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The MIMOLA design system is a computer-aided 
system for the design of digital computers. The 
system uses requirements containing typical ap 
plication programs of the computer to be de 
signed. The output of the design process is a 
register-transfer level description of the com 
puter. Thus the MIMOLA system covers several 
design levels. The paper presents the method, 
the CAD-tools and some applications. CAD tools 
generate parallel programs from sequential pro 
grams, synthesize hardware structures, gene 
rate code and evaluate hardware structures. 
The designer plays an active role in the design 
process by bringing in his ideas about design 
improvements. 

 
 
1. INTRODUCTION 
 
Nowadays hardware cannot be designed independently of software. The 
implications of software algorithms are too strong. For example, 
algorithms for safe operating systems require hardware protection 
mechanisms and fast processing of pictorial information requires 
the use of array processors. Functions of operating systems, which 
were formerly implemented in software, are now implemented in 
hardware or firmware. Very large scale integration (VLSI) will 
allow us to design parallel processors which are structured 
according to the structure of the problem. Therefore we need tools 
for the design of hardware from a high-level specification of the 
problem. 
Before we describe our tools, we have to think about what our 
specification should look like. We consider the specification of a 
machine instruction set as inadequate because the problems, which 
are to be solved by a computer system, are stated on a much higher 
level and because the specification of conventional instruction 
sets will not allow us to fully utilize the possibilities of VLSI. 
Therefore we start with a higher level specification. Our 
specification contains the set of problems to be solved by the 
computer. This set of problems is described by a set of 
application programs, written in a high-level programming 
language. This specification opens a large design space and allows 
us to optimize the instruction set. 
A key feature of our system is the automated synthesis of 
hardware, i.e. the automated selection and interconnection of 
hardware modules such that the specified higher level function is 
performed. Synthesis procedures are regarded as a means to 
overcome the verification problem, i.e. the problem of verifying 
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low level meets the high-level specification. Simulations at the 
low level, which have been used for many years, are time-consuming 
and cannot guarantee the absence of errors. 
 
 
 
2. THE MIMOLA DESIGN SYSTEM 
 
The basic ideas of the MIMOLA system go back to 1975, when G. 
Zimmermann presented a paper at the national GI-conference'. The 
paper contained a new design method and the definition of the 
language MIMOLA (= machine independent microprogramming language). 
During the years that followed, design tools were developed and 
applied 2'3'u. Currently the system is being extended and used for 
two designs. 
Similar systems have been concurrently developed at the 
CarnegieMellonUniversity5 and at the MITE . Huang combined ideas 
of the Carnegie-Mellon system and our system'. 
 
2.1 The language MIMOLA 
A language, which is used at several design levels, has to be able 
to describe several levels of details. Therefore MIMOLA supports a 
PASCAL-like level as well as RT-levels8. (In the CONLAN project9, a 
different approach is used: a family of languages is derived from a 
common base language). 



 

 

 

The MIMOLA Design System 225 

This means that e.g. instruction bits I.BIT(17:9) contain the 
value 100. These bits are used at the address input of memory port 
SM-A. 
Multiplexers, ALU's, decoders and busses may also be included in 
completely bound programs. This is necessary in order to use 
MIMOLA for lower design levels. 
But it is not sufficient to allow procedural descriptions of 
programs. For automatic generation of hardware tests, for 
retargetable code generation, for chip layout generation etc. it is 
necessary to include non-procedural descriptions of hardware 
structures in the language. 
Examples (these examples make use of changes to the implemented 
syntax) 
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For example, variables have to be replaced by memory locations, 
high-level language elements like FOR-Loops have to be replaced by 
register-transfer statements and unimplemented operations to be 
replaced by routines. MIMOLA allows an explicit definition of 
these normally implicit replacements. 

CONST-, TYPE- and VAR-declarations are implemented as shorthands 
for these replacements. Underscore-suffixes of the keyword 
REPLACE are used for making replacement rules available to newly 
designed software tools without changing the syntax of MIMOLA. 

2.2 Specification of the design problem 
 
In the introduction we mentioned that a design with MIMOLA starts 
with application programs. Type and number of programs have to be 
selected such that they sufficiently represent the application 
areas of the projected computer. In this context, the term 
'application programs' includes the operating system, compilers, 
editors etc. 
The programs specify, which type of a processor is to be 
designed. If signal processing programs are used, signal 
processors will be synthesized. Similarly, array processing 
programs will lead to array processors etc. General purpose 
computers may be designed by using a broad spectrum of 
applications as input. In general, hardware architectures will be 
structured according to the structure of the applications. 
The specification has to be written in MIMOLA. The task of 
converting e.g. PASCAL programs to MIMOLA does not present many 
problems. 
Semantics of MIMOLA is predefined only at the RT-level. Semantics 
of high-level MIMOLA is defined by a set of substitution rules 
(called macros), which define a mapping from high-level MIMOLA to 
RT-level MIMOLA. This allows us, for example, to translate both 
PASCAL and FORTRAN DO-loops into MIMOLA DO-loops and to define the 
semantics by different mappings to the RT-level. Substitution 
rules are always required as a part of the specification. However, 
users do not have to develop these rules themselves but select 
them from a library. 
The functional behaviour of programs is not specified by the 
programs alone. Normally, information about overflow traps, 
index checking, protection etc. is implicit. This information 
has to be made explicit in the problem specification. Index 
checking, for example, may be included in the substitution rules 
for arrays. 
A simulator is included in the MIMOLA CAD-system. It may be used 
to check if the programs perform the intended function. 
The synthesized hardware may be less optimal for rarely executed 
parts of the programs. Therefore the CAD-system has to know the 
relative importance of the different parts of the application pro-
grams. To this end, weights or estimated frequencies of execution 
have to be inserted into the programs. There are various possible 
sources for this information: 
- In certain cases, mathematical analysis is possible'°. - If the 
programs are executable somewhere, their execution may be 
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monitored by hard-, soft- or firmware-monitors. -The MIMOLA 
simulator is able to insert the frequencies into the programs 
automatically. 
 
The specification is completed by a set of boundary conditions. 
These boundary conditions may prescribe the number and/,or type of 
ALU's to be used, the number of memory ports, the instruction 
fields and the data paths. The amount of restrictions may range 
from empty to a complete specification of a target architecture 
(in the last case the synthesis part of the system is not used). 
Resources (like ALU's and memories) which are to be used, may be 
completely described in a library. This description may contain 
low-level information such as the required VLSI-chip area.- This 
allows us to use elements of a bottom-up design style in our 
top-down design. For example, the library may contain a 
TTL-catalogue. 
 
 
2.3 Transformations applied to the problem description 
 
In order to produce the desired results, the MIMOLA software 
system (MSS)" applies several transformations to the set of 
application programs. Fig. 1 shows how these transformations are 
related. 
 
 
2.3.1 Translation of MIMOLA programs into an intermediate language 
 
In order to simplify all following transformations, MIMOLA 
programs are translated to an intermediate language which closely 
mirrors the flow of control and of data. The intermediate 
language is similar to intermediate tree languages used in 
compiler development projects"' 13. 
 
2.3.2 Mapping of the programs to the RT-level 
 
This transformation replaces all high-level language elements, 
such as CALL, FOR and WHILE, by assignments and simple 
conditions. This replacement uses the already mentioned 
substitution rules. These substitution rules provide the 
flexibility which is required for studies of the tradeoffs 

replaces the divide operation by a call to a routine called 
Mdivide. These replacements are useful especially in design 
iterations when the statistical evaluation (cf. 2.3.8) found that 
the divide hardware is rarely used. 
Binding variables to memory locations may be done explicitly in 
the application programs, by standard substitution rules collected 
in a library or by an automatic optimizing memory allocator. Thus 
the system designer is free to choose between different addressing 
mechanisms. For example, the library may provide substitution 
rules for static allocation and for dynamic allocation using the 
index register-technique or Tanenbaum's proposal"`. Therefore it 
is possible to study hardware implications of the different 
techniques. Static allocation is useful even for PASCAL 
application programs. We are just designing an array processor for 
algorithms written in PASCAL. In that particular case, recursive 
procedures will never be used. 



 

 

 

Fig.1 Synthesis of hardware structures with MSS 
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2.3.3 Detection of parallelism 
 
We put special emphasis on the design of machines with instructions 
similar to horizontally microprogrammable machines since we found 
out that these machines offer performance improvements over 
classical sequential machines '5 and because the control part of 
these machines seems to be less complex than for machines with 
several instruction streams. Furthermore, there is an underlying 
microarchitecture for most of the sequential machines and therefore 
tools for the design of parallel microarchitectures are needed even 
if sequential machines are to be designed. 
In order to faciliate the tasks of hardware synthesis and of code 
generation for parallel machines, application programs are made 
more parallel. This means that blocks of statements are coalesced 
such that the number of statements executable in parallel is 
increased. 
This transformation is based upon control flow and data 
dependence. It is not easy to decide if data dependence exists on 
the registertransfer level at compile time. 
In our design system, two memory references are considered as 
datadependent, if memory names and the expressions for the 
calculation of effective addresses are equal. They are considered as 
independent, if memory names are different or if they belong to 
different nonformal variables or if the effective addresses differ 
by a non-zero constant. In all other cases, memory references are 
considered as potentially dependent. 

may be executed in parallel if the data dependence is removed by 
copying the right side of the first statement to the right side of 
the 
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Our design system does not only coalesce straight line sequences 
but also coalesces blocks with more than one dynamic successor with 
the following blocks. At present, FOR-loops are not automatically 
converted into parallel execution of all instances of the loop and 
procedure calls are not modified. Both transformations would be 
required for multi-instruction stream processors " . 
 
 
 
2.3.4 Simulation 
 
Application programs may be validated by using simulations. In 
addition, the simulator is able to compute dynamic frequencies of 
execution. These frequencies may be added to the programs. 
Figure 2 describes some details of the simulation subsystem: 

Fig. 2 Simulation - subsystem (Detail of fig. 1) 

2.3.5 Synthesis 
Synthesis procedures generate an RT-level description of the 
synthesized computer. This description specifies used ALU's, 
memories, path-switching circuits and their interconnections on a 
level corresponding to the description of MODULE B74xyz above. 
Synthesis procedures try to generate a hardware, which allows as 
many parallel operators as can be used by the program. However, 
boundary conditions may be used to limit the number of memory 
ports, ALU's etc. The synthesis part of the MSS tries to generate 
the fastest hardware structure which does not violate the given 
boundary conditions. 
Algorithms, which would generate the optimum hardware in a single 
step would be too complex. Therefore synthesis has to be broken 
down into a series of steps such that each step has a manageable 
complexity. We decided to use the following steps: 
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1. Computation of the number of resources which would be necessary 
 to execute each parallel block in a single step. 
2. Interactive definition of the number of allowed resources. 
3. Splitting of parallel blocks into sequences of blocks such that 
 each block may be executed in a single step. During this trans 
 formation it may be necessary to split complex statements and 
 therefore temporary locations, holding intermediate results, are 
 generated. 
4. Arithmetic/logic operations within each block are counted and 
the 
 result is used to compute a sufficient number of function boxes 
 such that the total cost for function boxes is minimal. Costs 
may 
 be declared for predefined function box types. The optimization 
 uses an integer linear programming algorithm';. 
5. The next step assigns hardware resources to operations in the 
 program. Memory ports are assigned to read and write operations, 
 function boxes to arithmetic/logic operations and instruction 
 fields to constants. The assignment is done such that the 
minimum 
 number of new data paths is required for each scanned block. 

At the end of this step, a complete description of the hardware 
structure is known. In addition, the application programs have 
been bound to the available hardware. This means that the pro-
grams describe which part of the hardware structure is used to 
perform a certain operation (section 2.1 contains an example of 
a bound statement). 

 
 
2.3.6 Bit pattern generation 
 
Instruction bit patterns may be easily obtained by scanning 
completely bound programs for instruction bit definitions (see 
section 2.1). 

 
 
2.3.7 Translation into MIMOLA 
 
A readable form of bound programs may be obtained by a translation 
from the intermediate language into MIMOLA. MIMOLA is general 
enough to allow this translation. 
 
 

2.3.8 Architecture assessment and preparation of design decisions 
 
We assume that for quite a number of years it will not be possible 
to autmatically generate sufficiently optimized designs. The ideas 
of human designers will be needed to improve the design. Our 
system allows the human designer to bring in his own ideas by 
modifying the design and to iterate the design process. Our design 
system aids the designer by providing data upon which design 
decisions may be based. Furthermore, our system assesses the value 
of the designer's decisions. Both functions are provided by the 
timing-evaluation processor of the MSS. This processor 
- searches for bottle necks such as critical data paths, 
- searches for resources, which, with respect to their cost, are 
 insufficiently used, 
- searches for resources which could be a substitute for insuffi 
 ciently used resources (computation of joint probabilities of re 
 source usage), 
- computes an estimated performance. 
A good estimate for the performance is the expected runtime of the 
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programs contained in the specification. Runtime is computed by 
computing the time to complete each of the generated instructions 
and then multiplying by the estimated frequencies of execution (cf. 
section 2.2): 

Runtime is easily computed by using the completely bound 
intermediate language trees since these contain execution 
frequencies and because the delay times declared in hardware 
descriptions like (3) may be copied to the trees. 
Three versions for the computation of instruction durations are 
implemented in the MSS19: 
1. Constant duration: The duration is the same for all 
instructions and is equal to the time required to complete the 
slowest instruction. 
2. Instruction-dependent duration: For each of the instructions 
duration is computed separately, using worst-case data. The 
duration is either implicitly contained in the instruction or 
compiled by the compiler and stored in a separate field of the 
instruction (the Am2925 of AMD is designed to support just this 
mode of operation 20). The use of instruction dependent durations 
significantly reduces 
runtime if long as well as short instructions exist. 3. 
Instruction- and data dependent duration: This mode of operation 
may be implemented by adding 'data-valid' tokens to all data 
lines. If all tokens reached their destination, the next 
instruction may be started (we assume that there is only one 
instruction stream). A similar mode of operation is used in 
selftimed systems21. 
 
 
 
2.3.9 Design decisions 
 
As mentioned in the previous section, design decisions are 
necessary for optimizing the design. The designer's task is to use 
the information provided by the system (e.g. runtime), to decide 
which changes should be done, to change some of the inputs to the 
MSS and the iterate the design process. 
The different levels which are affected by the designers decisions 
demonstrate very well how the MIMOLA design method spans over 
several levels: 
1. Changes of the delay time: These changes could be a result of 
critical path analysis. They affect only the timing characteristics 
of the RT-level modules, not their function. For example, 
Schottky-TTL could be used instead of the Low-Power Schottky TTL. 
Or a path could be moved from polysilicon to metal. Thus, these 
changes are changes at a low level (possibly the layout level). 2. 
Changes of the function select codes: These changes only affect the 
internal structure of the RTL modules, still their function is not 
modified. The level is somewhat higher than the previous one. 3. 
Changes of the functions of the RTL-modules: In certain cases, 
functions should be added or deleted. For example, joint 
distributions for the use of functions may indicate that a special 
"DECREMENT" function in module 1 is not required because module 
2 is able to subtract and is always idle when module 1 is 
decrementing. These changes affect only the RTL modules but not the 
system itself. 
4. Changes of the number of invocations of the hardware resource 
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types: These changes affect the speed of the microarchitecture. 
Its functional capabilities are unchanged as long as there is at 
least one resource of each type. 5. Changes of the 
interconnections: Rarely used connections may be deleted if they 
are not absolutely necessary (for example, a bus which increases 
parallelism may be deleted; an interrupt request line may not be 
deleted). These changes possibly affect the functional 
capabilities of the microarchitecture. 6. Changes in the mapping 
of the programs to the RT-level: Example: Using Tanenbaum's 
proposal instead of the index-register technique 
(display-technique) for addressing variables, implementing certain 
functions in software instead of hardware. In this case, the 
mapping to the RT level has to be repeated. 7. Changes in the 
application programs, or even in the algorithms Example: It may 
turn out that a particular sorting algorithm does not contain 
enough parallelism to obtain the desired speed. In this case the 
hardware design cycle has to be reiterated from the beginning. 
The synthesized architecture also has to be evaluated in terms of 
cost. This evaluation of course is technology-dependent. An older 
version of the MSS computes costs of realizations in TTL. This 
computation is based upon a paper by Phister 22 and described in a 
paper by Zimmermann 3. For VLSI it is necessary to predict the 
required chip area. Some research is going on in this direction 
23, 
 
 
 
 
 
2.3.10 Retargetable code generation 
 
To a certain extent generated hardware structure may be modified by 
changing the boundary conditions and initially design iterations 
should be done by using the synthesis part of the MSS. However, as 
ideas about the hardware structure become more and more precise, 
only minor changes to the generated hardware description are to be 
made (e.g. a single path is to be removed). After such minor design 
changes the hardware structure still is fully specified. Therefore 
another run through the synthesis part of the MSS would make no 
sense. However it would make sense to bind the application programs 
to the modified hardware structure. There are several reasons for 
this: 
1. After illegal design changes the binding process would fail 
and therefore represents a means for detecting such errors, 2. 
Bound programs are useful for architecture assessments, 3. Bound 
programs are required for obtaining binary code. 
Because of these reasons we designed a code generator which is able 
to bind application programs to hardware structures defined by a 
hardware description. Such a code generator is called a 
retargetable code generator. The code generator was written such 
that it accepts a wide range of changes to generated hardware 
descriptions. Therefore descriptions of many of the available 
hardware structures are accepted by the code generator and it may 
be used by its own, namely for generating code for 
(micro-programmable) architectures which have not been designed 
with the MSS. Maschines based on the AMD2900 series of chips may be 
described nicely, for example. 
There has been some work on retargetable code generators 13,24,25,26, 
12,28. However, these approaches could not be used for our system, 
because with the exception of Baba's MPG system the systems are 
unable to produce parallel microcode. In addition, our design 
itera- 
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tions require that the target machine may be changed in less than 
a day. Changes of the target machine normally are less frequent 
and require e. g. one month of work 25. On the other hand, speed 
of compilation is of secondary importance. Baba's system would be 
somewhat hard to use since it employs a hardware description which 
is not directly related to the resources at the register-transfer 
level, namely data paths, adders etc. Some hardware design systems 
are able to produce code for the architectures they synthesize 
7,29. However, they are unable to produce code for user defined 
architectures and therefore don't allow a large range of manual 
design modifications. 
Our code generator works similar to the last step of the synthesis 
part of the MSS in that it assigns hardware to the program. In con-
trast to the synthesis part however, it does not create new 
hardware resources and uses a larger set of program 
transformations. This larger set of program transformations is 
required i.e. in order to bind programs to user-defined 
architectures. Transformations using neutral elements of 
operations, the law of commutativity, and 'reflected' operations 
(e.g. "<=" and ">=" form a pair of reflected operations) are 
standard. Others may be defined by the user. There is a 'tiny 
expert system' built into the code generator which tries to apply 
useful transformation rules. During the first phase of code 
generation, our system computes the different possibilities which 
exist for the execution of statements. According to Mallet30, the 
different possibilities for assigning hardware to the knots of the 
partially bound treesare called versions. Example: the completely 
bound assignment statement (2) is one possible version of the par-
tially bound assignment statement (1). 
The second phase selects a version for every partially bound state-
ment and packs versions into microinstructions. Several algorithms 
for microinstruction packaging are known 30. We use a modified 
LINEAR algorithm. 
 
The code generator is included in Fig. 3. 
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2.3.11 Test Generation 
The increasing complexity of VLSI chips calls for an improved test 
generation and for easily testable designs. It is well known that 
the automatic generation of tests from a hardware description is 
feasible3l. Our system generates tests for stuck-at errors for 
declared interconnections and for the functions of hardware 
modules. Hardware structures, for which no test can be generated 
automatically should be modified before the design continues. 
 
 
 
3. APPLICATIONS 
 
3.1 Scientific Subroutine Package 
 
The first application of the design method was the design of a 
processor for scientific computations. These were represented by 
IBM's scientific subroutine package (SSP). A major part of this 
package was translated into MIMOLA. After two design iterations 
(using an early version of the MSS) it was decided to implement an 
architecture containing five function boxes in hardware. The 
architecture is about as complex as the MODCOMP II minicomputer 
(equivalent to a midrange PDP-11). It is about 25 times faster as 
the MODCOMP 15. 
 
 
 
3.2 Redesign of a SIEMENS 7.000-type machine 
 
In a second application, we used a functional description of the 
instruction set of a SIEMENS 7.000-type machine as a design 
specification. Although the specification level is lower than we 
intended, the design method proved to be useful. 
A functional description of the instruction set was written in 
MIMOLA. Weights were known from benchmarks. After several design 
iterations, a machine was obtained, which was slightly faster 
than a SIEMENS 7.750. The design of a machine being as fast as a 
SIEMENS 7.760 is feasible. A surprising result was the reduction 
of the size of the microcode to 15 $ of the SIEMENS design. 
This example shows that the design space was too small to improve 
the performance of the SIEMENS architecture. However, the design 
was done by one student as his master thesis. A reduction of the 
design time is obvious. The the sis32 not only describes the 
architecture but also contains the complete microcode. This is an 
example of the integrated design of hard- and firmware. 
 
 
 
3.3 Design of a processor for graphic layout 

 
Modern electronic equipment is now used for the reproduction of 
fotos in magazines and books. During the layout of pages, fotos are 
frequently modified. Scale changes, rotations and colour 
corrections are frequent transformations. Current processors are 
either too slow or too expensive to allow these transformations to 
be done interactively. As a part of a recently completed thesis33, 
these transformations have been written in MIMOLA. Hardware 
structures for these programs were obvious and could be specified 
manually. The MSS was used in order to bind these programs and to 
predict performance. Results indicate that a reduction of runtimes 
from half an hour (on a special purpose hardware) to less than a 
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3.4 Design of a processor specified by an operating system 
In another application, the kernel of an operating system has been 
translated into MIMOLA. In this application a hardware monitor was 
used in order to obtain execution frequencies. The designed 
machine will be built up in hardware and is expected to be 14 
times faster at twice the cost of a commercial minicomputer (using 
estimated manufacturing costs). 
 
 
 
CONCLUSION 
 
A design system has been described which may be a stepping stone 
for the development of tools for the design of VLSI computers. The 
design system uses concepts of compiler construction (e.g. code 
generation) and hardware oriented concepts (e.g. function boxes). 
It is supported by a language which is able to describe software 
and hardware. Computers, which were designed with the MIMOLA 
system, bear comparisons with manual designs. 
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