL. FIELDS :

DISTRIBUTION OF FIXED OR EQUIVALENCED MICRO BIT USES

PN ————— e SRR R e X P

lllll.lli!l'illllllllllllllllilll!li!i'i!iﬁlﬁ.llli!l!.l'll

\cili!iiiiii!i!!lIlllllll]ll.llll‘lllll!l'l. """"

DISTRIBUTION OF NOT EQUIVALENCED MICRO FIELD USES

- S S L S P B U T e R G O O W R U R G S S W -

\
c TO 3 BITS :100%
4 TO 7 BITS : 0%
8 TO 11 BITS : 0%
12 TO 15 BITS : 0%
16 TO 19 BITS : 0%
20 To 23 BITS : 0%
24 TO 27 BITS : 0%
28 TO 31 BITS : 0%
32 TO 35 BITS : 0%
36 TO 39 BITS : 0%
40 TO 43 BITS : 0%
44 TO 47 BITS : 0%
48 TO 51 BITS : 0%
52 TO 55 BITS : 0%
56 TO 59 BITS : 0%
60 TO 63 BITS : 0%
64 TO 67 BITS : 0%
68 TO T1 BITS : 0%
72 TO 75 BITS : 0%
.76 TO 79 BITS : 0%
80 ToO 83 BITS : 0%
84 T0 87 BITS : 0%
88 TO 91 BITS : 0%
g2 TGO 95 BITS : 0%
96 TO 99 BITS : 0%
100 TO 103 BITS 0%
OFIELDS: 0%
1FIELDS: 0%
2FIELDS: 0%
3FIELDS: 0%
LFIELDS: 0%
HFIELDS: 2% ++
N

81

MIMOLA Primer



6FIELDS: 0%
TFIELDS: 2% ++
BFIELDS: 7% +++++++
9QFIELDS: 0% :
10FIELDS: 0%
11FIELDS: 0%
12FIELDS: 0%
13FIELDS: 62% ++++++++++tttttttttttdttttttttttttrddtddttrtttdttttttrdetdtdtt
T4FIELDS: 12% ++++++++++++
15FIELDS: 12% ++++++++++++
16FIELDS: 0%
1TFIELDS: 0%
18FIELDPS: 0%
19FIELDS: 0%
20FIELDS: 0%
21FIELDS: 0%
22FIELDS: 0%
23FIELDS: 0%
24FIELDS: 0%
25FIELDS: 0%
\
# OF ENABLE BITS : 5
# OF FCT-SEL BITS: 10
# OF MPX-ADR BITS: 16
# OF MPXER INPUTS: 21

# OF CONNECTIONS : 31
MODULE COST/ BIT : 46.0$, MPX COST : 28.08 MICRO MEMORY: T.5
SUM = T4.0 ¥ WIDTH + 7.5

GRAND TOTAL OF 1191.54$, TIME #* COST = 8.825e+06
AV. TREE HEIGHT : 185.15 ' '

.
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APPENDIX D

This
used

Appendix contains a list of the command files that may be
to execute the available M35 software. Currently these

files exist only on CNO's GCOS D.

1.

CCsC

Initialization

Before any of the command files listed here may be used, a
catalog must be created. This catalog creation must only be
done once. The command H1196B/CREATE invokes a command file
that first asks for the catalog name, creates a catalog with
that name, and then creates a file called SNUMB within the
catalog. It is suggested that the catalog name be the
initials of the user or the name of the project.

Example:

H1196/CREATE
CATALOG? cce

This example creates a catalog called CCC under the current
user's account. It also places empty files called SNUMB and
JCL in the catalog. ‘ :

Running MIMB - MIMOLA Compiler and Allocator

MIMB is the MSS tool that was used for all examples in the
MIMOLA Primer.

Example:

H1196B/ BRUN
CATALOG? ccc
ROOT NAME? rrr
MIMB VER? CN

This command file creates a JCL file for the batch run of
the CN version of MIMB, The JCL assumes that the naming
convention listed in this appendix is used and that the file
rrr.INP exists in the catalog ccc. The files rrr.O0TB,
rrr.COD, rrr.GEN and rrr.SCR are created if they do not
exist. Any previous contents of these files are then
automatically erased. The batch Jjob is automatically
submitted and its progress may be monitored with the JMON
command.

Running MIMD
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MIMD requires that the information contained in the S5CR and.
GEN files, which are output from MIMB, be combined into a
single file. This process is automatically performed by the
command file H1196B/DRUN.

Example:

H1196B/DRUN
CATALOG? ccc
ROOT NAME? rrr

The file rrr.IND is created from the files rrr.SCR and
rrr.GEN, which are found in the catalog specified by ccc.
Minor .changes are made to this combined file and when
complete, it is written out to the catalog ccc. The files
rrrAIF and rrr.OUT are created, if they don't already exist.
Any previous contents of these files are then automatically
erased. The batch job is submitted and its progress may be
monitored with the JMON command. .

Running MIDL

If the naming conventions 1listed in Section 8 of this
appendix are followed, the command file H1196B/MIDLRUN may
be used to submit a batch run of MIDL.

Example:

H1196B/MIDLRUN
CATALOG? ccc
ROOT NAME? rrr

MIDL creates a JCL file that assumes the following files
exist in the named catalog: rrr.SCR, NAMCON and USRFIL.
The files rrrSUD and rrr.O0UT are created, if they don't
already exist. Any previous contents of these files are
then automatically erased. The batch job is submitted and
its progress may be monitored with the JMON command.

Clean-up

To simplify the releasing of space, the command file
H1196B/CLEAN may be used. This file releases all files that
use the standard qualifiers for a particular catalog and
root name, except for the initial input file with the
qualifier .INP.

Example:
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H1196B/CLEAN
CATALOG? cce
RCOT NAME? rrr

This example deletes all of the M35t files associated with
the root rrr under the catalog cco. This command also
places an entry in SNUMB t© indicate the action that has
been taken. = '

Other Software

/FRUN Critical path analyais

/MRUN ‘TREEMOLA to MIMOLA Conversion.
/NRUN MIMOLA te TREEMOLA Conversion
/PPRUN Compile and execute Pascal program
/PRUN " TREEMOLA to Pascal Conversion
/TRUN " TREEMOLA Tree modification

See attached Diagram for the assumed filename qualifiers.
All of these command run files requires T™CATALOG?® and
"ROOT NAME?*",

Notes
1) The root name 1is the design file name without any
qualifiers. The roet name may be at most four

characters, due to GCOS3 filename conventions.

2) A 1list of all batch SNUMBs submitted for a user is
maintained in the catalog ccc in the file SKUMB.

~3) The most recent JCL file created is saved in the catalog

cce in the file JCL (i.e., the JCL may be rerun if only
an input file is changed).

4) As DL does not accept periods in filenames, the

qualifiers for files accessed by DL do not contain
periods.
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8. MSS Standard Qualifiers

&he following list contains the correct standard qualifiers
used by the MSS.

JAA MIMP output file
.AB MIMP output file
.AC MIMP output file
. AD MIMP output file
AIF Assembler Input File - binary microcode in format for DL assembler
.COD MIMB COD File - Symbolic Microcode
DL Compiled DL model
.GEN MIMB GEN file -~ new version of MIMOLA program
.IND MIMD INP file - created automatically from MIMB SCR and MIMB GEN
.INN MIMN INP file - created manually from MIMB GEN
.INP MIMB INP file - MIMOLA program
MAC DL Assembled Microcode
- +MOD MSS52 MODBRAC -~ RTL program in TREEMOLA as modified by MIMT
.0TB Output of MIMB
.0TD Output of MIMD
+.0UT General purpose output file for all MSS programs
.PRO MS3S2 PROGRASS - 77
. P8 MSS2 PSCR - Scratch file used by MIMP
+RTL M352 RTLBRAC -~ RTL program in TREEMOLA bracket notation
) MSS2 SIMPAS - Pascal program generated by MIMP
.SCR MIMB SCR File - new version of MIMOLA hardware declaration
.SEQ MSS2 SEQMIM - Program in MIMOLA format
SUD System Under Design - DL description output of MIDL
.SYM MSS2 SYMTAB - Symbol table
.TIM MSS52 TIMLST - Timing list generated by MIMF

Other Names

NAMCON MIMOLA to DL Name Conversion Table
USRFIL MIMOLA to DL User Template File
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