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This paper describes a method for the automatic generation of the internal structure 
of digital processors from a specification of the required behaviour. The latter is 
specified by a high-level, PASCAL-like program. The internal structure is described in 
terms of memories, arithmetic/logic function boxes, multiplexers and their 
interconnections. In order to reduce the complexity of the design process, it 
is,partitioned into a sequence of individual steps. These steps include a flexible 
expression decomposition, a statement scheduling phase, anew module selection method 
and optimizations of interconnections and instruction word length. 

1. Design Specification 
 
The manual design of digital systems is a timely 
and errorprone process. While the complexity of 
digital systems is still increasing, there is a 
demand for shorter design times. Cutting design 
times can only be achieved by the use of new design 
techniques. Therefore, there is a growing interest 
in methods for the synthesis of digital processors 
from a description of the required behaviour. 
 
There are several levels of abstraction on which 
the required behaviour can be specified. In order 
to open a large design space, the behaviour should 
be specified on a level as high as possible. 
 
A common form of design specifications for digital 
processors is the description of an instruction 
set, which is to be implemented. 
 
However, there are cases, where such a 
specification would restrict the design space more 
than necessary. As an example, consider the design 
of a processor for some dedicated application, like 
the design of a simulation engine. The only 
behaviour of such a processor, which can be 
monitored from the outside world, is the behaviour 
of the programs running on it. It does not matter, 
which instruction set the machine is executing. 
Therefore, programs can be used to specify the 
desired behaviour of digital processors. This 
approach was first proposed by G. Zimmermann [1]. A 
design specification describing the desired 
behaviour by programs is called a specification on 
the algorithmic level. Starting on the algorithmic 
level allows the design procedure to tailor the 
instruction set to the particular application. The 
instruction set is generated during the design and 
there is no need to specify it from the beginning. 
The instruction set may be constructed such that 
using the poten 

tial parallelism of VLSI technology is simplified. 
 
Frequently, however, designers will still have to 
design machines with a given instruction set. 
Fortunately enough, this turns out to be a special 
case of an algorithmic specification. Instruction 
set semantics are usually described by an 
interpreter, for example in ISPS. Interpreters, 
however, are special programs and therefore can be 
used as an input to a synthesis system using 
algorithmic specifications. 
 
This special case, frequently leads to confusion 
because two different instruction sets are 
involved: the instruction set interpreted by the 
interpreter and the instruction set of the machine 
to be designed. The latter is implemented in 
hardware and is frequently called microinstruction 
set. In this paper, we will refer to instructions 
implemented in hardware simply as "instructions" 
since the second level of instructions may be 
missing. 
 
Because of the advantages of algorithmic 
specifications,we designed a synthesis system 
startting on that level. This system uses MIMOLA 
(machine independent microprogramming language) 
[2] as its design language. MIMOLA has been 
changed recently to include most of PASCALs 
features. Hence, the algorithmic level in our 
sense includes e.g. recursive procedure calls and 
references to arrays with an arbitrary number of 
dimensions. The design system itself is called 
MIMOLA Software System (MSS). 
 
Usually there will be a large variety of machines 
being able to perform the desired behaviour. 
Therefore, it is necessary to restrict the design 
space in a number of ways. The following are the 
most important restrictions accepted by our design 
system: 
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1. Limitation of the number of instruction bits 
for immediate data and addresses. E.g., it is 
possible to specify that at most 24 bits per 
instruction are allowed. 

 
2. Specification of a set of available 

arithmetic/logic units (ALUS). This restriction 
is obviously required if the design has to be 
implemented using discrete devices like 
TTL-circuits. It is also required, if the 
design system is to be extended into a standard 
cell silicon compiler. 

 
3. Specification of available data memories. Our 

previous experience indicates that there are 
only few choices for data memories. Therefore 
it is possible to completely specify all data 
memories to be used in the design, repeat the 
design process for possible other choices and 
then compare the resulting designs. 

 
One important parameter of random access 
memories is their number of ports, that is, 
their maximum number of simultaneous accesses 
to different memory locations.Small memories 
are usually implemented as 2- or 3- port 
memories.' Larger memories frequently are 
single-port memories, but pseudo multiport 
memories can be built using memory banks and 
crossbar switches. 

 
In addition to the specification of the desired 
behaviour and the set of design contraints, our 
design system needs some additional information on 
how to link behavioural and structural domains. 
This information is concerned with the 
implementation of high-level programming elements 
(like procedure calls) in hardware. Examples are 
given below. 
 
The following is a sample of a complete design 
specification in MIMOLA. Due to space constraints, 
this sample is much shorter than typical design 
specifications. The syntax used in this example 
reflects version 4.0 of the design system. 
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The keyword STRUCTURE indicates that the following 
lines describe the internal structure of the CPU - 
system. At the present state of the design, this 
structure is only incompletely described. For 
example, the instruction format and 
interconnections between modules are not yet 
included. The purpose of this partial structure 
description is to restrict the design space. 
B7483 and B74xy are available ALU-types. Their 
presence in the design specification does not imply 
that any of these is present in the final design. 
The design system is responsible for selecting an 
appropiate number of copies of these types. 
 
SR and SM are two data memories. SR is a small 
memory allowing simultaneous access to at most 
three different locations via ports P1, P2 and P3. 
SM is a larger memory with a single port. SR and SM 
are copies of module types SS and S4k, 
respectively. The design system has to use these 
and no other copies. 
 
Module type RP, by convention, denotes the program 
counter. 
 
Variables declared in the program need some memory 
space. In the example, locations 0 to 4095 of SM 
are available for this purpose. Memory space for 
intermediate results is to be taken from the set 
SR[3..7] of locations. 
 
The next lines tell the system, how WHILE loops 
and GOTO - statements are to be implemented. Each 
of the two replacement-rules defines a program 
transformation. Identifiers starting with an 
&-sign denote parameters. &expr, for example, 
corresponds to the expression, which is tested for 
each iteration of the while loop. 
 
The keyword PROGRAM introduces the section 
describing the desired behaviour. The current 
version of MIMOLA includes almost all PASCAL 
features. Not included are real numbers, the 
WITH-statement and enumeration types. Furthermore, 
MIMOLA contains a large number of additional 
features like bit level addressing and explicit 
parallelism. The latter is indicated by the 
keyword PARBEGIN. 
 
The design specifications like the one above are 
processed by the synthesis procedures of our 
MIMOLA Software System in order to generate 

the description of an RT-structure. 
2. Synthesis 
2.1 Decomposition of the design problem 
Design specifications share a property with 
conventional programs: they may well extend over 
hundreds and thousands of lines. Hence, synthesis 
algorithms with an execution time proportional to 
the length of the program are acceptable but any 
higher complexity cannot be tolerated. 
 
Hafer[3] demonstrated that modelling the design 
problem as a single optimization problem leads to 
an unacceptable complexity. Therefore, we partioned 
the design problem into a number of subproblems. 
 
This partioning of the design problem made it 
possible to implement the MSS as a number of 
independent PASCAL programs, called components. 
Communication between components is via 
intermediate files. 
 
2.2 Front-end tools 
 
MIMOLA design specifications are translated into 
intermediate files by a component called MSSF. MSSF 
checks for conformance to the MIMOLA syntax and 
compile-time semantics. 
 
MSSR is a component which maps high-level 
algorithmic programs to programs at the 
RT-behaviour level. At the RT-behaviour level, 
there is no high-level language element (except the 
IF-statement) and all operations (including 
computations of effective addresses) are explicit. 
 
For example, an application of the rule for 
transforming WHILE - loops will convert the 
WHILE-loop of our sample program into: 

Another task of MSSR is to assign memory locations 
to variables. Variables can be bound to locations 
either manually or automatically. For both 
methods, static bindings (like in FORTRAN) or 
dynamic bindings (on a run-time stack) can be 
generated. 
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MSSR generates an RT-level behavioural description 
which still contains IF-statements. In addition to 
the usual implementation of IFstatements by 
conditional jumps and unconditional assignments, 
MSS provides for hardwareimplemented conditional 
assignments and conditional expressions. 
Examples: 
The following forms are equivalent to the above 
example: 

Sequential execution is necessary for the first 
form and an implementation requires at least two 
instructions. 
In contrast, both assignments in the second form 
can be done in parallel. Therefore, it can be 
implemented by a single instruction if hardware 
resources are sufficient. 
It is hard to anticipate, which implementation will 
be the fastest under the constraints of limited 
hardware resources. Therefore the design decision 
is delayed by generating up to three different 
versions of control flow implementations in a 
component called MSSI. One of these versions is 
selected after the number of required instruction 
steps has been computed for each version. 
MSSF, MSSR and MSSI are three of the so-called 
front end tools. The execution of these tools 
precedes the execution of the synthesis algorithm 
(see Fig. 1). Other front-end tools are MSSS (a 
simulator capable of simulating RT-behaviour), MSSO 
(an optimizer for RT-programs) and MSSP (a 
component detecting possible parallelism). 

2.3 The synthesis subsystem 
2.3.1 Statement decomposition 
The synthesis system uses instruction bits in order 
to generate (address- and data-) constants. Design 
constraints may include a maximum for the number of 
immediate bits per instruction. Hence, complex 
statements, containing many constants, must be 
decomposed into a sequence of simpler statements 
not violating these design constraints. Required 
temporary variables must be introduced. 
For the present version of the MIMOLA system it is 
also assumed that there is no reassignment of 
hardware resources during the execution of a 
generated instruction. As a consequence, e.g. the 
number of memory references per instruction cannot 
exceed the number of memory ports. Therefore, 
statements containing many memory references must 
also be decomposed into simpler statements. 
 
Finding an optimal decomposition is known to be 
NP-complete. Traditional compiler techniques like 
[4] are optimal only for special cases. One of the 
frequent simplifications is ignoring the existence 
of common subexpressions. Our previous experience 
however indicates that taking advantage of common 
subexpressions is required for acceptable designs. 
Optimal algorithms, which do consider common 
subexpressions (e.g.[5]), do not handle general 
expressions. 
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We therefore developed a heuristic method. The 
virtue of this method is that it is very flexible 
with respect to different design constraints and 
that it takes advantage of common subexpressions. 
 
Let t be an arbitrary expression or assignment. 
Define treetoobig (t) such that treetoobig(t) is 
true if t cannot be evaluated in a single cycle 
and false otherwise. The precise definition of 
treetoobig includes the number of available memory 
ports, the upper limit for the total instruction 
length and predictions of the cost to implement 
arithmetic operations present in t. For example, 
treetoobig is true, if the number of memory 
references in t exceeds the number of available 
memory ports. 
 
Let t again denote an arbitrary expression or 
assignment. Define mostcomplex(t) to mean a 
subexpression a of t, where a is by a heuristic 
criteria the most complex subexpression of t, 
which can be assigned to a temporary variable 
without violating design constraints. In the MSS, 
mostcomplex selects a subexpression of t according 
to the following priority list: 
 

1. maximum number of memory references, 
2. maximum number of references to memories 
 not used to store intermediate results, 
3. common subexpressions, 
4. boolean subexpressions, 
5. left to right. 

 
E.g. if two subexpressions of t contain exactly 
the same number of memory references and one of 
them represents a common subexpression, it will be 
selected by mostcomplex. 

Fig. 2 is a flow tree representing this statement. 
Numbers in parentheses indicate the sequence, in 
which decompose traverses the tree. Reading from 
and writing to memories is simply denoted the name 
of the memory. 

decompose will deposit the following sequence of 
statements in the stack: 
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Frequently, no distinction is made between dd and ad 
(e.g. in [6]). As Vegdahl [7] points out, this 
prevents some blocks of code being moved as a 
whole. Therefore the distinction between the two 
relations is important. The definitions of dd and 
ad in [81 are applicable only to sequential blocks, 
because they make use of the order, in which 
statements are written. MIMOLA allows the user to 
specify parallel blocks like 
 
PARBEGIN a:=b; b:=a END. 

 
The two assignments are expected to interchange 
the contents of a and b and the order in which 
they appear in the program is redundant. The above 
definition can be applied to sequential as well as 
to parallel blocks. A more precise form is 
contained in [9]. 
 
Using dd and ad, the set of allowable schedules 
can be defined. Let MI(si) be the instruction 
allocated to si. Let MI(si)>MI(sj) denote that the 
execution of sj precedes that of si and let 
MI(si)_>MI(sj) denote that either MI(si) > MI(sj) 
or MI(si) = MI(sj). Then, the following conditions 
must hold: 

As .long as these conditions are met, many 
different scheduling algorithms may be used. In 
the MSS we modified the pairwise comparison 
algorithm [10] such that is does no longer rely on 
a strict order of statements. 
 
As the name indicates, the pairwise comparison 
algorithm compares statements pairwise for data 
dependence and resource constraint violations. This 
comparison is limited to statements contained in 
the same block. Hence, the complexity of the 
pairwise comparison algorithm grows quadratically 
with respect to the size of blocks and linearly 
with respect to the number of blocks. This 
complexity is equal to that of the statement 
decomposition phase, because decompose requires 
that common subexpressions within a block are 
detected. Detecting common subexpressions also 
requires a pairwise comparison of expressions. 
 
At the end of the scheduling phase, the behaviour 
of the RT-program has been decomposed into the 
behaviour of each of the instructions. The number 
of instructions for every version generated by 
MSSI therefore is known and the shortest 
instruction sequence can be selected. 
 
2.3•3 Register assignment 
 
After all statements have been assigned to one of 
the instructions, locations are assigned to 
temporary variables. Since optimizations at this 
step are limited to straight-line sequences of 
instructions, it is almost trivial: 
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duling phase the sequence of statements is frequently 

changed. Hence, too many locations would be required, if 

the allocation would already be done in the statement 

decomposition phase. 
 
 
 
 
2.3.4 Module selection 

 
 

The previous design steps did not synthesize an 

RT-structure. They just transformed the program such that 

the selection of hardware resources is simplified. The next 

design step now is the first of those which actually build 

up an RT-structure. 
 
 

As a result of the scheduling phase, arithmetic and logic 

operations in each of the instructions are known. We now 

use this knowledge in order to generate arithmetic/logic 

units (ALUs). 
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the IP-problem can be solved in less than 100 ms 
on a 1 Mips machine. 
 
If a program contains an operation which cannot be 
performed by any of the available module types, the 
MSS creates a new type being able to perform just 
the required operation. A warning is generated 
whenever this occurs. 
 
At the end of this design step, all major hardware 
components have been selected. However, behavioural 
level operations have not yet been bound to 
specific hardware modules. 
 
2.3.5 Generating interconnect 
 
Allocating hardware modules to behavioural level 
operations implies the existence of physical paths 
from source modules to sink modules. The problem is 
to find assignments of modules to operations such 
that the cost for interconnect is minimal. 
Unfortunately we are unable to predict the effect 
of such an assignment in terms of wiring area. We 
therefore use a simplified design objective: 
minimize the total number of paths! 
 
The optimization problem is formulated as follows: 
For each operation to be performed by one of the 
instructions, there is a set of matching hardware 
resources. E.g. for each arithmetic operation,there 
is a set of functional modules, which are able to 
perform this operation and for each constant (0-ary 
operation), there is a set of instruction fields of 
the required length. Now, for each operation find a 
resource from this set such that no resource is 
assigned to more than one operation per instruction 
and such that the minimal number of paths between 
resources is required. 

In the present implementation of the MSS, a 
branch-and-bound algorithm is used to solve this 
assignment problem. Unfortunately the complexity 
of this algorithm makes it impossible to generate 
globally optimal assignments. Therefore, it is 
necessary to solve the assignment -.problem for a 
few instructions at a time, starting with the most 
complex instructions. 
 
In case the above algorithm computes a solution 
requiring more than a single path to an input, 
multiplexers are generated by the MSS in a 
straight-forward manner. 
 
2.3.6 Generating control 
 
In the MSS we assume that the hardware is 
controlled by instructions with a format similar 
to horizontal microinstructions. More 
specifically,we assume that the direct encoding 
method [12] is used to control RT-modules: for 
each module with a control input, there is a 
corresponding instruction field f., which may be 
used to select one of the module's operations. 
Since not all the modules are used simultaneously, 
some of them may share instruction bits. 
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Optimization techniques similar to our's have been 
used by Takagi [13] and in the CMU-DA system [14]. 
The basic idea in both cases is modelling the 
problem as a clique partitioning problem. The 
heuristics used for solving the clique 
partitioning problem and the scheduling problem 
are very similar. 
2.3.7 Generating completely bound programs 
Using the results of sections 2.3.5 and 3.3.6, 
so-called completely bound programs can be 
generated. Completely bound programs explicitly 
specify all used hardware resources and all used 
instruction bits [15]. Completely bound programs 
may be processed by the back-end tools MSSM, MSSS, 
MSSB, MSSE and MSSG (c.f. Fig. 1). 
 
2.3.8 Sample output 
 
The following is a partial description of the RT-
structure generated for our sample input. Note 
that the instruction format and the 
interconnections between modules are now 
described. One copy of each of the ALU types B7483 
and B74xy has been selected. 

The interconnections with multiplexer MaU1 can be 
seen in Fig.4, which is a graphical representation 
of the resulting structure. Address 

inputs to SR and control inputs except to MaU1 have 
been omitted. 

Fig. 4 Synthesized RT-structure 
2.3.9 First results 
One of the earlier examples, which was used for 
testing the MSS, was the mergesort algorithm as 
described by Wirth [16]. The performance of the 
RT-structures created by the MSS was compared with 
the performance of an IBM/370 type machine. The 
results are shown in table 1.: 

Table 1: Performance and code of MSS designs 
The speed of the MSS designs is not a result of 
tailoring a machine to exactly one program. The 
synthesis algorithm does not, for example, hardwire 
constants (except zero). The resulting RT-structure 
is mainly influenced by some of the programs 
properties like addressing modes, used 
arithmetic/logic operators and the amount of bit 
level addressing. In a case study we analysed the 
effect of adding the mergesort algorithm to a 
behavioural specification con 
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sisting of the gomory-I algorithm. Except for a 
single bit wire, the resulting structure was the 
same. 
 
The MSS designs in table 1 require at most 22% more 
program code than the SIEMENS. This is a remarkable 
result, because the direct encoding scheme is 
believed not to lead to compact code. 
 
Flexibility has always been a design goal for the 
MSS. This allows us studying the effect of different 
design alternatives. Fig. 5 for example, is the 
result of a study comparing different addressing 
modes for variables. It turns out that the 
addressing mode significantly affects the number of 
executed instructions, even if 4 ALUs are present 
in the design. 

The results of the present MSS have been compared 
with those of an earlier version of the MSS, called 
MSS1 [171. 
 
MSS1 has been used to design a processor for a 
design specification consisting of the kernel of an 
operating system and some typical sections of 
PASCAL-programs. The MSS1 was not particularly 
successful in minimizing the number of data paths 
and therefore these have been reduced manually by 
about 50%. The resulting structure and the 
structure generated by the current MSS had the same 
number of paths. 

 
 
 
3. Other tools in the MSS 

 
3.1 Retargetable code generation 
 
To a certain extent generated hardware structures 
may be modified by changing the resource 
constraints. Design iterations initially should be 
done by using this method, that is, by executing 
the synthesis procedures for different design 
constraints. However, after a certain number of 
iterations, ideas about the hardware structure 
become more and more precise. As a result, the 
designer usually knows the structure he would like 

Hopefully, it is similar to a structure generated 
by the synthesis system. But, in order to take 
advantage of the ideas of human designers, it is 
necessary to allow manual modifications to 
automatically generated structures (c.f. Fig. 6). 

It is easy to document these changes because 
MIMOLA (in contrast to other languages) can be 
used for the description of the synthesis result as 
well as for the behavioural specification. The 
problem with manual changes is that they may 
result in an incorrect design. "Incorrect" means 
that the modified structure is not capable of 
executing the programs specifying the desired 
behaviour. 
 
Therefore we have to provide the user with tools 
enabling him to check correctness. We do so by 
including a so-called retargetable code generator 
in the MSS [181. This code generator tries to 
generate code for the machine described in the 
hardware description section of its input. This 
machine is called the target. If the code generator 
is able to generate code for a manually modified 
structure, the design is still correct. If it 
fails to do so, it is either incorrect or the code 
generator does not know enough "tricks". "Tricks", 
which are frequently used by human 
microprogrammers, represent a certain amount of 
knowledge. With MIMOLA it is possible to convey 
this knowledge to the MSS, because MIMOLA allows 
the user to define valid program transformations. 
These transformations are used by the code 
generator like in a tiny expert system. 
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This transformation is required for programming 
the AMD2900 series of bitslice chips. Hardwired 
zeroes exist at the input of the AMD2900 ALU. In 
order to pass these to the output of the ALU, the 
"AND"-function must be used. The suffix 
"CONDITIONALLY" indicates that this rule has to 
be applied only if its application results in 
good code. 
The code generator has been used for more than 20 
different targets. 
3.2 Test generation 
Because of the increasing problem of testing VLSI 
chips, we also designed a component MSST, which 
automatically generates self - test programs 
(diagnostics) from a given structural hardware 
description [19]. These programs are intended to 
be executed by the real hardware. 
 
Recently, an additional tool has been completed at 
the university of Aachen, Germany. This tool 
computes testability measures for a given hardware. 
The output of this tool as well as the output of 
MSST is intended to be used in design iterations 
in order to improve the testablity of an 
RT-structure. 
 
3.3 Back-end tools 
 
The synthesis subsystem, the code generator and the 
test generator are the three main components of the 
MSS. All three components generate completely bound 
programs. These programs as well as the description of 
the RT-structure can be processed by a set of 
components called back end tools. 
 
Probably the most important back end tool is MSSM. 
MSSM generates listings of the resulting 
RT-structures and completely bound programs. The 
language used for these listings again is MIMOLA. 
This is possible, because MIMOLA is able to 
describe RT-structures and completely bound 
programs. Therefore, the output of MSSM can be used 
as input to MSSF. This feature is necessary in 
order to support design iterations without having 
to learn two or more different languages. 
 
Another important tool is the simulator. The 
simulator is able to simulate the structure of the 
processor. It is based upon an analysis of the 
interconnections in the processor and therefore is 
able to detect unwanted sideeffects. 
 
The simulator allows the user to monitor the 
execution of the program on the target hardware. 
Note, that the user does not have to load the 
instruction memory manually because binary code is 
generated by the MSS. 

The simulator can be used to validate a design 
independently of the synthesis and code generation 
tools. This is especially valuable in order to 
detect errors made by these tools. 
A third back end tool is MSSB. MSSB generates an 
instruction memory map in human readable form. 
The purpose of MSSE is to evaluate the target 
structure. With the help of the simulator it 
computes the expected execution time of 'the 
program and generates utilization statistics for 
the RT-modules. 
In order to help visualizing the result of a design 
process we are currently implementing MSSG. MSSG 
will automatically convert textual hardware 
descriptions into schematics. MSSG is based upon an 
extension of an algorithm published in 1985 [20]. 
 
The back end tools as well as all other tools are 
implemented in standard PASCAL. The MSS has been 
installed on SIEMENS, VAX, Eclipse, Sun and Apollo 
computers. 

 
 
 
4. Conclusion 
 
Synthesis methods for the design of digital 
hardware are capable of producing correct designs 
in a short turn-around time. This paper deals with 
the synthesis of RT-structures from an algorithmic 
design specification. By carefully partitioning the 
design process into a sequence of subprocesses we 
have tried to reduce the complexity and to keep 
interactions between the subprocesses as small as 
possible. The partitioning was done such that 
design decisions are delayed as long as possible. 
The complexity of the resulting subprocesses allows 
synthesizing hardware for large design 
specifications.Probably the most remarkable 
achievement is the algorithm for selecting modules 
from a set of predesigned module types. This 
algorithm is both globally optimizing and very 
fast. 
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