
 Methodologies for Computer System Design
W.K. Giloi and B.D. Shriver (Editors)
Elsevier Science Publishers B. V. (North-Holland) 223
 IFIP, 1985

THE MIMOLA DESIGN SYSTEM: A DESIGN SYSTEM WHICH
 SPANS SEVERAL LEVELS
 Peter Marwedel
 Inst. fur Informatik & Prakt. Mathem.
 University of Kiel
 Kiel, W. Germany
The MIMOLA design system is a computer-aided
system for the design of digital computers. The
system uses requirements containing typical ap
plication programs of the computer to be de
signed. The output of the design process is a
register-transfer level description of the com
puter. Thus the MIMOLA system covers several
design levels. The paper presents the method,
the CAD-tools and some applications. CAD tools
generate parallel programs from sequential pro
grams, synthesize hardware structures, gene
rate code and evaluate hardware structures.
The designer plays an active role in the design
process by bringing in his ideas about design
improvements.

1. INTRODUCTION

Nowadays hardware cannot be designed independently of software. The
implications of software algorithms are too strong. For example,
algorithms for safe operating systems require hardware protection
mechanisms and fast processing of pictorial information requires
the use of array processors. Functions of operating systems, which
were formerly implemented in software, are now implemented in
hardware or firmware. Very large scale integration (VLSI) will
allow us to design parallel processors which are structured
according to the structure of the problem. Therefore we need tools
for the design of hardware from a high-level specification of the
problem.
Before we describe our tools, we have to think about what our
specification should look like. We consider the specification of a
machine instruction set as inadequate because the problems, which
are to be solved by a computer system, are stated on a much higher
level and because the specification of conventional instruction
sets will not allow us to fully utilize the possibilities of VLSI.
Therefore we start with a higher level specification. Our
specification contains the set of problems to be solved by the
computer. This set of problems is described by a set of
application programs, written in a high-level programming
language. This specification opens a large design space and allows
us to optimize the instruction set.
A key feature of our system is the automated synthesis of
hardware, i.e. the automated selection and interconnection of
hardware modules such that the specified higher level function is
performed. Synthesis procedures are regarded as a means to
overcome the verification problem, i.e. the problem of verifying

224 R Marwedel

low level meets the high-level specification. Simulations at the
low level, which have been used for many years, are time-consuming
and cannot guarantee the absence of errors.

2. THE MIMOLA DESIGN SYSTEM

The basic ideas of the MIMOLA system go back to 1975, when G.
Zimmermann presented a paper at the national GI-conference'. The
paper contained a new design method and the definition of the
language MIMOLA (= machine independent microprogramming language).
During the years that followed, design tools were developed and
applied 2'3'u. Currently the system is being extended and used for
two designs.
Similar systems have been concurrently developed at the
CarnegieMellonUniversity5 and at the MITE . Huang combined ideas
of the Carnegie-Mellon system and our system'.

2.1 The language MIMOLA
A language, which is used at several design levels, has to be able
to describe several levels of details. Therefore MIMOLA supports a
PASCAL-like level as well as RT-levels8. (In the CONLAN project9, a
different approach is used: a family of languages is derived from a
common base language).

The MIMOLA Design System 225

This means that e.g. instruction bits I.BIT(17:9) contain the
value 100. These bits are used at the address input of memory port
SM-A.
Multiplexers, ALU's, decoders and busses may also be included in
completely bound programs. This is necessary in order to use
MIMOLA for lower design levels.
But it is not sufficient to allow procedural descriptions of
programs. For automatic generation of hardware tests, for
retargetable code generation, for chip layout generation etc. it is
necessary to include non-procedural descriptions of hardware
structures in the language.
Examples (these examples make use of changes to the implemented
syntax)

226 P. Marwedel

For example, variables have to be replaced by memory locations,
high-level language elements like FOR-Loops have to be replaced by
register-transfer statements and unimplemented operations to be
replaced by routines. MIMOLA allows an explicit definition of
these normally implicit replacements.

CONST-, TYPE- and VAR-declarations are implemented as shorthands
for these replacements. Underscore-suffixes of the keyword
REPLACE are used for making replacement rules available to newly
designed software tools without changing the syntax of MIMOLA.

2.2 Specification of the design problem

In the introduction we mentioned that a design with MIMOLA starts
with application programs. Type and number of programs have to be
selected such that they sufficiently represent the application
areas of the projected computer. In this context, the term
'application programs' includes the operating system, compilers,
editors etc.
The programs specify, which type of a processor is to be
designed. If signal processing programs are used, signal
processors will be synthesized. Similarly, array processing
programs will lead to array processors etc. General purpose
computers may be designed by using a broad spectrum of
applications as input. In general, hardware architectures will be
structured according to the structure of the applications.
The specification has to be written in MIMOLA. The task of
converting e.g. PASCAL programs to MIMOLA does not present many
problems.
Semantics of MIMOLA is predefined only at the RT-level. Semantics
of high-level MIMOLA is defined by a set of substitution rules
(called macros), which define a mapping from high-level MIMOLA to
RT-level MIMOLA. This allows us, for example, to translate both
PASCAL and FORTRAN DO-loops into MIMOLA DO-loops and to define the
semantics by different mappings to the RT-level. Substitution
rules are always required as a part of the specification. However,
users do not have to develop these rules themselves but select
them from a library.
The functional behaviour of programs is not specified by the
programs alone. Normally, information about overflow traps,
index checking, protection etc. is implicit. This information
has to be made explicit in the problem specification. Index
checking, for example, may be included in the substitution rules
for arrays.
A simulator is included in the MIMOLA CAD-system. It may be used
to check if the programs perform the intended function.
The synthesized hardware may be less optimal for rarely executed
parts of the programs. Therefore the CAD-system has to know the
relative importance of the different parts of the application pro-
grams. To this end, weights or estimated frequencies of execution
have to be inserted into the programs. There are various possible
sources for this information:
- In certain cases, mathematical analysis is possible'°. - If the
programs are executable somewhere, their execution may be

The MIMOLA Design System 227

monitored by hard-, soft- or firmware-monitors. -The MIMOLA
simulator is able to insert the frequencies into the programs
automatically.

The specification is completed by a set of boundary conditions.
These boundary conditions may prescribe the number and/,or type of
ALU's to be used, the number of memory ports, the instruction
fields and the data paths. The amount of restrictions may range
from empty to a complete specification of a target architecture
(in the last case the synthesis part of the system is not used).
Resources (like ALU's and memories) which are to be used, may be
completely described in a library. This description may contain
low-level information such as the required VLSI-chip area.- This
allows us to use elements of a bottom-up design style in our
top-down design. For example, the library may contain a
TTL-catalogue.

2.3 Transformations applied to the problem description

In order to produce the desired results, the MIMOLA software
system (MSS)" applies several transformations to the set of
application programs. Fig. 1 shows how these transformations are
related.

2.3.1 Translation of MIMOLA programs into an intermediate language

In order to simplify all following transformations, MIMOLA
programs are translated to an intermediate language which closely
mirrors the flow of control and of data. The intermediate
language is similar to intermediate tree languages used in
compiler development projects"' 13.

2.3.2 Mapping of the programs to the RT-level

This transformation replaces all high-level language elements,
such as CALL, FOR and WHILE, by assignments and simple
conditions. This replacement uses the already mentioned
substitution rules. These substitution rules provide the
flexibility which is required for studies of the tradeoffs

replaces the divide operation by a call to a routine called
Mdivide. These replacements are useful especially in design
iterations when the statistical evaluation (cf. 2.3.8) found that
the divide hardware is rarely used.
Binding variables to memory locations may be done explicitly in
the application programs, by standard substitution rules collected
in a library or by an automatic optimizing memory allocator. Thus
the system designer is free to choose between different addressing
mechanisms. For example, the library may provide substitution
rules for static allocation and for dynamic allocation using the
index register-technique or Tanenbaum's proposal"`. Therefore it
is possible to study hardware implications of the different
techniques. Static allocation is useful even for PASCAL
application programs. We are just designing an array processor for
algorithms written in PASCAL. In that particular case, recursive
procedures will never be used.

Fig.1 Synthesis of hardware structures with MSS

The MIMOLA Design System 229

2.3.3 Detection of parallelism

We put special emphasis on the design of machines with instructions
similar to horizontally microprogrammable machines since we found
out that these machines offer performance improvements over
classical sequential machines '5 and because the control part of
these machines seems to be less complex than for machines with
several instruction streams. Furthermore, there is an underlying
microarchitecture for most of the sequential machines and therefore
tools for the design of parallel microarchitectures are needed even
if sequential machines are to be designed.
In order to faciliate the tasks of hardware synthesis and of code
generation for parallel machines, application programs are made
more parallel. This means that blocks of statements are coalesced
such that the number of statements executable in parallel is
increased.
This transformation is based upon control flow and data
dependence. It is not easy to decide if data dependence exists on
the registertransfer level at compile time.
In our design system, two memory references are considered as
datadependent, if memory names and the expressions for the
calculation of effective addresses are equal. They are considered as
independent, if memory names are different or if they belong to
different nonformal variables or if the effective addresses differ
by a non-zero constant. In all other cases, memory references are
considered as potentially dependent.

may be executed in parallel if the data dependence is removed by
copying the right side of the first statement to the right side of
the

230 P Marwedel

Our design system does not only coalesce straight line sequences
but also coalesces blocks with more than one dynamic successor with
the following blocks. At present, FOR-loops are not automatically
converted into parallel execution of all instances of the loop and
procedure calls are not modified. Both transformations would be
required for multi-instruction stream processors " .

2.3.4 Simulation

Application programs may be validated by using simulations. In
addition, the simulator is able to compute dynamic frequencies of
execution. These frequencies may be added to the programs.
Figure 2 describes some details of the simulation subsystem:

Fig. 2 Simulation - subsystem (Detail of fig. 1)

2.3.5 Synthesis
Synthesis procedures generate an RT-level description of the
synthesized computer. This description specifies used ALU's,
memories, path-switching circuits and their interconnections on a
level corresponding to the description of MODULE B74xyz above.
Synthesis procedures try to generate a hardware, which allows as
many parallel operators as can be used by the program. However,
boundary conditions may be used to limit the number of memory
ports, ALU's etc. The synthesis part of the MSS tries to generate
the fastest hardware structure which does not violate the given
boundary conditions.
Algorithms, which would generate the optimum hardware in a single
step would be too complex. Therefore synthesis has to be broken
down into a series of steps such that each step has a manageable
complexity. We decided to use the following steps:

 The MIMOLA Design System 231

1. Computation of the number of resources which would be necessary
 to execute each parallel block in a single step.
2. Interactive definition of the number of allowed resources.
3. Splitting of parallel blocks into sequences of blocks such that
 each block may be executed in a single step. During this trans
 formation it may be necessary to split complex statements and
 therefore temporary locations, holding intermediate results, are
 generated.
4. Arithmetic/logic operations within each block are counted and
the
 result is used to compute a sufficient number of function boxes
 such that the total cost for function boxes is minimal. Costs
may
 be declared for predefined function box types. The optimization
 uses an integer linear programming algorithm';.
5. The next step assigns hardware resources to operations in the
 program. Memory ports are assigned to read and write operations,
 function boxes to arithmetic/logic operations and instruction
 fields to constants. The assignment is done such that the
minimum
 number of new data paths is required for each scanned block.

At the end of this step, a complete description of the hardware
structure is known. In addition, the application programs have
been bound to the available hardware. This means that the pro-
grams describe which part of the hardware structure is used to
perform a certain operation (section 2.1 contains an example of
a bound statement).

2.3.6 Bit pattern generation

Instruction bit patterns may be easily obtained by scanning
completely bound programs for instruction bit definitions (see
section 2.1).

2.3.7 Translation into MIMOLA

A readable form of bound programs may be obtained by a translation
from the intermediate language into MIMOLA. MIMOLA is general
enough to allow this translation.

2.3.8 Architecture assessment and preparation of design decisions

We assume that for quite a number of years it will not be possible
to autmatically generate sufficiently optimized designs. The ideas
of human designers will be needed to improve the design. Our
system allows the human designer to bring in his own ideas by
modifying the design and to iterate the design process. Our design
system aids the designer by providing data upon which design
decisions may be based. Furthermore, our system assesses the value
of the designer's decisions. Both functions are provided by the
timing-evaluation processor of the MSS. This processor
- searches for bottle necks such as critical data paths,
- searches for resources, which, with respect to their cost, are
 insufficiently used,
- searches for resources which could be a substitute for insuffi
 ciently used resources (computation of joint probabilities of re
 source usage),
- computes an estimated performance.
A good estimate for the performance is the expected runtime of the

232 P. Marwedel

programs contained in the specification. Runtime is computed by
computing the time to complete each of the generated instructions
and then multiplying by the estimated frequencies of execution (cf.
section 2.2):

Runtime is easily computed by using the completely bound
intermediate language trees since these contain execution
frequencies and because the delay times declared in hardware
descriptions like (3) may be copied to the trees.
Three versions for the computation of instruction durations are
implemented in the MSS19:
1. Constant duration: The duration is the same for all
instructions and is equal to the time required to complete the
slowest instruction.
2. Instruction-dependent duration: For each of the instructions
duration is computed separately, using worst-case data. The
duration is either implicitly contained in the instruction or
compiled by the compiler and stored in a separate field of the
instruction (the Am2925 of AMD is designed to support just this
mode of operation 20). The use of instruction dependent durations
significantly reduces
runtime if long as well as short instructions exist. 3.
Instruction- and data dependent duration: This mode of operation
may be implemented by adding 'data-valid' tokens to all data
lines. If all tokens reached their destination, the next
instruction may be started (we assume that there is only one
instruction stream). A similar mode of operation is used in
selftimed systems21.

2.3.9 Design decisions

As mentioned in the previous section, design decisions are
necessary for optimizing the design. The designer's task is to use
the information provided by the system (e.g. runtime), to decide
which changes should be done, to change some of the inputs to the
MSS and the iterate the design process.
The different levels which are affected by the designers decisions
demonstrate very well how the MIMOLA design method spans over
several levels:
1. Changes of the delay time: These changes could be a result of
critical path analysis. They affect only the timing characteristics
of the RT-level modules, not their function. For example,
Schottky-TTL could be used instead of the Low-Power Schottky TTL.
Or a path could be moved from polysilicon to metal. Thus, these
changes are changes at a low level (possibly the layout level). 2.
Changes of the function select codes: These changes only affect the
internal structure of the RTL modules, still their function is not
modified. The level is somewhat higher than the previous one. 3.
Changes of the functions of the RTL-modules: In certain cases,
functions should be added or deleted. For example, joint
distributions for the use of functions may indicate that a special
"DECREMENT" function in module 1 is not required because module
2 is able to subtract and is always idle when module 1 is
decrementing. These changes affect only the RTL modules but not the
system itself.
4. Changes of the number of invocations of the hardware resource

 The MIMOLA Design System 233

types: These changes affect the speed of the microarchitecture.
Its functional capabilities are unchanged as long as there is at
least one resource of each type. 5. Changes of the
interconnections: Rarely used connections may be deleted if they
are not absolutely necessary (for example, a bus which increases
parallelism may be deleted; an interrupt request line may not be
deleted). These changes possibly affect the functional
capabilities of the microarchitecture. 6. Changes in the mapping
of the programs to the RT-level: Example: Using Tanenbaum's
proposal instead of the index-register technique
(display-technique) for addressing variables, implementing certain
functions in software instead of hardware. In this case, the
mapping to the RT level has to be repeated. 7. Changes in the
application programs, or even in the algorithms Example: It may
turn out that a particular sorting algorithm does not contain
enough parallelism to obtain the desired speed. In this case the
hardware design cycle has to be reiterated from the beginning.
The synthesized architecture also has to be evaluated in terms of
cost. This evaluation of course is technology-dependent. An older
version of the MSS computes costs of realizations in TTL. This
computation is based upon a paper by Phister 22 and described in a
paper by Zimmermann 3. For VLSI it is necessary to predict the
required chip area. Some research is going on in this direction
23,

2.3.10 Retargetable code generation

To a certain extent generated hardware structure may be modified by
changing the boundary conditions and initially design iterations
should be done by using the synthesis part of the MSS. However, as
ideas about the hardware structure become more and more precise,
only minor changes to the generated hardware description are to be
made (e.g. a single path is to be removed). After such minor design
changes the hardware structure still is fully specified. Therefore
another run through the synthesis part of the MSS would make no
sense. However it would make sense to bind the application programs
to the modified hardware structure. There are several reasons for
this:
1. After illegal design changes the binding process would fail
and therefore represents a means for detecting such errors, 2.
Bound programs are useful for architecture assessments, 3. Bound
programs are required for obtaining binary code.
Because of these reasons we designed a code generator which is able
to bind application programs to hardware structures defined by a
hardware description. Such a code generator is called a
retargetable code generator. The code generator was written such
that it accepts a wide range of changes to generated hardware
descriptions. Therefore descriptions of many of the available
hardware structures are accepted by the code generator and it may
be used by its own, namely for generating code for
(micro-programmable) architectures which have not been designed
with the MSS. Maschines based on the AMD2900 series of chips may be
described nicely, for example.
There has been some work on retargetable code generators 13,24,25,26,
12,28. However, these approaches could not be used for our system,
because with the exception of Baba's MPG system the systems are
unable to produce parallel microcode. In addition, our design
itera-

234 P. Marwedel

tions require that the target machine may be changed in less than
a day. Changes of the target machine normally are less frequent
and require e. g. one month of work 25. On the other hand, speed
of compilation is of secondary importance. Baba's system would be
somewhat hard to use since it employs a hardware description which
is not directly related to the resources at the register-transfer
level, namely data paths, adders etc. Some hardware design systems
are able to produce code for the architectures they synthesize
7,29. However, they are unable to produce code for user defined
architectures and therefore don't allow a large range of manual
design modifications.
Our code generator works similar to the last step of the synthesis
part of the MSS in that it assigns hardware to the program. In con-
trast to the synthesis part however, it does not create new
hardware resources and uses a larger set of program
transformations. This larger set of program transformations is
required i.e. in order to bind programs to user-defined
architectures. Transformations using neutral elements of
operations, the law of commutativity, and 'reflected' operations
(e.g. "<=" and ">=" form a pair of reflected operations) are
standard. Others may be defined by the user. There is a 'tiny
expert system' built into the code generator which tries to apply
useful transformation rules. During the first phase of code
generation, our system computes the different possibilities which
exist for the execution of statements. According to Mallet30, the
different possibilities for assigning hardware to the knots of the
partially bound treesare called versions. Example: the completely
bound assignment statement (2) is one possible version of the par-
tially bound assignment statement (1).
The second phase selects a version for every partially bound state-
ment and packs versions into microinstructions. Several algorithms
for microinstruction packaging are known 30. We use a modified
LINEAR algorithm.

The code generator is included in Fig. 3.

 The MIMOLA Design System 235

2.3.11 Test Generation
The increasing complexity of VLSI chips calls for an improved test
generation and for easily testable designs. It is well known that
the automatic generation of tests from a hardware description is
feasible3l. Our system generates tests for stuck-at errors for
declared interconnections and for the functions of hardware
modules. Hardware structures, for which no test can be generated
automatically should be modified before the design continues.

3. APPLICATIONS

3.1 Scientific Subroutine Package

The first application of the design method was the design of a
processor for scientific computations. These were represented by
IBM's scientific subroutine package (SSP). A major part of this
package was translated into MIMOLA. After two design iterations
(using an early version of the MSS) it was decided to implement an
architecture containing five function boxes in hardware. The
architecture is about as complex as the MODCOMP II minicomputer
(equivalent to a midrange PDP-11). It is about 25 times faster as
the MODCOMP 15.

3.2 Redesign of a SIEMENS 7.000-type machine

In a second application, we used a functional description of the
instruction set of a SIEMENS 7.000-type machine as a design
specification. Although the specification level is lower than we
intended, the design method proved to be useful.
A functional description of the instruction set was written in
MIMOLA. Weights were known from benchmarks. After several design
iterations, a machine was obtained, which was slightly faster
than a SIEMENS 7.750. The design of a machine being as fast as a
SIEMENS 7.760 is feasible. A surprising result was the reduction
of the size of the microcode to 15 $ of the SIEMENS design.
This example shows that the design space was too small to improve
the performance of the SIEMENS architecture. However, the design
was done by one student as his master thesis. A reduction of the
design time is obvious. The the sis32 not only describes the
architecture but also contains the complete microcode. This is an
example of the integrated design of hard- and firmware.

3.3 Design of a processor for graphic layout

Modern electronic equipment is now used for the reproduction of
fotos in magazines and books. During the layout of pages, fotos are
frequently modified. Scale changes, rotations and colour
corrections are frequent transformations. Current processors are
either too slow or too expensive to allow these transformations to
be done interactively. As a part of a recently completed thesis33,
these transformations have been written in MIMOLA. Hardware
structures for these programs were obvious and could be specified
manually. The MSS was used in order to bind these programs and to
predict performance. Results indicate that a reduction of runtimes
from half an hour (on a special purpose hardware) to less than a

 236 P. Manvedel

3.4 Design of a processor specified by an operating system
In another application, the kernel of an operating system has been
translated into MIMOLA. In this application a hardware monitor was
used in order to obtain execution frequencies. The designed
machine will be built up in hardware and is expected to be 14
times faster at twice the cost of a commercial minicomputer (using
estimated manufacturing costs).

CONCLUSION

A design system has been described which may be a stepping stone
for the development of tools for the design of VLSI computers. The
design system uses concepts of compiler construction (e.g. code
generation) and hardware oriented concepts (e.g. function boxes).
It is supported by a language which is able to describe software
and hardware. Computers, which were designed with the MIMOLA
system, bear comparisons with manual designs.

ACKNOWLEDGEMENT

This paper would have been impossible without the ideas of G.
Zimmermann. In addition, many students contributed to the MIMOLA

REFERENCES
1. Zimmermann, G., Eine Methode zum Entwurf von Digitalrechnern mit

der Programmiersprache MIMOLA, Informatik Fachberichte, Vol. 5,
Springer, 1976

2. Zimmermann, G., The MIMOLA Design System: A Computer Aided
Digital Processor Design Method, Proc. 16th Design Autom.Conf.,
1979, pp. 53-58

3. Zimmermann, G., Cost Performance Analysis and Optimization of
Highly Parallel
 Computer Structures: First Results of a Structured Top Down
Design Method,

 Proc. 4th Int.Conf.on Computer Hardware Description Languages,
1979, pp.33-39
4. Marwedel, P., The MIMOLA Design System: Detailed Description of

the Software System, Proc. 16th Design Automation Conf., 1979,
pp. 59-63

5. Hager, L.J. and Parker, A.C., Automated Synthesis of Digital
Hardware, IEEE Trans. Comp., 31, 2 (1982), pp. 93-109

6. Miranker, G.S., The Use of Conflict in the Translation and
Optimization of Hardware Description Languages, Ph.D. Thesis,
MIT, 1979

7. Huang, C.-L., Computer-Aided Logic Synthesis Based on a New
Mufti-level Hardware Description Language, Ph.D. Thesis, State
University of New York at Binghampton, 1981

8. J6hnk, R. and Marwedel, P., MIMOLA Language Reference Manual,
Revision 2, Report of the Institut f. Informatik and Prakt.
Mathem., Kiel, 1984 (in preparation)

9. Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill, F.
and Skelly, P., CONLAN - A Construction Method for Hardware
Description Languages, Proceedings Nat.Comp.Conf., Vol. 49,
1980

10. Knuth, D.E., The Art of Computer Programming, Addison
Wesley, 1975

11. Jöhnk R., Krager, G. and Marwedel, P., MIMOLA Software
System 2 User's Guide, on-line documentation

The MIMOLA Design System 237

12. Cattell, R.G.G., Formalization and Automatic Derivation of
Code Generators, Ph.D. Thesis, Carnegie Mellon University,
Pittsburgh, 1978

13. Schmidt, U. and Völler R., Die formale Entwicklung der
maschinenunabhängigen Zwischensprache CAT, Informatik
Fachberichte, Vol. 50, Springer, pp. 57-64

14. Tanenbaum, A.S., Implications of Structured Programming for
Machine Architecture, CALM, Vol. 21, 1978, pp. 237-245

15. Marwedel, P., The Design of a Subprocessor with Dynamic
Microprogramming with MIMOLA, Informatik Fachberichte, Vol. 27,
Springer, pp. 164, 1980

 16. Kuck, D.J., The Structure of Computers and Computations, p. 111,

Wiley, 1978
17. Plas, A. et al., LAU System Architecture: A Parallel Data

Driven Processor Based on Single Assignment, Int.Conf. on
Parallel Processing, 1976, pp. 293302

 18.Langmaack, H., Gomory I, Collected Algorithms of the

ACM,Algorithm 263A,1978
19. Marwedel, P., Statistical Studies of Horizontal Microprograms,

Proc. 5th Int. Conf. on Computer Hardware Description Languages,
Kaiserslautern, 1981

20. Advanced Micro Devices Bipolar Microprocessor Logic and
Interface Data Book, 1981

21. Seitz, C.L., System Timing, in: Mead, C.A. and Conway, L.,
Introduction to VLSI Systems, Addison-Wesley, 1980

 22. Phister, M., Analyzing Computer Technology Costs, Computer

Design, Sept. 1978
23. Anceau, F., Working Material, Advanced Course on VLSI

Architecture, Bristol, 1982
24. Baba, T. and Hagiwara, The MPG System: A Machine-Independent

Efficient Microprogram Generator, IEEE Trans. on Computers, Vol
C30, 6 (1981)

25. Landwehr, R., Jansohn, H.-St. and Goos, G., Erfahrungen mit
einem automatischen Code-Generator, Conf. on Implementation of
PASCAL-like languages, Kiel, 1981

26. Glanville, R.S., A Machine Independent Algorithm for Code
Generation and its Use in Retargetable Compilers, Ph.D. Thesis,
University of California, Berkeley, 1978

27. Miranker, G.S., The Use of Conflict in the Translation and
Optimization of Hardware Description Languages, Ph.D. Thesis,
MIT, 1977

28. Ganapathi, M., Fischer, C.N. and Hennessy, J.L., Retargetable
Compiler Code Generation, acm computing surveys, Vol. 14,
1982, pp. 573-592

29. Snow, E.A., Siewiorek, D.P. and Thomas, D.E., A
Technology-Relative ComputerAided Design System: Abstract
Representations, Transformations, and Design Tradeoffs, Proc.
16th Design Automation Conf., 1978, pp. 220-226

30. Mallett, P.W., Methods for Compacting Microprograms, Ph.D.
Thesis, University of Southwestern Louisiana, Lafayette, 1978

31. Lai, K.-W., Functional Testing of Digital Systems, Report
CMU-CS-81-148, Carnegie-Mellon University, Pittsburgh, 1981

32. Krüger, G., Entwurf einer Rechnerzentraleinheit fur den
Maschinenbefehlssatz des SIEMENS Systems 7.000 mit dem
MIMOLA-Rechnerentwurfssystem, Diploma Thesis, University of
Kiel, Kiel, 1980

33. Schulz, T., Entwicklung schneller Prozessoren zur
Bildbearbeitung, Diploma Thesis, University of Kiel, Kiel,
1983

