
 THE INTEGRATED DESIGN OF COMPUTER SYSTEMS WITH MIMOLA 
 
 

PETER MARWEDEL 

UNIVERSITY OF KIEL 

Summary 
 
 
 

A design method and the corresponding CAD tools for the design of digital 

computers from a very high-level functional specification is presented. Computers 

are specified by a set of application programs, for which they shall be optimized, 

and a set of boundary conditions for the type and number of hardware resources. 

The paper describes CAD tools, which synthesize architectures from the 

specification, evaluate their cost and performance and generate microcode. Several 

design iterations, in which the designer plays an active role, are used to 

optimize the design. Two applications of the design method are included in the 

paper. 
 
 
 
 
 
1. Introduction 

 
 

Nowadays hardware cannot be designed independently of software. Too strong are 

the implications of software algorithms. For example, algorithms for safe operating 

systems require hardware protection mechanisms and fast nrocessina of pictoral 

information requires the use of array processors. Functions of operating systems, 

which were formerly implemented in software, are now implemented in hard- or 

firmware. Very large scale integration (VLSI) will allow us to design parallel 

processors which are structured according to the structure of the problem. Therefore 

we need tools for the design of hardware from a high-level specification of the 

problem. 

Before we describe our tools, we have to think about how our specification 

should look. like. We consider the specification of a machine instruction set as 

inadequate because the problems, which are to be solved by a computer system, are 

stated on a much higher level and because the specification of conventional 

instruction sets will not allow us to fully utilize the possibilities of VLSI. 

Therefore we start with a higher level specification: our specification contains the 

set of problems to be solved by the computer. This set of problems is described by a 

set of appli 



 

 

46 

cation programs, written in a high-level programming language. This specification 

opens a large design space and allows us to optimize the instruction set. 

A key feature of our system is the automated synthesis of hardware, i.e. the 

automated selection and interconnection of hardware modules such that the 

specified higher level function is performed. Synthesis procedures are regarded as 

a means to overcome the verification problem, i.e. the problem of verifying that a 

manual design at the low level meets the high-level specification. Simulations at 

the low level, which have been used for many years, are time-consuming and cannot 

guarantee the absence of errors. 
 
 
 
 
 
2. The MIMOLA design system 

 
 

The basic ideas of the MI140LA system go back to 1975, when G. Zimmermann 

presented a paper at the national GI-conference . The paper contained a new design 

method and the definition of the language MIMOLA (= machine_independent 

microprogramming _language). During the years that followed, design tools were 

developed and applied2'3'4. Currently the system is being extended and used for two 

desians. 

A similar system, starting from a slightly lower level, was concurrently 

developed at the Carnegie-Mellon University . Huang combined ideas of both 

systems6 
 
 
 
 
 
2.1 The language MIMOLA 

 
 

A language, which is used at several design levels, has to be able to 

describe several levels of details. Therefore MIMOLA supports a PASCAL-like 

level as well as RT-levels 
+. 

 



 

 

47 

2.2 Specification of the design problem 

 
In the introduction we mentioned that a design with MIMOLA starts with 

application programs. Type and number of programs have to be selected such 
that they sufficiently represent the application areas of the projected 
computer. In this context, the term 'application programs' includes the 
operating system, compilers, editors etc. 

 

The programs specify, which type of a processor is to be designed. If 
signal processing programs are used, signal processors will be synthesized. 
Similarly, array processing programs will lead to array processors etc. 
General purpose computers may be designed by using a broad spectrum of 
applications as input. In general, hardware architectures will be structured 
according to the structure of the applications. 
 
The specification has to be written in MIMOLA. The task of converting 



 

 

48 

e.g. PASCAL programs to MIMOLA does not present many problems. 
Semantics of MIMOLA is predefined only at the RT-level. Semantics of high-level 

MIMOLA is defined by a set of substitution rules (called macros), which define a 

mapping from high-level MIMOLA to RT-level MIMOLA. This allows us, for example, to 

translate both PASCAL and FORTRAN DO-loops into MIMOLA DO-loops and to define the 

semantics by different mappings to the RT-level. Substitution rules are always 

required as a part of the specification. However, users do not have to develop 

these rules themselves but select them from a library. 

The functional behaviour of programs is not specified by the programs alone. 

Normally, information about overflow traps, index checking, protection etc. is 

implicit. This information has to be made explicit in the problem specification. 

Index checking, for example, may be included in the substitution rules for 

arrays. 

A simulator is provided with the MIMOLA CAD-system. It may be used to check 
if the programs perform the intended function. 

The specification is completed by a set of boundary conditions. These boundary 

conditions may prescribe the number and/or type of ALU's to be used, the number 

of memory ports, the instruction fields and the data paths. The amount of 

restrictions may range from empty to a complete specification of a target 

architecture (in the last case the synthesis part of the system is not used). 

Resources (like ALU's and memories) which are to be used, may be completely 

described in a library. This description may contain low-level information such 

as the required VLSI-chip area. This allows us to use elements of a bottom-up 

design style in our top-down design. For example, the library may contain a 
TTL-catalogue. 



 

 

49 

2.3 Transformations applied to the problem description 

 
In order to produce the desired results, the MIMOLA software system 

(MSS) applies several transformations to the-set of application progran 
(cf. Fig. 1). 

 
 
 
2.3.1 Translation of MIMOLA programs to an intermediate language 

In order to simplify all following transformations, MIMOLA programs 
are translated to an intermediate language which closely mirrors the flow 
of control and of data. The intermediate language is similar to 
intermediate tree languages used in compiler development projects 9,10 
 
 
 
2.3.2 2 Mapping of the programs to the RT-level 

This transformation replaces all high-level language elements, such as 
CALL, FOR and WHILE, by assignments and simple conditions. This re-
placement uses the already mentioned substitution rules. 
 

All variables are replaced by references to actual memories. 
 
 
 
2.3.3 Program transformations generating a more parallel program 

In order to allow synthesis and effective use of parallel hardware, the 
application programs are made more parallel. The transformations cause 
blocks to coalesce such that the number of parallel executable statements 
in the blocks is increased. All resource constraints are ignored during 
the transformations, they are considered later on. The method is similar 
to methods used in data flow analysis11 ('reducible flowcharts'). 

There may exist data dependences between statements of blocks to be 
coalesced. If they would lead to additional tests at runtime the blocks are 
not coalesced at all. Otherwise, data dependences are removed by statement 
substitution12 

Example: 

will be coalesced into a single block of assignments executable in par-
allel: 



 

50 



 

 

51 

2.3.4 Synthesis 
Synthesis, as it will be described, generates an RT-level hardware 

description, containing memories, function boxes and paths. Function boxes are 

described by their width, their speed and a list of their functions. Synthesis 

below the RT-level, e.g. synthesis of the function boxes from logic gates13, is 

one of the projected extensions to the MIMOLA system. 

Hardware is synthesized such that parallel execution of the statements 

contained in a block is possible for every block, except if the boundary 

conditions do not allow that much hardware. This means that the fastest 

architecture, which does not violate the boundary conditions, is synthesized. 

Synthesis procedures derive the following architectural parameters from 

the application programs: 

- Number of input and output ports: memories with many ports may be designed. 

Synthesis procedures compute the largest number of readand write-operations 

in a block in order to create the required memory ports. 

- Function boxes: a number of function boxes is created which is sufficient to 

execute all functions in each of the blocks in parallel. Available types of 

function boxes may be declared. 
 

- Paths (wires): the required data paths are created. 
- Instructions: it is assumed that hardware units are directly con 

 trolled by instructions having a format similar to that of horizon 

 tal microinstructions. Our system synthesizes instructions by assum 

 ing that all hardware resources should be controlled by independent 

 instruction fields. 

 Existing designs proof that the size of the code for these instruc 

 tions may even be less than for conventional machine instructions14 

 The MIMOLA system will be extended such that more conventional in 

 struction formats may be studied as well. 

Synthesis procedures contain a number of optimizations. Other optimizations 
are done by the designer and are described in section 2.4. 



 52 

2.3.5 Microcode generation 
Microcode generation is a key feature of the MIMOLA system. Its inclusion in 

the system is a big step towards the integrated design of hardware and 

soft/firmware. Program development and hardware development are done at the same 

time, using the same tools and the same language. No inconsistencies between 

several versions of hardware descriptions may arise. Microcode tools are available 

before any hardware implementation exists. This, of course, requires a 

retargetable microcode generator, i.e. a microcode generator that is table driven 

by the hardware description. The large number of projected target architectures 

inhibits the design of a separate code generator for every architecture. It is not 

obvious that such a code generator is feasible. Therefore we shall give some 

details about our code generator: 

The code generator operates on the partially bound intermediate language tree 

and assigns hardware units to the knots of the tree and data paths to its edges. 

Function boxes are assigned to logic and arithmetic operations, memory ports to 

read and write operations. Control information is assigned to the function 

select inputs of hardware units. If a direct data path is missing (say, a path 

between a function box and a memory), new knots, representing the required 

detours (busses, multiplexers), are inserted in the flow trees. 

Using the definition of Mallett15, the different possibilities to assign 

hardware to the knots are called versions. 

If the number of hardware resources is not sufficient for the execution of 

one block in one instruction, the required number of instructions is generated. 
 

The code generator uses three phases: 
During the first phase, all possible versions are computed. This is done by 

matching the patterns of the partially bound programs with the hardware 

patterns. Example: the completely bound assignment statement (2) is one 

possible version of the first, partially bound assignment statement in (1). 

If a fast, specialized hardware exists for a certain pattern of the program, 

a special replacement rule may be included in the hardware description. This 

rule describes the program pattern and the fast version to be generated. 
 

Resource conflicts are ignored during the step. 



 53 

The second phase excludes all versions for which resource-conflicts and 

data-dependences lead to contradictions. For example, data dependences may 

require parallel execution of two completely bound assignments and resource 

conflicts may inhibit parallel execution. If the list of versions for a part of 

the input program becomes empty, the architecture is not capable of executing 

the program. This should not happen, if synthesis is correct. 

The third phase selects a version for every partially bound operation and 

packs versions into microinstructions. Several algorithms for microinstruction 

packaging are known 15. Earlier versions of the MIMOLA system use an algorithm 

similar to the LINEAR algorithm. These versions use a lookahead of up to five 

microoperations16. Currently we are implementing a BRANCH AND BOUND-type 

algorithm. This algorithm is specially designed to minimize the execution time of 

the microprogram. During a BRANCH AND BOUND search the estimated freauencies of 

execution and the hardware delay times are used to select a combination of 

versions with optimized execution time. These versions are packed into 

microinstructions such that no resource conflicts occur and all data dependences 

are taken care of. 

For common subexpressions the list of versions is identical. Therefore they 

do not generate resource conflicts and can be evaluated concurrently. Hence, 

recognition of common subexpressions is a by-product. 

The output of the code generator is a tree, which represents the flow of data 

and of control in the target architecture. Binary microcode may be obtained by 

picking the instruction bits like apples. The flow trees, however, are very 

useful for several other purposes, because they do not only describe the flow of 

data and control, but they also contain hardware delay times and instruction 

frequencies. Therefore these trees are extremely valuable for performance 

evaluation. 
 
 
 
 
 
2.3.6 Architecture assessment and preparation of design decisions 

For quite a number of years computer design systems will be computeraided 

systems, not fully automatic systems. It will not be possible to forgo the ideas 

of human designers. The CAD-system has to provide a basis for design decisions 

and has to assess the value of human design decisions. Both functions are 

provided by the statistical analyser of the MIMOLA system. In order to prepare 

design decisions, the analyser -searches for bottle-necks such as critical data 
paths, 



 
54 

- searches for resources, which, with respect to their cost, 
 are insufficiently used, 
- searches for resources which could be a substitute for 
 insufficiently used resources. 

 

The analyser also computes an estimated performance. A good estimate is 
the expected run-time of the programs contained. in the specification. This 
run-time is easily computed from the completely bound intermediate language 
trees because these contain instruction frequencies and hardware delay 
times. 
 

Computation of costs uses default assumptions about the cost of RT-
modules. However, costs may also be defined explicitly. This is useful if 
the design of the RT-modules has been continued to lower levels and 
precise information about the number of gates etc. is available. 
 
 
 
2.4 Design Decisions 

 
Synthesis procedures try to synthesize the fastest possible hardware. 

When all program transformations are completed, the designer has to take care 
about cost/performance trade-offs. To this end, the designer uses the 
information computed by the statistical analyser and tries to improve the 
cost/performance ratio by changing the boundary conditions and iterating the 
design. Changing the boundary conditions requires nothing more but editing a 
generated hardware description. Possible design changes include: 

- Deletion of function boxes if other function boxes provide the same 
function. 

- Reduction of the length of the instruction using coding techniques. 
- Replacement of infrequently used hardware functions by routines. 
- Deletion of data paths. 
- Adjustment of the speed of the resources. 
- Replacement of synthesized units by available units. 

 

After several design iterations, cost/performance relations like 
Fig. 2 are obtained and an architecture may be selected. 



 

 

55 

3. Applications 
 
 
3.1 Scientific Subroutine Package 
 

The first application of the desian method was the design of a processor 
for scientific computations. These were represented by IBM's scientific 
subroutine package (SSP). A major part of this package was translated to 
MIMOLA, estimated weights for the blocks were added. Fig. 2 shows 
cost/performance relations for a subset of this package. The dotted lines are 
valid for architectures with a main memory and one scratch pad memory, the 
solid line is valid for architectures with a main memory and two scratch pad 
memories. The number of ports for the scratch pad memories is fixed whereas 
the number of ports of the main memory varies. It is larger for the fast 
architectures on the left hand side. Obviously architectures with two scratch 
pad memories are more economical. They are cheaper because less main memory 
ports are required to obtain a certain performance. 
 

An architecture with two scratch pads has been implemented in hard- 



 56 

ware and is operating. The architecture contains two ALU's, an adder, a 
multiply/divide unit, a comparator and many data paths. Its complexity is 
similar to the complexity of a MODCOMP II minicomputer (equivalent of a 
mid-range PDP-11) to which it is coupled. For fixed point operations it is 
about 25 times faster than the minicomputer. Good utilization of the 
implemented parallelism has been observed. The code is more compact than for 
the MODCOMP II or the PDP-1016. 
 
 
 
 
 
 
3.2 Redesign of a SIEMENS 7.000-type machine 
 
 
 

In a second application, we used a functional description of the 
instruction set of a SIEMENS 7.000-type machine as a design specification. 
Although the specification level is lower than we intended, the design method 
proved to be useful. 

A functional description of the instruction set was written in MIMOLA. 
Weights were known from benchmarks. After several design iterations, a machine 
was obtained, which was slightly faster than a SIEMENS 7.750. The design of a 
machine being as fast as a SIEMENS 7.760 is feasible. A surprising result was 
the reduction of the size of the microcode to 15 $ of the SIEMENS design. 

This example shows that the design space was too small to improve the 
performance of the SIEMENS architecture. However, the design was done by one 
student as his master thesis. A reduction of the design time is obvious. The 
thesis 17 does not only describe the architecture but also contains the 
complete microcode. This is an example of the integrated design of hard- and 
firmware. 
 
 
 
 
 
 
Conclusion 
 
 
 

A design system has been described which may be a stepping stone for the 
development of tools for the design of VLSI computers. The design system uses 
concepts of compiler construction (e.g. code generation) and hardware oriented 
concepts (e.g. function boxes). It is supported by a language which is able to 
describe software and hardware. Computers, which were designed with the MIMOLA 
system, bear comparisons with manual designs. 



57 

Acknowledgement 
This paper would have been impossible without the ideas of G. Zimmer- 

mann. In addition, many students contributed to the MIMOLA software sys 
tem. 
 
 
 
 
 
 
References 
 
 
 
 
1. Zimmermann, G., "Eine Methode zum Entwurf von Digitalrechnern mit der 

Programmiersprache MIMOLA", Informatik Fachberichte, Vol. 5, Springer, 
1976 

2.Zimmermann, G., "The MIMOLA Design System: A Computer Aided Digital 
Processor Design Method", Proc. 16th Design Autom. Conf., 1979, pp. 
53-58 

3.Zimmermann, G., "Cost Performance Analysis and Optimization of Highly 
Parallel Computer Structures: First Results of a Structured TopDown 
Design Method", Proc. 4th Int. Conf. on Computer Hardware Description 
Languages, 1979, pp. 33-39 

4.Marwedel, P., "The MIMOLA Design System: Detailed Description of the 
Software System", Proc. 16th Design Automation Conf., 1979, pp. 59-63 

5. Hager, L.J. and Parker, A.C., "Automated Synthesis of Digital 
Hardware", IEEE Trans. Comp., 31, 2 (1982), pp. 93-109 

6. Huang, C.-L., "Computer-Aided Logic Synthesis Based on a New Multilevel 
Hardware Description Language", Ph.D. Thesis, State University of New 
York at Binghampton, 1981 

7. Piloty, R., Barbacci, r-1., Borrione, D., Dietmeyer, D., Hill, F. and 
Skelly, P., "CONLAN - A Construction Method for Hardware Description 
Languages", Proceedings Nat. Comp. Conf. ,Vol.49, 1980 

8. Knuth, D.E., "The Art of Computer Programming", Addison Wesley, 1975 
9. Cattell, R.G.G., "Formalization and Automatic Derivation of Code 

Generators", Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, 
1978 

10. Schmidt, U. and Voller, R., "Die formale Entwicklung der 
maschinenunabhängigen Zwischensprache CAT", Informatik Fachberichte, 
Vol. 50, Springer, pp. 57-64 

11. Hecht, M.S., "Flow Analysis of Computer Programs", North Holland, 
1977 

12. Kuck, D.J., "The Structure of Computers and Computations", p. 111, 
Wiley, 1978 

13. Abraham, J.A. and Gajski, D.D., "Design of Testable Structures Defined by 
Simple Loops", IEEE Trans. Comp., 30, 11(1981), pp. 875-884 

14.Marwedel, P., "The Design of a Subprocessor with Dynamic Microprogramming 
with MIMOLA", Informatik-Fachberichte, Vol. 27, Springer, pp. 164-177 

15. Mallett, P.W., "Methods for Compacting Microprograms", Ph.D. Thesis, 
University of Southwestern Louisiana, Lafayette, 1978 

16. Marwedel, P., "Hardware Allocation for Horizontal Microinstructions in 
the MIMOLA Software System", Report 5/80, Institut fur Informatik and 
Praktische Mathematik, Kiel, 1980 

17. Krüger, G., "Entwurf einer Rechnerzentraleinheit fur den 
Maschinenbefehlssatz des SIEMENS Systems 7.000 mit dem 
MIMOLA-Rechnerentwurfssystem", Diploma Thesis, University of Kiel, 
Kiel, 1980 


