
THE MIMOLA DESIGN SYSTEM: 
TOOLS FOR THE DESIGN OF DIGITAL PROCESSORS 

PETER MARWEDEL 

Institut fur Informatik und Praktische Mathematik 

Universit~t Kiel, D-23OO Kiel, W. Germany 

ABSTRACT 

The MIMOLA design method is a method 
for the design of digital processors 
from a very high-level bevavioral spe- 
cification. A key feature of this meth- 
od is the synthesis of a processor from 
a description of programs which are ex- 
pected to be typical for the applica- 
tions of that processor. Design cycles, 
in which the designer tries to improve 
automatically generated hardware struc- 
tures, are supported by a retargetable 
~icrocode generator and by an utiliza- 
tion and performance analyzer. This pa- 
per describes the design method, avai- 
lable software tools and some applica- 
tions. 

I. INTRODUCTION 

The increasing complexity of semiconductor 
chips allows raising the specification 
level at which chip designs start. We have 
seen this level rising from the transistor 
level to the instruction set level. The 
question of what should be implemented 
next on a single chip is still an open 
question. This question has to be answered 
on an architectural level and decisions 
can only be taken if the tradeoffs between 
several alternatives are known. However, 
there is a lack of tools for that level I. 
Therefore, architectural design decisions 
are too often based on poor information 
about the consequences and possible alter- 
natives. For example, the RISC architec- 
tuze uses a large silicon area for its on- 
chip ~egisters 2. It would be interesting 
to know if this area would have been better 
~sed for an on-chip cache, a second ALU or 
something else. 

2. EVOLUTION OF THE MIMOLA DESIGN SYSTEM 

The MIMOLA design system has been conceived 
as a tool for the design of hardware struc- 
tures. Special care has been given to cor- 
rectness issues, performance prediction, 
parallelism and flexible and portable soft- 
ware tools. The basic ideas of this system 

were first published in 1976, when G. Zim- 
mermann presented a paper at a German con- 
ference s . There, he described the MIMOLA 
design method and the design language 
MIMOLA (= machine _independent micr~program- 
ming language). This paper stimulated the 
work on a software system, which supports 
the design method. This MIMOLA software 
system I (MSSI) was described at the 16 th 
Design Automation Conference ~'s. The sys- 
tem was used for several designs 6'7's. As 
a result of the experiences we gained with 
MSSl, work on a new software system, 
called MSS2, was started in 1980. 

In the MSS2 we implemented an improved 
handling of the control part of computers, 
an improved hardware allocator and many 
features which were not present in MSSl 
(e.g. generation of diagnostics, detection 
of parallelism and simulation). In addi- 
tion, we extended the MIMOLA language 9 and 
used better software engineering tech- 
niques (e.g. a precompiler which allows us 
to write modular PASCAL programs). 

3. DESIGN SPECIFICATION 

Design specifications should specify what 
the final product is supposed to do and 
not how it is supposed to do it. Therefore 
there is a tendency from structural design 
specifications towards functional design 
specifications. Functional design specifi- 
cations open a larger design space than 
structural design specifications do. An 
additional advantage is the fact that the 
~Inal hardware is guaranteed to be correct 
~ it iS automatically derived from the 
functional description by a correct design 
automation system. For an ideal DA system, 
this final hardware structure had to be 
optimal for a designated cost function. 

The specification of an instruction set is 
a possible functional design specification. 
However, it still restricts the design 
space because it implies the existence of 
certain registers, address translation 
hardware, etc. Therefore the design should 
be specified at a higher level. The appli- 
cation program level is such a level. This 

21st Design Automation Conference 

Paper 35.2 
0738-100X/84/0000/058751.00 © 1984 IEEE 587 



level is closer to the customers, who want 
to use the computer for certain applica- 
tion areas. Since more and more programs 
are written in a high-level language, this 
approach also opens a larger design space 
and allows us to utilize the parallelism 
which is offered by VLSI technology. 

Due to the above reasons, application pro- 
grams form an essential part of our speci- 
fications. Type and number of programs 
have to be selected such that they suffi- 
ciently represent the application areas of 
the projected computers. The operating 
system, compilers, editors etc. may be in- 
cluded in this set of programs. The pro- 
grams specify, which type of a processor 
is to be designed. If an algorithm for 
the rotation of pictures is used, for ex- 
ample, then a picture rotation processor 
will be designed. In order to design more 
general machines, a larger set of pro- 
grams or algorithms has to be used. The 
final architecture will be structured ac- 
cording to the overall structure of the 
applications. 

The application programs have to be writ- 
ten in MIMOLA. MIMOLA may be used for the 
description of algorithms on a PASCAL- 
(or ADA-) like level, i.e. as a high level 
language (HLL). 

Example: 

PROGRAM mimola_hll; 

DECLARE 

CONST bias = 7; 

TYPE .integer = .BIT(31:O); 

VAR p: .integer, 

q: .integer:=O; 

BEGIN 

p:= bias; 

q:= p "+" q 

END. 

(w .BIT(31:O) denotes a 
bitstring of length 32; 
operators are enclosed in " " 4) 

Parallel execution is requested if state- 
~ents are separated by a comma. This is 
one of the reasons why MIMOLA may be used 
as a high-level microprogramming language 
(HLML). 

Example: 

(~ same declaration as above ~) 

BEGIN 

p:= bias, 

q:= bias "+" q 

END. 

Hardware design using RT-level hardware 
primitives is only possible if the pro- 
grams are converted into RT-level programs. 
RT-level programs may also be written in 
MIMOLA. 

Example: 

The statement part of the last example 
could be equivalent to: 

BEGIN 

SM(15) .BIT(31:0) := 7, 

SM(16) .BIT(31:0) := 

7 "+" SM(16).BIT(31:0) 

END. 

(~SM(15) denotes the contents 
of location 15 of memory SM. 
In MIMOLA the names of all 
memories start with a capital S ~) 

The replacement of high-level language 
elements by equivalent RT-level elements 
is defined by replacement rules. Declara- 
tions of constants, types and variables 
are shorthands for the definition of such 
rules. The replacement of PROCEDURE-calls, 
FOR-loops etc. requires the specification 
of corresponding rules in the design spe- 
cification. 

Example: 

REPLACE 

GOTO L&name 

WITH 

RP: = L&name 

END 

(~ L&name is a parameter, 
which matches labels. 
RP is the program counter ~) 

Standard replacements are collected in a 
library. 

The simulator of the MSS2 may be used to 
validate the correct function of RT-level 
programs. 

The final hardware structure need not be 
structured according to the structure of 
rarely executed parts of the application 
programs. Therefore dynamic frequencies 
of execution are important parameters, 
when cost/performance tradeoffs are made. 
Thus estimated dynamic frequencies of exe- 
cution have to be included in the programs. 
They may be obtained, for example, by 
mathematical analysis I° or by using soft-, 
hard-, or firmware monitors. In these cases 
the frequencies have to be added to the 
programs manually. Our simulator also com- 
putes these frequencies and there is a 
utility program in the MSS2 which copies 

Paper 35.2 
588 



frequencies obtained by simulation to the 
application programs. 

The specification may also describe avai- 
lable hardware resources. There are two 
sets of resources: hardware modules and 
interconnections. The following is an ex- 
ample of the description of an ALU mo- 
dule 11 (this example makes use of changes 
to the present syntax): 

MODULE B74381 

(in left,right: .BIT(3:O); 

in select: .BIT(2:0); 

out result: .BIT(3:O)); 

BEGIN 

result:= CASE select OF 

O: O; 

I: right "-" left; 

2: left "-" right; 

3: left "+" right; 

4: left "XOR" right; 

5: left "OR" right; 

6: left "AND" right; 

7: -I 

END 

END 

The resource specification may completely 
describe a machine. Complete machine de- 
scriptions are required if the MSS2 is 
used for microprogram generation, perfor- 
mance prediction or generation of diagnos- 
tics. In the case of a hardware design, 
the resource specification will be empty 
or contain just the types of hardware mo- 
dules. It is then up to the synthesis part 
of the MSS2 to create the required modules 
and interconnections. 

We have now discussed the four basic parts 
of the design specification: 

I. typical application programs, 
2. replacement rules for high-level 

language elements, 
3. dynamic frequencies of execution, 
4. description of available hardware 

resources. 

We shall see how this information is 
processed in order to generate a hardware 
structure. 

4. THE MIMOLA SOFTWARE SYSTEM 

In contrast to MSSl, MSS2 consists of a 
number of independent programs, called 
components I~. Fig. 1 shows available com- 
ponents.A common intermediate language (IL) 
is Used for the communication between com- 
ponents. This language is the external re- 

design specification 

I ] front-end (4.1) 

IRT GE  (4-2)| 
mula on (o' 

ynthesis (4.4) [ 

lallocation of I I I generation of 
I hardware (4.5) I Ldiagnostics (4.9) -I 

4 10).] 

I pr°gram [ binary I perfOrmance ' 
[listing and l code ~critical 
lhardware Ipaths, utili- 

Fig. I: Components in the MIMOLA software 
system (MSS2) 
(numbers refer to the correspon- 
ding sections in the text) 

presentation of abstract syntax t~ees which 
describe the flow of data and control. It 
made the segmentation of the MSS2 into com- 
ponents possible and thereby allowed us to 
implement more features than those which 
were present in the MSSI. 

We shall now describe the individual com- 
ponents of the MSS2: 

4.1 Translation to intermediate language 

The front-end of the MSS2 translates pro- 
grams from MIMOLA into the intermediate 
language and performs necessary compile- 
time checks (syntax check, proper declara- 
tion of variables, etc.). 

Paper 35.2 
589 



4.2 Mappin~ to re@ister-transfer level 

Component RTLGEN replaces all high-level 
language elements by an equivalent set of 
RT-level statements. It also computes the 
number of bits which are required for the 
data objects (constants, function boxes 
etc.). RTLGEN also performs some optimiza- 
tions (e.g. compile-time evaluation of 
constant expressions). 

4.3 Detection of parallelism 

We put special emphasis on the design of 
machines with instructions similar to 
those of horizontally microprogrammable 
machines because we found that these ma- 
chines offer performance improvements over 
classical sequential machines 6 and because 
the control structure of these machines 
is less complex than for machines with se- 
veral instruction streams. Furthermore, 
there is an underlying parallel microar- 
chitecture for most von-Neumann machines 
as well as for non-von-Neumann machines. 
Therefore tools for the design of parallel 
microarchitectures are needed for almost 
all machines. 

Hardware synthesis and code generation are 
simplified by a component of the MSS2, 
which detects statements, which may be 
executed in parallel. All such statements 
are put into parallel blocks. The trans- 
formation is based upon an evaluation of 
control flow and data dependence. 

Example: 

The following sequence of statements: 

SM(15):= 3; 

SM(16) := 7 "+" SM(15) 

may be executed in parallel if the 
data dependence is removed by copy- 
ing the right side of the first 
statement to the right side of the 
second statement ('statement substi- 
tution'IS): 

SM(15):= 3, 

SM(16):= 7 "+" 3 

(w In MIMOLA, statements in a paral- 
lel block are separated by a comma 

At present we do not unfold FOR-loops or 
copy procedure bodies. We assume that 
there is a potential data dependence bet- 
ween references to CALL-BY-REFERENCE pro- 
cedure parameters and other memory refe- 
rences. This assumption seems to be ah 
important limit to parallelism. This limit 
could be avoided by global data-flow ana- 
lysis. 
Using the present approach, the detected 
parallelism normally allows us to keep 
about 8 memory ports and 4 ALU's busy. 

Since parallel execution may also be de- 
fined by the designer explicitly, the au- 

tomatic detection of parallelism is an op- 
t~nal step. 

4.4 Synthesis 

The synthesis component of the MSS2 genera- 
tes an RT-level hardware description for a 
computer such that the parallel execution 
of the statements in parallel blocks is 
possible. To this end we compute the fol- 
lowing architeetural parameters: 

- Number of input and output ports: memo- 
ries with many ports may be designed. 
Synthesis procedures compute the maximum 
nLmlber of read- and write-operations in 
a block in order to create the required 
memory ports. 

- Number of function boxes: function boxes 
are c~eated such that parallel execution 
of all functions in each of the blocks 
is possible. 

- Paths (wires): the required number of 
paths is generated. 
Tnstruction format: it is assumed that 
the hardware units are directly con- 
t~olled 5y an individual field of the 
Inst~uctlon ('direct encoding'). The re- 
quired fields are created. The resulting 
code is compact 6. 

In order to increase the number of opera- 
tions executable in parallel, we do not 
break conditional statements down into con- 
ditional jumps and unconditional assign- 
ments. 

Example: 

The conditional statement 

IF condition THEN SM(O):= 1FI 

may be executed in parallel to others 
if the hardware of Fig. 2 is used: 

condition disable enable O 1 co e 1 

Wrintpu t enable ~ddr. dnapa I 

MEMORY SM 

Fig. 2 Hardware implementation of 
conditional assignment 

Synthesis procedures generate an RT-level 
description of the synthesized computer. 
This description specifies used ALU's, 
memories, path-switching circuits and their 
interconnections on a level corresponding 

Paper 35.2 
590 



to that of the description of MODULE 
B74381 above. No attempt is made to auto- 
matically generate a gate-level descrip- 
tion. 

The CMU-DA system and the MIMOLA synthesis 
system have many features in common. The 
input to our synthesis procedures corres- 
ponds to Carnegie-Mellon's value trace and 
our synthesis algorithm is similar to the 
EMUCS algorithm I~. In contrast to the CMU 
system, however, we do generate the data 
and control paths at the same time and 
found this to be quite valuable. 

Details about the synthesis algorithm used 
in MSSI are described in a paper by Zim- 
mermann Is. This algorithm has been adapted 
to MSS2. Currently we are working on an 
algorithm using more 'global' knowledge 
about the application programs. 

Our synthesis procedures are designed to 
produce a single processor with a single 
clock. If a set of asynchronously coupled 
processors (e.g. a pipelined machine) is 
to be designed, each member of this set 
must be designed independently. 

The instruction format of the designed 
machines is a horizontal microinstruction 
format. It remains to be seen if conven- 
tional instruction formats should be ge- 
nerated and if this may be done automati- 
cally. 

4.5 Generation of bound programs 

In order to allow performancepredictions 
and code generation for the designed hard- 
ware, application programs are bound to 
hardware resources. This is done by the al- 
locator of the MSS2. It's task corresponds 
to that of a compiler. In contrast to nor- 
mal compilations however, we do not only 
generate binary instruction patterns but 
we transform programs such that every used 
hardware resource is shown. This simpli- 
fies for example the generation of re- 
source utilization statistics. 

Example: 

Fig. 3 shows the graphic respresenta- 
tion of the assignment 

SM(15.BIT(7:O)).BIT(31:0): = 

7.BIT(31:O) 

Legend: 

7 15 "LOAD" i data 

SM I contro 1 
V 

Fig. 3 unbound ass±~nment (~equ~red 
number of bits not shown) 

Fig. 4 shows the graphic respresentatio~ of 
a corresponding bound assignment: 

7 1 15 I 

1 1 1 1 
I.BIT I.BIT I.BIT I.BIT 
(42:11) (1:0) (10:3) (2) 

values for 
i-fields 

instruction 
fields 

exp lici t 
multiplezer 

SM A port A of 
memory SM 

Fig. 4 bound assignment 

Bound programs must be generated for a 
large set of hardware structures. This is 
possible only if the corresponding compo- 
nent of the MSS2 is retargetable (see 
Ganapath116 for a discussion of retarget- 
able compiler code generation). We don't 
speak of a compiler-compiler because the 
compiler-compile phase is unimportant in 
our system. The task of writing an alloca- 
tor is complicated because it has to be re- 
targetable, allow rapid changes of the tar- 
get and handle parallelism. 

The allocator has been implemented as two 
components of the MSS2. The first component 
tries to find possible bindings for the 
application programs, i.e. tries to find 
function boxes for the operators and memory 
ports for read and write operations. For 
each (unbound) statement there may exist 
several bound versions of the statement 
(the concept of versions has been intro- 
duced by Mallett17). Therefore this first 
component of the allocator has been called 
version'generator. If expressions cannot 
be evaluated in one instruction, the ver- 
sion-generator generates the required as- 
signments to temporaries. 

The second component of the allocator 
tries to select and pack versions such 
that the required execution time is mini- 
mal. Therefore this component is called 
com~actlon-component. Compaction is compli- 
cated 5y a possibly large number of ver- 
sions. 

4.6 Generation of binary instructions 

Instruction bit patterns may be easily ob- 
tained by scanning bound programs for in- 
struction fields (cf. Fig. 4). 

4.7 Translation to MIMOLA 

MIMOLA is general enough to express bound 
programs and therefore bound programs may 
be translated from the intermediate lan- 

Paper 35.2 
591 



guage into MIMOLA in order to improve 
readability. 

4.8 Timing and utilization analysis 

The structure description may contain a 
specification of delay times. These times 
are copied to the bound programs by the 
allocator. Analysis of these times is per- 
formed by a separate component of the MSSI 
This component computes critical paths, 
utilization frequencies of hardware re- 
sources and (using the frequencies of exe- 
cution) the expected runtime of bound pro- 
grams Is. This information is very useful 
for design iterations. 

4.9 Generation of diagnostics 

The increasing complexity of VLSI chips 
calls for an improved test generation and 
for easily testable designs. It is well 
known that the automatic generation of 
tes~ from a hardware description is fea- 
sible I°. Our system generates tests for 
stuck-at errors for the declared inter- 
connections and for the functions of hard- 
ware modules. Hardware structures, for 
which no test can be generated automati- 
cally should be modified before the design 
continues. 

4.10 Simulation 

Simulation is possible for unbound and 
bound RT-level programs. It may be used 
in order to validate their correct func- 
tion and in order to compute dynamic fre- 
quencies of execution. 

5. Desi@n Iterations 

We believe that the ideas of human desig- 
ners will be needed in the design process 
for many years. Therefore our system is a 
computer-aided system, not a fully automa- 
tic system. When all program transforma- 
tions are completed, the designer has to 
take care about cost performance tradeoffs. 
To this end, the designer uses the infor- 
mation which has been computed by the ti- 
ming and utilization analyzer and tries 
to improve the design by changing the des- 
cription of the generated hardware. Pos- 
sible design changes include: 
- Deletion of function boxes if other 

function boxes provide the same functio~ 
- Replacement of infrequently used hard- 

ware functions by software routines, 
- Deletion of data paths, 

Reduction of the instruction length by 
using coding techniques, 

- Replacement of conditional assignments 
by conditional jumps, 

- Adjustment of the speed of resources. 

The modified hardware description is then 
used as a part of a new design description. 

This new description is used for binding 
the programs to the modified hardware. 
This time, temporaries may be required and 
the resulting bound program probably will 
be slower. Analysis of bound programs 
allows assessing the design decisions. The 
process may be repeated until the design 
space is explored and a final decision is 
made. 

Note that binding programs for user-de- 
fined hardware structures is necessary du- 
ring design iterations. This feature of 
the MSS2 is not present in other synthesis 
systems. This feature also allows us to 
use the MSS2 as a microprogram generation 
system. 

6. APPLICATIONS 

The design of the MSSI and the MSS2 have 
been accompanied by applications of the 
design method in order to prove the use- 
fulness of the method and in order to get 
a fast response from design-tool users. 

6.1 Design of a processor for scientific 
computations 

The first design started in 1976, when 
only few tools were available. The goal 
of this design was the development of a 
fast processor for scientific computations. 
These we considered to be represented by 
IBM's scientific subroutine package (SSP). 
A large portion of the SSP was translated 
from FORTRAN into MIMOLA. Manual detection 
of parallelism was used during this trans- 
lation. Dynamic frequencies of execution 
were added to the programs. These could 
be easily estimated because in most cases 
they were closely related to matrix di- 
mensions. A first pass through the soft- 
ware system generated a highly parallel, 
fast (and expensive) hardware structure. 
The Joint distribution of operator usage 
served as a criterion for the selection 
of adequate multi-function units (e.g. 
ALU'S) from a TTL-catalogue. The number of 
parallel read- and write-operations served 
as a c~iterlon for the selection of multi- 
po~t memories. The program was then manu- 
ally bound. A second pass through the soft- 
ware system was then used in order to com- 
pute the utilization of data paths. After 
a manual reduction of the number of data 
paths, the hardware structure was complete 
and was built up in hardware. This hard- 
ware uses a 112-bit instruction in order 
to control 5 ALU's, 9 memory ports and 
the program counter. It is about 25 times 
faster than a mid-range minicomputer 6, 

6.2 Design of a processor with an IBM-370 
instruction set 

In a second application, a machine with an 
IBM-370 compatible instruction set was de- 

Paper 35.2 
592 



signed. A functional description of this 
instruction set was written in MIMOLA. Dy- 
namic frequencies of execution were known 
from benchmarks and measurements. The ini- 
tial pass through the software system 
again generated a highly parallel, fast 
and expensive machine. Several manual 
transformations of the bound programs re- 
sulted in a less expensive but even fas- 
ter machine. These transformations were 
influenced by the generated timing/utili- 
zation statistics. The machine was slight- 
ly faster than a SIEMENS 7.750. The de- 
sign of a faster machine would have been 
possible. Surprisingly, the size of the 
microcode for our machine amounts to only 
15 % of the SIEMENS microcode. 

This example shows that the design space 
was too restricted to allow the design of 
machines which are faster than existing 
ones. However, the design method was use- 
ful even in a case where the level of the 
design specification was lower than anti- 
cipated. This example also shows that a 
significant reduction of the design time 
can be achieved. This design was done by 
one student, who had no previous hardware 
design experience, as his masters thesis v. 

6.3 Design of a processor specified by 
an operatin~ system 

In another application, the kernel of an 
operating system has been translated into 
MIMOLA. In this application a hardware 
monitor was used in order to obtain exe- 
cution frequencies. The designed machine 
will be built up in hardware and is ex- 
pected to be 14 times faster at twice the 
cost of a commercial minicomputer (using 
estimated manufacturing costs). 

CONCLUSION 

A design system has been described which 
may be a stepping stone for the develop- 
ment of tools for the design of VLSI com- 
puters. The design system combines con- 
cepts of compiler construction and hard- 
ware oriented concepts. It is supported by 
a language which is able to describe soft- 
ware and hardware. Computers, which were 
designed with the MIMOLA system, bear com- 
parisons with manual designs. 

ACKNOWLEDGEMENT 

This paper would have been impossible 
without the ideas of G. Zimmermann. In 
addition, R. J6hnk, G. KrHger, L. Nowak 
and a large number of students made their 
contributions to the MIMOLA design system. 

REFERENCES 

[I] J.S. Mayo, keynote session 2oth Design Autom. 
Conf., in: W. Myers, "Extend design automation 
systems", Computer, Aug. 1983, pp. 1OO-103. 

[2] D.A. Patterson, C.H. S&quin, "A VLSI RISC", 
Computer, Sept. 1982, pp. 8-22- 

[3] G. Zimmermann, "Eine Methode zumEntwurf yon 
Digitalrechnern mit der Programmiersprache 
MIMOLA", Informatik-Fachberichte, Vol. 5, 
Springer, 1976. 

[4] G. Zimmermann, "The MIMOLA Design System: 
A Computer Aided Digital Processor Design 
Method", Proc. 16th Design Autom. Conf., 
1979, pp. 53-58. 

[5] P. Marwedel, "The MIMOLA Design System: De- 
tailed Description of the Software System", 
Proc. 16th Design Automation Conf., 1979, pp. 
59-63. 

[6] P. Marwedel, "The Design of a Subprocessor 
with Dynamic Microprogramming with MIMOLA", 
Informatik-Fachberichte, Vol. 27, Springer, 
pp. 164-177, 1980. 

[7] G. KrUger, "Entwurf einer Rechnerzentralein- 
heit f~r den Maschinenbefehlssatz des SIEMENS 
Systems 7.000 mit demMIMOLA-Rechnerentwurfs- 
system", Diploma Thesis, University of Kiel, 
1980. 

[8] G. Zimmermann, "Cost Performance Analysis and 
Optimization of Highly Parallel Computer Struc- 
tures: First Results of a Structured Top-Down 
Design Method", Proc. 4th Int. Conf. on Com- 
puter Hardware Descr. Lang., 1979, pp. 33-39. 

[9] R. J6hnk and P. Marwedel, "MIMOLA Language 
Reference Manual, Revision 2", Berlcht des 
Instituts f. Informatik u. Prakt. Mathem., 
Kiel, 1984 (in print). 
D.E. Knuth, "The Art of Computer Programming", 
Addison Wesley, 1975. 
Texas Instruments, engineering staff, "The TTL 
Data Book for Design Engineers", Texas Instru- 
ments, 1977. 
R. J6hnk, G. KrUger and P. Marwedel, "MIMOLA 
Software System 2 User's Guide", on-llne docu- 
mentation (available on request). 
D.J. Kuck, "The Structure of Computers and Com- 
putations", Wiley, 1978, p. 111. 
C.Y. Hitchcock and D.E. Thomas, "A Method of 
Automatic Data Path Synthesis", Proc. 2Oth 
Design Autom. Conf., 1983, pp. 484-489. 
G. Zin~nermann,"MDS - The MIMOLADesignMethod'~ 
Journal of Digital Systems, Vol. 4, 1980, pp. 
337-369. 
M. Ganapathi, C.N. Fischer and J.L. Hennessy, 
"Retargetable Compiler Code Generation", acm 
computing surveys, Vol. 14, 1982, pp. 573-592. 
P.W. Mallett, "Methods for Compacting Micropro- 
grams", Ph.D. Thesis, University of Southwes- 
tern Louisiana, Lafayette, 1978. 

[18]P. Marwedel, "Statistical Studies of Horizontal 
Microprograms", Proc. 5th Int. Conf. on Computer 
Hardware Description Languages, Kaiserslautern, 
1981. 

[19]K.-W. Lai, "Functional Testing of Digital Sys- 
tems", Report CMU-CS-148, Carnegie-Mellon Uni- 
versity, Pittsburgh, 1981. 

[10] 

[11] 

[12] 

[13] 

h4] 

hs] 

[16] 

[17] 

Paper 35.2 
593 


