‘A RETARGETABLE COMPILER
FOR A HIGH-LEVEL MICROPROGRAMMING LANGUAGE

PETER MARWEDEL
2

Tnstitut fiir Informatik und Praktische Mathematik
Universitit Kiel, D-2300 Kiel, W. Germany

ABSTRACT

A compiler for the generation of micro-
code for a high-level microprogramming
language is presented. The compiler is
target machine independent. The input to
the compiler consists of a hardware des-
cription, a high-level microprogram and
a set of program transformation rules.
The compiler is able to take advantage
of optimization techniques which are
used by microprogrammers because 'many of
these can be represented by program
transformation rules.

1. INTRODUCTION

During the recent years,microprogramming
has become increasingly important. As
processors become more complex, they tend
to be microprogrammed. Most mainframes and
larger microprocessors are now micropro-
grammed. The AMD 2900 series of chips has
made microprogramming more popular. Some-
times, conventional machine instructions
are never implemented for AMD-based de-
signs. Microprogramming is the only pro-
gramming done in these cases.

As a result of the increased use of micro-
programming, there is an increased interest
in tools for microprogramming. On the
other hand, there is a lack of tools for
microprogramming. Most microprogrammers
still use assemblers. What are the reasons
for not using microcode compilers?

There are some obvious problems in the
construction of microcode compilers:

- In some cases timing has to be consi-
dered.
- The inherent parallelism complicates

CHZ2088/84/0000/0267$01.00°19841EEE

code generation. .

- Many of the available microarchitectures
are not easy to program because ease of
programming has not been a design goal.

- There may be a mismatch between the data
types of the target and those of the pro-
gramming language.

- Por most applications extremely efficient
code 1s required. : '

- There are many more microarchitectures -
than there are machine architectures
{each model of a machine may have its
own microarchitecture). Only a few pro-
grams are written for each architecture.
Therefore, the design of a separate com-
piler for each microcarchitecture is too
expensive. '

- "Microcode development is at an early
part of the critical path for a processor
development project, therefore waiting
until a compiler is developed would
lengthen the critical path delaying the
project"1,

Retargetable microcode compilers have been
recognized as one solution to the last two
problems. The input language for such a
compiler should be as machine independent
as possible. Because of the need for highly
efficient code, 1t is desirable also to al~-
low machine dependent code sequences.

One attempt to design a suitable input lan-
guage resulted'in the design of the lan-
guage schema S 2. With this appreach, a
new member of a family of languages is de-
signed for each new target machine. '

The approach described in this paper is
different; namely, a language is defined
that may be extended (cf. deWitt®) to in-
clude target dependent operations. This
language is called MIMOLA (machine indepen-
dent microprogramming language). This lan-
guage and a retargetable compiler allows
combining the virtues of the two approaches
to high level microprogramming which have
been suggested by Davidson®:

1. machine dependent code generators for
machine independent languages and

2. retargetable code generator and a range
of machine dependent languages.

72. MIMOLA HARDWARE DESCRIPTION

For a retargetable compiler, a description
of the target architecture is needed. In
order to simplify the compiler, the same
language is used for hardware descriptions

and the description of algorithms. MIMOLA

has been designed as a computer hardware
description language (CHDL) and a high le-
vel microprogramming language (HLML). Hard-
ware descriptions use a subset of the- lan-
guage. :

The hardware model underlying MIMOLA hard-
* ware descriptione has beeh dictated by the
use of MIMOLA im a hardware design system,
the MIMOLA Software System (MSS). Because
of this application of the language, the
hardware model describes real hardware,
i.e. hardware modules and data paths. For
some applications this structural descrip-
tion level may be lower than necessary.
However ,it simplifies the generation of
hardware descriptions using hardware block
diagrams. It is not required to generate
functional level descriptions (i.e. in-
struction set level descriptions).

Example:

Figure 1 represents a sl;ghtly siﬁpli-
fied block diagram of an AMD 2901 bit-
slice* : L

ramsghift gshift

RQ
. SBRAM ‘

ileftmum

SRAM_B

SRAM A

/ _rightmum 7 .

Figure 1. AMD 2901 bitslice (simplified)

268

Figure 2 represents the functional descrip-
tion of the ALU and the ALU source selec-
tion : a

. - ALU ALU source
code | function code | left right
.0 r+s 0 | sram a RQ
watd g8 -~ r 1 SRAM A SRAM B

2 r=g 2 o~ R
3 r OR 3 0 SRAM_B
4 T AND . .4 o] SRAM A
5 r* AND ® 5 WD | SRAM A
6 res 6 WD RQ
7 NOT{r @ s} - 7 WD o]

Figure 2. ALU function and source control

Figure 3 explains how the above information
may be represented in MIMOLA : -)

TARGET example; . .
TYPE nibble = BIT(3:0);

MODULE BALU(in r,s : nibble; in sel : BIT(2:0);
out f:nibblel;

BEGIN

f:= CASE sel OF .
O :p Han 8; 18 "="p
8 p ™" a; 3 : r "ORY g;
4 : » "AND" B; 5 : » "g'ANDB" 8;
6 : r "XOR" 3; 7 ¢ » "EQU" 8
END

END;

MODULE Nemux(in datO, datl : nibble;

in sal ¢ BIT(2:0}; out p : nibble);

BEGIN

ps= CASE sel OF
0,1 : datl; 2,3,4 : 0; 5,8,7 : dat0
END .

END;

MODULE Namuz(in data,datl, dat2 : nibble;

in gel : BIT(2:0); out p : nibble);

BEGIN . e
p:= CASE sel OF

0,2,8 : dat2; 1,3 : datl;
4, 5. : dato; 7 20
_END
END;
P4RTS
alu ! BALU;
leftmux : Nomuax;
righimux : N3mux;
CONNECTIONS {# atrueture information =)
leftmux.p ~> alu.r ;
rightmux.p -> alu.s ;

LY

END_target ;

Figure 3. Hardware Description Example

The inclusion of data paths in the hard-
ware declaration is required because they
represent rescurcesg. The absence of a data
path often explains why certain microope-
rations are illegal. -

Stringas enclosed in double quotbks are ope-
rators. In addition ¢o predefined opera-'
tors like "+" and ", non-stardard.ppera-
tors can be defined. This extension.mecha-

hism allows adding target dependent
operators to the language without changing
the syntax or the compiler. ‘A certain ope-
rator may be used by a program if either
this operator is implemented in hardware
or if the operator may be replaced by a
combination of hardware-implemented Gpera-
tors (replacement rules are explained be-
low). Therefore,machine dependent programs
can take advantage of special purpose
hardware. -

The meaning of non-standard operators has
to be declared. This declaration resembles
function declarations in ADAS.

Example:

OFERATION "SHIFTLC" (i : BIT(15:0)): BIT(15:0);
BEGIN

RETURN i.BIT(14:0) ! i.BIT(15)}

{# Exclamation marks denote concatenations #)
END;

The body of oPERATION declarations is eva-~
luated during simulations. The code gene-
rator uses only few properties {e.g. exis-
tence of neutral elements). These proper-
ties can be defined by the user.

The following convention holds for the
MIMOLA language : Identifiers of hardware
modules start with capital letters. Some
characters denote special medule types :

unary function box
binary function bex
general functien box
current instruction
register

random access gtorage
bus (wire)

A:
B:
N:
I:
R:
S:
W:

3. MIMOLA ALGORITHM DESCRIPTION
3.1 High-Level Language

The reasons for the design of high-level
microprogramming languages iriclude those
reasons which led to the ‘develdppient’ of -
high-level languages (HLis) Hfid: nes#d ‘hot"
be repeated. Consequently, an earlier defi-
nition of MIMOLA® has been.extended to in-
clude most of PASCAL's high-level language
elements”. : ' SRR e

3.1.1 Data Types .

In contrast to PASCAL, MIMOLA is hpt‘é
strongly typed language because for micror
programming this would be too restrictive,

ek
7

269

The basic.data type of MIMOLA igs the bit-
string of arbitrary, length. Other data
types may be declared as subtypes of this
type, e.g. - i o B

TYPE INTEGER & BIT(31:0);

This declaration declares the type INTEGER
as a string of 32 bits. It.is asspmed that
32 bits £it into one memory word. MIMOLA
record declarations provide a means for the
declaration of multi~wérd data types, °

. ' ERENEENST: Bla BT B T
Declaratjons like these midl:typically be
part of the declarations- at:the outer-
most declaration level. Changes: of the re-
presentation of integers therefpre are con-
fined to a single declaratiqmy list at the
beginning of the program. S PR TR

3.1.2 Variaﬂles B «éés

Automatic storage allocation for Wigh<level
language variables is desirable.’'t# i
quired if the input program is t& B
pendent of the target. The progranimedt

should have the choice between stabfd‘and
dyramic (runtime-stack) allocatisn’ &ff %ra-—
riables. o ' R

On the other hand, performance reguirements
do not always allow this approach -and man-
ual storage allocation may -be required.
Therefore, MIMOLA (as well as some systems
implementation languages (SILs)) allows
automatic and manual storage allocation.

If a variable is to be allocated automati-
cally, just its type has to be declared, .
e.g.: .

VAR a: INTEGER;

For manually allocated variables the memo-
ry name and tlie address are included:in the
declaration, e.g.s e ~i-.%, % g
VAR b: SM(15).INTEGER; (#§M: memory; 15:address %)

Foxr procedures, locations for parameter
passing may be declared, e.g,:. -

FROCEDURE fac{c:Reg 1.INTEGER; o
REF r: SM(Reg_2}.INTEGER);

In this example the first parameter 'is a
value parameter and is passed in a register.
The second parameter is a reference parame-
ter. The address is passed in registar
Reg_2. R T Tl

vy

3.1.3 control Flow

Required high level-contfol constrhots- -
such aa procedure ‘calls, for- - and whilae-~
loops have been ineluded -in MIMOLA i,
MIMOLA 4llows thHe Prdyramver to: wpeatty
parallel and sequential executdom wisgtate-
ments: separation of ‘sthtements by & gemi-
.colon indicates sequential execution, sepa—
ration by a comma indicates parallel exe-
cution. The sequencing specified by the
programmer is not alterad unless resource
conflicts occur or the optional detection

of parallelism is used. Therefore, the
programmer is able to write low-level
microprograms.
HLMLg have the property that the- program—
mer does not have to care about sequen-
cing. The MIMOLA compiler frees the pro-—-
grammer from this task because it is able DECLARE -
to override programer-specified sequen- & VAR mcand,mier,result : BIT(63=O},
cing 3 ¢ . BEGIN
1. A compiler option is available which mier i=b;

causes the compiler to detect sequen- result:m((mier "AND" %100.,0) "+* a) "AND" %100, .0;

ces of statements which (from an. algo- mier :=mier "AND" %0i1..1;

rithm's viewpoint) could be executed mcand := a “AND" %011..1;

in parallel. This transformation is WHILE mier "< >" O DO

target machine independent. ~TF mier,BIT(0)

Example: The compiler would replace . THEN result:= result "+" mcand FI;

the semicolon in the sequence r:=s; mier:= "SHIFTRL" mier:

c:=p+2 by a comma {Except if r or c¢ meand:="SHIFTLL" mcand

are formal reference variables}. oD;

PROGRAM callmultiply;
(# insert target description here #)
DECLARE)
VAR p,g,r : BIT(63:0);
PROCEDURE multiplg(a,b. BIT(63:0);
. REF ¢ : BIT(63::0)):

2. If resource conflicts occur during . s=result
hardware allocation for parallel END;
blocks, commas are replaced by semi- BEGIN
colons. If resource conflicts occur Eﬁl’:? g:=15; CALL multapls'(pfqrr)

during hardware allocation for single

statenents, assignments to temporary

locations are generated. Available

temporary locations have to be de-

clared.

Exaniple: RESERVED TEMPORARY 5M(3:0);

This declaration is either a part of
* the hardware description ox of the

declarations in the program. - o

Assume that Reg x, Reg y and Reg z are re-
gisters declared in the target descrip~
tion. Variables mier, mcand and result
are bound to these registers if thelr
declaration 1is replaced by

VAR mcand : Reg x.BIT(63:0),
mier : Reg y.BIT(63:0),
result: Reg z.BIT(63:0);

3.1.4 Supplementary Information

Some applications (some targets) require
that additional information can be added
‘to the algorithms without ¢hanging the
syntax of the language. In MIMOLA two
methods are available:

1. Property lists (items enclosed in

3.2 Low~Level Language

It is commonly. accepted, that certain cri-
tical ¢opde sections have to be manually
boynd in order to generate efficient micro-
prog;ams. ‘This is also possible with MIMOLX.
Manual binding of variables and’ sequencing

angle brackets)
Example:
IF .. THEN <WEIGHT=0.3>..

(# define estimated execution proba-
bility +)
Reserved words may be followed by "ex
tensions" starting with an underline
character.
Examples:

RETURN_FROM_INTERRUPT, CALL_FORTRAN-EXTERNAL
GOTO_LOCAL, RESERVED_TEMPORARY, END_CASE

have alteady been described. Manual binding
of opérations is possible with a modified
functional programming style.

Example:
x:= BALU(a,b,"+") (% BALU is a hardware resource)

On some occasions, microcode bits must be:
set explicitly by the programmer, The let-
ter I represents the current instruction
and can be used for this purpose.

Example:
I(%1).BIT(63) (% Set bit 63 to 1 %)

With these features, it is possible to spe-
cify an algorithm in high-level MIMOLA
and hand-trapslate critical code sections.

3.1.5 Programming Example

Last year, Davidson compared sgveral mi-
croprogramming languages®. A multiplica-
tion procedure served ag an example. The ’ . .
following program contains. the MIMOLA 4. REPLACEMENT RULES
version of this proeedure:_ Implicitly compilers make use of program

i transformations in order to bind programs
to a certain hardware. For machine-depen--
dent compllers these rules are not made
explicit. They are built into the compi-. .

270

ler ('hardwired-software'), Bihge.many: of
these transformations-are- tagget-depen~
dent, this approach-is ynag¢geptable: for a
retargetable compiler.:The target; depen-
dent subset of these rules must ke made
explicit. Thérefs#é transformation rules
may be defired it MIMOLA. Transformation
rules are used f6# the following trdns-
formationgi - - o : '
1. Replacém&nt*®¥ high:level constructs
by a set ofvequivalent register~trans-
fer (RT)"lavel statements.
Examples
| REPLACE goto L&a (% L&éa matches all labels %)
WITH RP:= Lga (# RP is the program counter +)
BND -

2. Replacement of unimplemented opera-
tions by a set of implemented opera-
tions.

Example (identifiers starting with &
are parameters):

REPLACE &a "<" &b
WITH "<0"(&a "=" &b)
END {# "<O" is a unary operation %)

3. Replacement of expressions by simpler
expressions (optimization).

Example:
REPLACE 8a "+" O WITH &a END

4. Replacement of expressions or state-
ments by others such that binding the
program is feasible,

Example:
REPLACE © WITH © “AND" RQ END

This rule apparently complicates ex-
pressions, It is required e.g. for

AMD 2301 chips, however, in order to ge-
nerate a zero constant at the output

of the ALU. Without this rule, zeros
could only be generated at the input.
Thig example explains how 'tricks',
which are used by microprogrammers, may
be described and used by the compiler.

Most of these rules will be applied uncon-
ditionally. If a match ogcurs for such a
rule, the program will Be transformed and
the original program is not saved.

By means of extengions to the keyword
REPLACE, it is possible to define ‘condi-
tional replacement rules. These are
applied like inference rules in ‘expert
systems. A "tiny expert system” within the
compiler handles these rules. The rule
which was defined in the last example
should not be applied unconditionally,
i.e. it should not be applied for the AMD
2901 if © is a memory address. Therefore,
this rule has to be defined as a conditio-
nal rule,

Replacement rules are either defined in
the hardware description section or in
conjunction with the first declaration of
types and variables. Hence they are (with

- generator is also valuable for perf

exeptions) global for the whole program.
Several sets of rules. are collected in;a
library. e P a0

We found that program trapsformation

rules helped handling a nuniber, of special
cases and believe that;thﬂ%hfé?:éséht.dne
of the main ideas which made a” retarget-
able compiler possible. ERER T Co TR

Yo

5. THE COMPILER
5.1 Context ' '

The microcode generator is just ofie pArt
of the MIMOLA Software System (M38) , The
main goal of the MSS is to support the
hardware design process. Hardware designs
using the MSS usually start by selecting
typical application algorithms for the
hardware to be designed. These algorithms
are written in MIMOLA and the synthesis
part of the MSS is used in order té auto-
matically generate a hardware structure
which matches the structure of the algo~
rithms. The first pass through the syn-
thesis system normally does not generate
a cost effective hardware structure and
the ideas of human designers are needed
in order to improve the structure, We
take advantage of these ideas during de-
sign iterations. For each of these design
iterations the designer may declare Aif-
ferent types of hardware resources. He
may, for example, change .the number of me-
mory ports or the typés of available. jLUs.
The synthesis system will ‘then ¢énerate
the required data paths, path-switching-
¢ircults and the required controi. After
some initial design changes the structure
becomes more and more concrete and the
synthesis part i1s not required any more.
Now, the designer only wants t¢ change
minor structural detalls. Standard text
editors provide a means for manually:
changing generated hardware descriptions.
After these changes, it is necessary to' -
check if the original program can be bound
to the modified hardware. This is the task
of our microcode compiler. If it is able
to generate code, the hardware is still
correct. If it is unable to &0 so, the de-
signer probably made an error. The code.

prediction and the detection of bott
hecks, L

Cro g
The compiler was primarily decasigned &¢ a. .
part of the hardware design system, Its
ability to be used for machines, which
were not designed with the MSS, i@ cauged
by the fact that it was designed=€bria -
wide range of design changes. In~fack;, the
design may be changed such that i1t i com-
pletely different from-the .automatically
generated design. For this application re-
targetability was a necegsgity., - Lo

Becaiise of the increabed ilmportance of
testing VLSI chips the MSS also incorpe-
rates a tool which generates test pro-
grams (micro-diagnosties) for a given
hardware structure. For example, all data
paths are tested for stuck-at errors and
for shorts between adjacent lines.

Figure 4 contains a survey of possible
applications of the M§{s: |

N ol ._i :3L-—- —_ -
épplicatidn /appl ication .complete
algorithms algorithics hardware
+ o+ : structure=|
hardware complete [
types hardwaré = -
structure |
synthesis compiler test gener. I

bound

algoiithms

complete iterations
hardware

structure

design .
evaluation

'algor.+hardw
listing

Figure 4 Applications of the MSS (simu-
lation not shown} .

This paper focuses on microcode generation.
other papers describe synthesis and hard-
ware design with MsSs®’®, The MSS is com-
pletely written in PASCAL and is indepen-
dent of the host.

5.2 Microcode Generation

Retargetable code generators have been
around for a while. A goocd survey has been
written by Ganapathi'®. With the exception
of Baba's MPG system’' these systems have
not been used to generate microcode. In-
terested readers should refer to Baba's
paper for a survey on available microcode
generation systems. Unfortunately, Baba's
system does not match very well with the
intended applications for the MSS. For
example, it requires that a functional
hardware description is generated. For

the MSS a structural hardware description
is required. - . :

Recently Mueller and Varghese’? described

2n

a code generation method which uses a
structural hardware description. Theilr
method is similar to the one which has
been developed for the MES.

It has been recognized that microcode gene=
ration can be modelled as parsing-the.
asgurce. program for a grammar defined by a .
structural description of the targetl3 1%,
fPhis interesting approach was rejected be-:
cauge the grammar is ambigious, does not
déscribe resource confl¥icts, and is hard

to parse.) o '

In order to improve the modularity of the
MBS, microcode generation was broken down
inte a sequence of program transformations.
The fiyst set of transformations is the
same for all applicatiens of thé MSS.

Transformation 1: translation from MIMOLA
into intermediate language

Bll software tools regquire that MIMOLA
programs and hardware descriptions. have
been translated into the intermediate lan-
guage TREEMOLA {tree microopgration langu-
age) .

Transformation 2: translation from high-
jevel language into register—-transfer
level language

This transformation replaces high-level
language elements (in TREEMOLA represen-
tation) by equivalent sets of register-
transfer level elements. This transforma-
tion is defined by unconditicnal replace-
ment rules. .

Transformation 3: storage allocation

All variables, which have not been expli-
citly bound, are bound by the storage al-
locator (this does not includée tempora-:
ries)., The storage allocator takes flow

of data and of control into account’

and is able to correctly assign several
variables to the same locaticn. Since all
variableés can be bound manually, this
transformation is optional. -

Transformation 4: detection of parallelism

This step replaces sequences of statements
by parallel blocks of statements. This
step is indépendent of any resource con-
strainte. Blocks which are generated by
this step are the basic units which are
considered during program binding. This
step simplifies compaction and is required
for the synthesis of parallel architec-
tures. Parallel blocks can be specified
by the programmer and therefore this step
is an optional step. : i

Pransformation 5: generation of versions

During this step the MSS computes a set of
bound statements for each statement -of the
source program. Every bound statement is
called a version of the corresponding
source statement ' ®. Therefore this step is
called version generation.

In order to reduce execution times, this
step includes a prepass which is used to
analyse the target description.

The prepass

—computes contreol signals which must be
generated in order to activate the opera-
tions within the hardware modules.

-—analyses which modules are capable of pas-
sing information unchanged from the in-
puts to the outputs.

-computes gleobal connectivity information.
For every output the set of inputs and
outputs is computed to which information
may be passed unchanged.

After this prepass is completed, versions
are generated for each statement of the
program. Statements are represented by
flow trees. Details about these flow trees
can be found in a paper describing an ol-
der version of the M38'7. Nodes of the
flow trees represent constants, operators,
memory and register references.

For every node of the tree the set of mat-
ching hardware resocurces is computed. Me-
mory ports are resources matching memory
references. Instruction fields, hardwired
constants and decoders are resources mat-—
ching constants. Function boxes match with
operators that are able to perform the re-
gquired operation. The set of matching re-

sources is assigned to each node of the
flow tree.

Next, the tree is traversed from the
leaves to the root (depth-first-search)
and a scan is made for matching data
paths. For eovery resource matching a cer-
tain nede (the source node), we try to find
paths to the inputs of the resources
matching the node beolow the current node
{the sink node), If a direct path exists,
a partial bound tree is assigned to the
sink node. Partial bound trees are collec-—
ted until the sink node becomes the next
source node. Each of the partial bound
trees represents the flow of data to one
of the inputs. When the sink node becomes
the next source node, the partial treesg
are bundled. After bundling they repre-
sent the flow of data to the output of the
new source node. Further scanning for
paths starts at the root of these bundled
trees. During bundling, it is checked
whether or not the partial trees are
resource compatible with each other.

If a path to a multiplexer or a bus is
found, a node which represents thig so-
called detour is inserted between the cur-
rent node and the sink node. The same is
done for function boxes which are able to
perform operations with neutral elements
(e.g. +0). Then, the algorithm is called
recursgively in order to find a path from
the detour to the sink.

If a path is found to a temporary loca-
ticn, the source 1s assigned to that lo-
cation and tempcrarily replaced by a

'read-temporary' operation. The algorithm
is then called recursively in order to
find versions for the remaining flow tree.

For every node of the flow tree,a scan for
matching conditional replacement rules is
made. If a rule is found, a transformed
copy of the tree temporarily replaces the
original tree. The algorithm is then
called recursively for the modified tree.
Finally the original tree is restored.

Several heuristics and cut~cffs have been
implemented in order to achleve an accept-
able compilation speed. For example, the
maximum number of dctours between any two
nodes is limited. This limit may be set by
the user.

The cutput of this transformaticn step
consists of the source program and the
correspending versions.

selection of versions
and compaction

Transformation 6:

The next step selects a version for every
statement and packs versions into micro-
instructions. Several algorithms for mi-
croinstruction packaging are known. A mo-
dified version of the linear pairwise com-
parisons algorithm?1s is used in the MSS.
This step also adds so-called NOOP-state-
ments to microinstructions. These NOOP-
statements insure that modules, which are
not needed for a particular instruction,do
not perform undesired actions. For exam-
ple, unused memory input ports must be
set to "LOAD-INHIBIT". Selecting instruc-
tion-compatible versions for reguired
NOOP-statements unfortunately 1s a com-
putationally complex problem.

The output of this transformation step
consists of completely bound programs.

Transformation 7: extraction of binary

code

Instruction bit patterns are generated
by scanning completely bound programs
for instruction bit definiticns.

6. APPLICATIONS

Early applications used relatively small
and simple targets. Some of these were
based on AMD 2901 bitglices.

In a recent application the compiler was
used for the design of an horizontally
microprogrammed processor. 1t detected
errors in the manual design of the control
logic and is currently used in order to
reduce the number of data paths and the
instruction width. For a special hardware
configuration, the system generated 125
instructions. For manual code generation,
about 100 instructions were expected. The
main reasons for these 25 additicnal in-
structions are a complex control logic
and the heuristicsused in the compaction.

In another application an AMD 29201-based
machine was described. This machine is
commercially sold as part of a larger
aystem. It is a complex system with a
large number of busses. It tock about a ™
month to degcribe the machine. This was
longer than expected. Ohe. of the reasons
was poor documentation. Another reason.
was the use of busses. Earlier applica-
tions all used multiplexers and busses
had not yet been implemented.

The resulting code iz somewhat slower
than manually generated code 1f PASCAL
programs are directly translated into
MIMOLA., We expect that the code will be
about as fast as manually generated code
if MIMOLA programs are written more care-
fully, e.g. partially bound manually. The
code for the first program is just being
tested on the real machine.

The code generator was also a valuable
tool during a course on computer archi-
tecture. It helped understanding micro-
programming a simple architecture.

A total of about 20 different targets
were programmed. . :

CONCLUSION

It has been demonstrated that the design
of a retargetable microcode compiler is
feasible. Key ideas for this success are
the use of program transformation rules
and of a language which is extendable and
allows manual binding of variables and
cperations. .

Problems which have been found ihclude the
existence of a large number of versions
and the necessity to handle NOOP-state-
ments.

Future work will contentrate on the speed-
up of the algorithms and an improved hand-
ling of temporary locations. Recent work
on synthesis algorithms gave some value-
able hints on how to do this.

ACKNOWLEDGEMENT

Development of the MSS was a task that in-
volved the cooperation of a number of -
people over the past several years. How-
ever, I want to especially express my gra-
titude to R. J8hnk for his work on the im-
plementation of the MSS and to L. Nowak
for testing the MSS. .

REFERENCES

[1] 5. Davidson, High Level Miecroprogram-
ming =~ Current Usage, Future Prospects,
MICRO < 16, 1983, pp. 193-200

5. Dasgupta, Some Aspects of High-Le-
vel Microprogramming, Computing Sur-
veys, 12 (1980), pp. 295-324

[2]

[3]

[4]

D.J. deWitt, Extensibility ~ A New °~
Approach for Designing Machine-Inde~
pendent Microprogramming Languages, '
MICRO - 9, 1976, pp. 33-41 ' _
Advanced Micro Devices Corporation,

_Bipolar, Microprocessor, Logic and

L4[5]

274

{6l

(7]

(8]

(2]

[10]

(111
[121]
[13]

[14]

{151
[161]

{17i

Interface, Sunnyvale, 1983
United States Department of Defense,
Reference Manual for the ADA Program-

ming Language, 1980

P. Marwedel and G. Zimmepmann, MIMOLA
REPORT Revision 1 and MIMOLA Software
System User Manual, Report 2/79, Inst.
fiir Informatik der Universit¥t Kiel,
Kiel, 1979 : T :
R. J3hnk and P. Marwedel
guage Reference Manual
tion) T ' :

P. Marwedel, The MIMOLA Design System:
Tools for the Design of Digital Pro- !
cessors, Proc. 21th Design Automation
Conf., June 1984 C ' .
P. Marwedel, The MIMOLA Design System:
A Deaign System Which Spans Several
Levels, in: W. Giloi (ed.): Methodo- .
logies for Computer System Degign, .
North Holland, 1984 {(in print)’"

M. Ganapathi, C.N, Fisher and J.L.
Hennessy, Retargetable Compiler Code
Generation, Computing Surveys, Vol.
14, 1982, pp. 573-592. - -

T, Baba and H, Haglwara, The MPG Sys-
tem: B Machine-Independent Efficient .
Microprogram Generator, TEEE. Trans,
on Computers, Vol. 30, 6 (1981), pp.
373=-395] .

R. A. Mueller and J. Varghese, Flow
Graph Machine Models 1n Microcode -
?%gthesis, MICRO-16, 1983, pp. 159-
C.J. Evangelist, G. Goertzel and H.
Ofek, Using the Dataflow Analyzer on,
LCD Descriptions of Machines to Gene-
rate Control, Computer Hardware Des-.
cription Languages, Palo Alto, 1979,
pp. 109-115 o '

F. Anceau, P. Liddell, J. Mermet and
Ch. Payan, CASSANDRE: . .
A Language o Describe Digital Sys-
tems, Software Engineering, COINS III,
roc, 3rd Symp. on Computer and Infor-
mation, Sciences, Miami Beach, 1969
M, 8. Hecht, Flow Analysis of Compu-
ter Prcgr@ms, North Holland, 1977
P.W. Mallett, Methods for Compacting
Microprograms, Ph. D. Thesis, Univer—~
sity of Southwestern Louisiana, Lafa-
yette, 1978 '

P. .Marwedel, A Retargetable Microcode
Generation System for a High-Level-
Microprogramming Language, MICRO-14,"

, MIMOLA Lan~
{in prepara-

1981 :

