

North-Holland
Microprocessing and Microprogramming 18 119861 251-262 251

An Algorithm for the Synthesis of Processor Structures from Behavioural Specifications

Peter Marwedel

Institut fur Informatik and Praktische Mathematik
Olshausenstr. 40-60, D-2300 Kiel. W. Germany

This paper describes a method for the automatic generation of the internal structure
of digital processors from a specification of the required behaviour. The latter is
specified by a high-level, PASCAL-like program. The internal structure is described in
terms of memories, arithmetic/logic function boxes, multiplexers and their
interconnections. In order to reduce the complexity of the design process, it
is,partitioned into a sequence of individual steps. These steps include a flexible
expression decomposition, a statement scheduling phase, anew module selection method
and optimizations of interconnections and instruction word length.

1. Design Specification

The manual design of digital systems is a timely
and errorprone process. While the complexity of
digital systems is still increasing, there is a
demand for shorter design times. Cutting design
times can only be achieved by the use of new design
techniques. Therefore, there is a growing interest
in methods for the synthesis of digital processors
from a description of the required behaviour.

There are several levels of abstraction on which
the required behaviour can be specified. In order
to open a large design space, the behaviour should
be specified on a level as high as possible.

A common form of design specifications for digital
processors is the description of an instruction
set, which is to be implemented.

However, there are cases, where such a
specification would restrict the design space more
than necessary. As an example, consider the design
of a processor for some dedicated application, like
the design of a simulation engine. The only
behaviour of such a processor, which can be
monitored from the outside world, is the behaviour
of the programs running on it. It does not matter,
which instruction set the machine is executing.
Therefore, programs can be used to specify the
desired behaviour of digital processors. This
approach was first proposed by G. Zimmermann [1]. A
design specification describing the desired
behaviour by programs is called a specification on
the algorithmic level. Starting on the algorithmic
level allows the design procedure to tailor the
instruction set to the particular application. The
instruction set is generated during the design and
there is no need to specify it from the beginning.
The instruction set may be constructed such that
using the poten

tial parallelism of VLSI technology is simplified.

Frequently, however, designers will still have to
design machines with a given instruction set.
Fortunately enough, this turns out to be a special
case of an algorithmic specification. Instruction
set semantics are usually described by an
interpreter, for example in ISPS. Interpreters,
however, are special programs and therefore can be
used as an input to a synthesis system using
algorithmic specifications.

This special case, frequently leads to confusion
because two different instruction sets are
involved: the instruction set interpreted by the
interpreter and the instruction set of the machine
to be designed. The latter is implemented in
hardware and is frequently called microinstruction
set. In this paper, we will refer to instructions
implemented in hardware simply as "instructions"
since the second level of instructions may be
missing.

Because of the advantages of algorithmic
specifications,we designed a synthesis system
startting on that level. This system uses MIMOLA
(machine independent microprogramming language)
[2] as its design language. MIMOLA has been
changed recently to include most of PASCALs
features. Hence, the algorithmic level in our
sense includes e.g. recursive procedure calls and
references to arrays with an arbitrary number of
dimensions. The design system itself is called
MIMOLA Software System (MSS).

Usually there will be a large variety of machines
being able to perform the desired behaviour.
Therefore, it is necessary to restrict the design
space in a number of ways. The following are the
most important restrictions accepted by our design
system:

252 P. Marwedel l An Algorithm for the Synthesis of Processor Structures

1. Limitation of the number of instruction bits
for immediate data and addresses. E.g., it is
possible to specify that at most 24 bits per
instruction are allowed.

2. Specification of a set of available

arithmetic/logic units (ALUS). This restriction
is obviously required if the design has to be
implemented using discrete devices like
TTL-circuits. It is also required, if the
design system is to be extended into a standard
cell silicon compiler.

3. Specification of available data memories. Our

previous experience indicates that there are
only few choices for data memories. Therefore
it is possible to completely specify all data
memories to be used in the design, repeat the
design process for possible other choices and
then compare the resulting designs.

One important parameter of random access
memories is their number of ports, that is,
their maximum number of simultaneous accesses
to different memory locations.Small memories
are usually implemented as 2- or 3- port
memories.' Larger memories frequently are
single-port memories, but pseudo multiport
memories can be built using memory banks and
crossbar switches.

In addition to the specification of the desired
behaviour and the set of design contraints, our
design system needs some additional information on
how to link behavioural and structural domains.
This information is concerned with the
implementation of high-level programming elements
(like procedure calls) in hardware. Examples are
given below.

The following is a sample of a complete design
specification in MIMOLA. Due to space constraints,
this sample is much shorter than typical design
specifications. The syntax used in this example
reflects version 4.0 of the design system.

P. Marwedel l An Algorithm for the Synthesis of Processor Structures 253

The keyword STRUCTURE indicates that the following
lines describe the internal structure of the CPU -
system. At the present state of the design, this
structure is only incompletely described. For
example, the instruction format and
interconnections between modules are not yet
included. The purpose of this partial structure
description is to restrict the design space.
B7483 and B74xy are available ALU-types. Their
presence in the design specification does not imply
that any of these is present in the final design.
The design system is responsible for selecting an
appropiate number of copies of these types.

SR and SM are two data memories. SR is a small
memory allowing simultaneous access to at most
three different locations via ports P1, P2 and P3.
SM is a larger memory with a single port. SR and SM
are copies of module types SS and S4k,
respectively. The design system has to use these
and no other copies.

Module type RP, by convention, denotes the program
counter.

Variables declared in the program need some memory
space. In the example, locations 0 to 4095 of SM
are available for this purpose. Memory space for
intermediate results is to be taken from the set
SR[3..7] of locations.

The next lines tell the system, how WHILE loops
and GOTO - statements are to be implemented. Each
of the two replacement-rules defines a program
transformation. Identifiers starting with an
&-sign denote parameters. &expr, for example,
corresponds to the expression, which is tested for
each iteration of the while loop.

The keyword PROGRAM introduces the section
describing the desired behaviour. The current
version of MIMOLA includes almost all PASCAL
features. Not included are real numbers, the
WITH-statement and enumeration types. Furthermore,
MIMOLA contains a large number of additional
features like bit level addressing and explicit
parallelism. The latter is indicated by the
keyword PARBEGIN.

The design specifications like the one above are
processed by the synthesis procedures of our
MIMOLA Software System in order to generate

the description of an RT-structure.
2. Synthesis
2.1 Decomposition of the design problem
Design specifications share a property with
conventional programs: they may well extend over
hundreds and thousands of lines. Hence, synthesis
algorithms with an execution time proportional to
the length of the program are acceptable but any
higher complexity cannot be tolerated.

Hafer[3] demonstrated that modelling the design
problem as a single optimization problem leads to
an unacceptable complexity. Therefore, we partioned
the design problem into a number of subproblems.

This partioning of the design problem made it
possible to implement the MSS as a number of
independent PASCAL programs, called components.
Communication between components is via
intermediate files.

2.2 Front-end tools

MIMOLA design specifications are translated into
intermediate files by a component called MSSF. MSSF
checks for conformance to the MIMOLA syntax and
compile-time semantics.

MSSR is a component which maps high-level
algorithmic programs to programs at the
RT-behaviour level. At the RT-behaviour level,
there is no high-level language element (except the
IF-statement) and all operations (including
computations of effective addresses) are explicit.

For example, an application of the rule for
transforming WHILE - loops will convert the
WHILE-loop of our sample program into:

Another task of MSSR is to assign memory locations
to variables. Variables can be bound to locations
either manually or automatically. For both
methods, static bindings (like in FORTRAN) or
dynamic bindings (on a run-time stack) can be
generated.

254 P. Marwedel l An Algorithm for the Synthesis of Processor Structures

MSSR generates an RT-level behavioural description
which still contains IF-statements. In addition to
the usual implementation of IFstatements by
conditional jumps and unconditional assignments,
MSS provides for hardwareimplemented conditional
assignments and conditional expressions.
Examples:
The following forms are equivalent to the above
example:

Sequential execution is necessary for the first
form and an implementation requires at least two
instructions.
In contrast, both assignments in the second form
can be done in parallel. Therefore, it can be
implemented by a single instruction if hardware
resources are sufficient.
It is hard to anticipate, which implementation will
be the fastest under the constraints of limited
hardware resources. Therefore the design decision
is delayed by generating up to three different
versions of control flow implementations in a
component called MSSI. One of these versions is
selected after the number of required instruction
steps has been computed for each version.
MSSF, MSSR and MSSI are three of the so-called
front end tools. The execution of these tools
precedes the execution of the synthesis algorithm
(see Fig. 1). Other front-end tools are MSSS (a
simulator capable of simulating RT-behaviour), MSSO
(an optimizer for RT-programs) and MSSP (a
component detecting possible parallelism).

2.3 The synthesis subsystem
2.3.1 Statement decomposition
The synthesis system uses instruction bits in order
to generate (address- and data-) constants. Design
constraints may include a maximum for the number of
immediate bits per instruction. Hence, complex
statements, containing many constants, must be
decomposed into a sequence of simpler statements
not violating these design constraints. Required
temporary variables must be introduced.
For the present version of the MIMOLA system it is
also assumed that there is no reassignment of
hardware resources during the execution of a
generated instruction. As a consequence, e.g. the
number of memory references per instruction cannot
exceed the number of memory ports. Therefore,
statements containing many memory references must
also be decomposed into simpler statements.

Finding an optimal decomposition is known to be
NP-complete. Traditional compiler techniques like
[4] are optimal only for special cases. One of the
frequent simplifications is ignoring the existence
of common subexpressions. Our previous experience
however indicates that taking advantage of common
subexpressions is required for acceptable designs.
Optimal algorithms, which do consider common
subexpressions (e.g.[5]), do not handle general
expressions.

P. Marwedel l An Algorithm for the Synthesis of Processor Structures 255

We therefore developed a heuristic method. The
virtue of this method is that it is very flexible
with respect to different design constraints and
that it takes advantage of common subexpressions.

Let t be an arbitrary expression or assignment.
Define treetoobig (t) such that treetoobig(t) is
true if t cannot be evaluated in a single cycle
and false otherwise. The precise definition of
treetoobig includes the number of available memory
ports, the upper limit for the total instruction
length and predictions of the cost to implement
arithmetic operations present in t. For example,
treetoobig is true, if the number of memory
references in t exceeds the number of available
memory ports.

Let t again denote an arbitrary expression or
assignment. Define mostcomplex(t) to mean a
subexpression a of t, where a is by a heuristic
criteria the most complex subexpression of t,
which can be assigned to a temporary variable
without violating design constraints. In the MSS,
mostcomplex selects a subexpression of t according
to the following priority list:

1. maximum number of memory references,
2. maximum number of references to memories
 not used to store intermediate results,
3. common subexpressions,
4. boolean subexpressions,
5. left to right.

E.g. if two subexpressions of t contain exactly
the same number of memory references and one of
them represents a common subexpression, it will be
selected by mostcomplex.

Fig. 2 is a flow tree representing this statement.
Numbers in parentheses indicate the sequence, in
which decompose traverses the tree. Reading from
and writing to memories is simply denoted the name
of the memory.

decompose will deposit the following sequence of
statements in the stack:

256 P. Marwedel l An Algorithm for the Synthesis of Processor Structures

Frequently, no distinction is made between dd and ad
(e.g. in [6]). As Vegdahl [7] points out, this
prevents some blocks of code being moved as a
whole. Therefore the distinction between the two
relations is important. The definitions of dd and
ad in [81 are applicable only to sequential blocks,
because they make use of the order, in which
statements are written. MIMOLA allows the user to
specify parallel blocks like

PARBEGIN a:=b; b:=a END.

The two assignments are expected to interchange
the contents of a and b and the order in which
they appear in the program is redundant. The above
definition can be applied to sequential as well as
to parallel blocks. A more precise form is
contained in [9].

Using dd and ad, the set of allowable schedules
can be defined. Let MI(si) be the instruction
allocated to si. Let MI(si)>MI(sj) denote that the
execution of sj precedes that of si and let
MI(si)_>MI(sj) denote that either MI(si) > MI(sj)
or MI(si) = MI(sj). Then, the following conditions
must hold:

As .long as these conditions are met, many
different scheduling algorithms may be used. In
the MSS we modified the pairwise comparison
algorithm [10] such that is does no longer rely on
a strict order of statements.

As the name indicates, the pairwise comparison
algorithm compares statements pairwise for data
dependence and resource constraint violations. This
comparison is limited to statements contained in
the same block. Hence, the complexity of the
pairwise comparison algorithm grows quadratically
with respect to the size of blocks and linearly
with respect to the number of blocks. This
complexity is equal to that of the statement
decomposition phase, because decompose requires
that common subexpressions within a block are
detected. Detecting common subexpressions also
requires a pairwise comparison of expressions.

At the end of the scheduling phase, the behaviour
of the RT-program has been decomposed into the
behaviour of each of the instructions. The number
of instructions for every version generated by
MSSI therefore is known and the shortest
instruction sequence can be selected.

2.3•3 Register assignment

After all statements have been assigned to one of
the instructions, locations are assigned to
temporary variables. Since optimizations at this
step are limited to straight-line sequences of
instructions, it is almost trivial:

P. Marwedel l An Algorithm for the Synthesis of Processor Structures 257

duling phase the sequence of statements is frequently

changed. Hence, too many locations would be required, if

the allocation would already be done in the statement

decomposition phase.

2.3.4 Module selection

The previous design steps did not synthesize an

RT-structure. They just transformed the program such that

the selection of hardware resources is simplified. The next

design step now is the first of those which actually build

up an RT-structure.

As a result of the scheduling phase, arithmetic and logic

operations in each of the instructions are known. We now

use this knowledge in order to generate arithmetic/logic

units (ALUs).

258 P. Marwedel l An Algorithm for the Synthesis of Processor Structures

the IP-problem can be solved in less than 100 ms
on a 1 Mips machine.

If a program contains an operation which cannot be
performed by any of the available module types, the
MSS creates a new type being able to perform just
the required operation. A warning is generated
whenever this occurs.

At the end of this design step, all major hardware
components have been selected. However, behavioural
level operations have not yet been bound to
specific hardware modules.

2.3.5 Generating interconnect

Allocating hardware modules to behavioural level
operations implies the existence of physical paths
from source modules to sink modules. The problem is
to find assignments of modules to operations such
that the cost for interconnect is minimal.
Unfortunately we are unable to predict the effect
of such an assignment in terms of wiring area. We
therefore use a simplified design objective:
minimize the total number of paths!

The optimization problem is formulated as follows:
For each operation to be performed by one of the
instructions, there is a set of matching hardware
resources. E.g. for each arithmetic operation,there
is a set of functional modules, which are able to
perform this operation and for each constant (0-ary
operation), there is a set of instruction fields of
the required length. Now, for each operation find a
resource from this set such that no resource is
assigned to more than one operation per instruction
and such that the minimal number of paths between
resources is required.

In the present implementation of the MSS, a
branch-and-bound algorithm is used to solve this
assignment problem. Unfortunately the complexity
of this algorithm makes it impossible to generate
globally optimal assignments. Therefore, it is
necessary to solve the assignment -.problem for a
few instructions at a time, starting with the most
complex instructions.

In case the above algorithm computes a solution
requiring more than a single path to an input,
multiplexers are generated by the MSS in a
straight-forward manner.

2.3.6 Generating control

In the MSS we assume that the hardware is
controlled by instructions with a format similar
to horizontal microinstructions. More
specifically,we assume that the direct encoding
method [12] is used to control RT-modules: for
each module with a control input, there is a
corresponding instruction field f., which may be
used to select one of the module's operations.
Since not all the modules are used simultaneously,
some of them may share instruction bits.

P. Marwedel l An Algorithm for the Synthesis of Processor Structures 259

Optimization techniques similar to our's have been
used by Takagi [13] and in the CMU-DA system [14].
The basic idea in both cases is modelling the
problem as a clique partitioning problem. The
heuristics used for solving the clique
partitioning problem and the scheduling problem
are very similar.
2.3.7 Generating completely bound programs
Using the results of sections 2.3.5 and 3.3.6,
so-called completely bound programs can be
generated. Completely bound programs explicitly
specify all used hardware resources and all used
instruction bits [15]. Completely bound programs
may be processed by the back-end tools MSSM, MSSS,
MSSB, MSSE and MSSG (c.f. Fig. 1).

2.3.8 Sample output

The following is a partial description of the RT-
structure generated for our sample input. Note
that the instruction format and the
interconnections between modules are now
described. One copy of each of the ALU types B7483
and B74xy has been selected.

The interconnections with multiplexer MaU1 can be
seen in Fig.4, which is a graphical representation
of the resulting structure. Address

inputs to SR and control inputs except to MaU1 have
been omitted.

Fig. 4 Synthesized RT-structure
2.3.9 First results
One of the earlier examples, which was used for
testing the MSS, was the mergesort algorithm as
described by Wirth [16]. The performance of the
RT-structures created by the MSS was compared with
the performance of an IBM/370 type machine. The
results are shown in table 1.:

Table 1: Performance and code of MSS designs
The speed of the MSS designs is not a result of
tailoring a machine to exactly one program. The
synthesis algorithm does not, for example, hardwire
constants (except zero). The resulting RT-structure
is mainly influenced by some of the programs
properties like addressing modes, used
arithmetic/logic operators and the amount of bit
level addressing. In a case study we analysed the
effect of adding the mergesort algorithm to a
behavioural specification con

260 P. Marwedel l An Algorithm for the Synthesis of Processor Structures

sisting of the gomory-I algorithm. Except for a
single bit wire, the resulting structure was the
same.

The MSS designs in table 1 require at most 22% more
program code than the SIEMENS. This is a remarkable
result, because the direct encoding scheme is
believed not to lead to compact code.

Flexibility has always been a design goal for the
MSS. This allows us studying the effect of different
design alternatives. Fig. 5 for example, is the
result of a study comparing different addressing
modes for variables. It turns out that the
addressing mode significantly affects the number of
executed instructions, even if 4 ALUs are present
in the design.

The results of the present MSS have been compared
with those of an earlier version of the MSS, called
MSS1 [171.

MSS1 has been used to design a processor for a
design specification consisting of the kernel of an
operating system and some typical sections of
PASCAL-programs. The MSS1 was not particularly
successful in minimizing the number of data paths
and therefore these have been reduced manually by
about 50%. The resulting structure and the
structure generated by the current MSS had the same
number of paths.

3. Other tools in the MSS

3.1 Retargetable code generation

To a certain extent generated hardware structures
may be modified by changing the resource
constraints. Design iterations initially should be
done by using this method, that is, by executing
the synthesis procedures for different design
constraints. However, after a certain number of
iterations, ideas about the hardware structure
become more and more precise. As a result, the
designer usually knows the structure he would like

Hopefully, it is similar to a structure generated
by the synthesis system. But, in order to take
advantage of the ideas of human designers, it is
necessary to allow manual modifications to
automatically generated structures (c.f. Fig. 6).

It is easy to document these changes because
MIMOLA (in contrast to other languages) can be
used for the description of the synthesis result as
well as for the behavioural specification. The
problem with manual changes is that they may
result in an incorrect design. "Incorrect" means
that the modified structure is not capable of
executing the programs specifying the desired
behaviour.

Therefore we have to provide the user with tools
enabling him to check correctness. We do so by
including a so-called retargetable code generator
in the MSS [181. This code generator tries to
generate code for the machine described in the
hardware description section of its input. This
machine is called the target. If the code generator
is able to generate code for a manually modified
structure, the design is still correct. If it
fails to do so, it is either incorrect or the code
generator does not know enough "tricks". "Tricks",
which are frequently used by human
microprogrammers, represent a certain amount of
knowledge. With MIMOLA it is possible to convey
this knowledge to the MSS, because MIMOLA allows
the user to define valid program transformations.
These transformations are used by the code
generator like in a tiny expert system.

P. Marwedel l An Algorithm for the Synthesis of Processor Structures 261

This transformation is required for programming
the AMD2900 series of bitslice chips. Hardwired
zeroes exist at the input of the AMD2900 ALU. In
order to pass these to the output of the ALU, the
"AND"-function must be used. The suffix
"CONDITIONALLY" indicates that this rule has to
be applied only if its application results in
good code.
The code generator has been used for more than 20
different targets.
3.2 Test generation
Because of the increasing problem of testing VLSI
chips, we also designed a component MSST, which
automatically generates self - test programs
(diagnostics) from a given structural hardware
description [19]. These programs are intended to
be executed by the real hardware.

Recently, an additional tool has been completed at
the university of Aachen, Germany. This tool
computes testability measures for a given hardware.
The output of this tool as well as the output of
MSST is intended to be used in design iterations
in order to improve the testablity of an
RT-structure.

3.3 Back-end tools

The synthesis subsystem, the code generator and the
test generator are the three main components of the
MSS. All three components generate completely bound
programs. These programs as well as the description of
the RT-structure can be processed by a set of
components called back end tools.

Probably the most important back end tool is MSSM.
MSSM generates listings of the resulting
RT-structures and completely bound programs. The
language used for these listings again is MIMOLA.
This is possible, because MIMOLA is able to
describe RT-structures and completely bound
programs. Therefore, the output of MSSM can be used
as input to MSSF. This feature is necessary in
order to support design iterations without having
to learn two or more different languages.

Another important tool is the simulator. The
simulator is able to simulate the structure of the
processor. It is based upon an analysis of the
interconnections in the processor and therefore is
able to detect unwanted sideeffects.

The simulator allows the user to monitor the
execution of the program on the target hardware.
Note, that the user does not have to load the
instruction memory manually because binary code is
generated by the MSS.

The simulator can be used to validate a design
independently of the synthesis and code generation
tools. This is especially valuable in order to
detect errors made by these tools.
A third back end tool is MSSB. MSSB generates an
instruction memory map in human readable form.
The purpose of MSSE is to evaluate the target
structure. With the help of the simulator it
computes the expected execution time of 'the
program and generates utilization statistics for
the RT-modules.
In order to help visualizing the result of a design
process we are currently implementing MSSG. MSSG
will automatically convert textual hardware
descriptions into schematics. MSSG is based upon an
extension of an algorithm published in 1985 [20].

The back end tools as well as all other tools are
implemented in standard PASCAL. The MSS has been
installed on SIEMENS, VAX, Eclipse, Sun and Apollo
computers.

4. Conclusion

Synthesis methods for the design of digital
hardware are capable of producing correct designs
in a short turn-around time. This paper deals with
the synthesis of RT-structures from an algorithmic
design specification. By carefully partitioning the
design process into a sequence of subprocesses we
have tried to reduce the complexity and to keep
interactions between the subprocesses as small as
possible. The partitioning was done such that
design decisions are delayed as long as possible.
The complexity of the resulting subprocesses allows
synthesizing hardware for large design
specifications.Probably the most remarkable
achievement is the algorithm for selecting modules
from a set of predesigned module types. This
algorithm is both globally optimizing and very
fast.

5. References

[1] G. Zimmermann : Eine Methode zum Entwurf von

Digitalrechnern mit der Programmiersprache
MIMOLA, Springer Informatik Fachberichte,
Vo1.6 1976, S. 465-478

[21 R. J6hnk and P. Marwedel: MIMOLA Language
Reference Manual, Revision 3, (in
preparation)

[3] L. Hafer and A. Parker: A Formal Method for
the Specification,Analysis and Design of
Register-Transfer Level Digital Logic, IEEE
Trans. on Computer-Aided Design, Vol. CAD-2,
1(1983), p.4-18

[4] B. Prabhala and R. Sethi : Efficient
Computation of Expressions with Common
Subexpressions, Journal of the ACM, Vol. 27,
10980), p. 146-163

262 P. Marwedel l An Algorithm for the Synthesis of Processor Structures

[5] R. Sethi and J.D. Ullman: The Generation of
Optimal Code for Arithmetic Expressions,
Journal of the ACM, Vol. 17, 40970), p.
715-728

[6] P.W.Mallett: Methods of Compacting
Microprograms,PhD thesis, University of
Southwestern Louisiana, Lafayette, 1978

[71 S.R. Vegdahl : Local Code Generation and
Compaction in Optimizing Microcode
Compilers PhD thesis, Report CMU-CS-82-153,
Carnegie-Mellon University, Pittsburgh,
1982

[8] D.A. Padua, D.J. Kuck and D.H. Lawrie
High Speed Multiprocessors and Compilation
Techniques, IEEE Trans. Comp., Vol. C-29,
9(1980), p. 763-776

[9] P. Marwedel: Ein Software-System zur
Synthese von Rechnerstrukturen and zur
Erzeugung von Mikrocode, habilitation
thesis, University of Kiel, Germany,
submitted sept. 1985

[10] S. Dasgupta and J. Tartar: The
Identification of Maximal Parallelism in
Straight- Line Microprograms, IEEE Trans.
Comp., Vol. C-25, 10(1976), p. 986-992

[11] H. Langmaack: Gomory I, Collected Algorithms
of the ACM, Algorithm 263A, 1978

[12] A.K. Agrawala and T.G. Rauscher: Foundations
of Microprogramming, Acadamic Press, New
York, 1976

[131 S. Takagi: Rule Based Synthesis,
Verification and Compensation of Data Paths,
Int. Conf. on Computer Aided Design (ICCAD)
1984, p.133-138

[14] C.-J. Tseng and D.P. Siewiorek : Facet
A Procedure for the Automated Synthesis of
Digital Systems,20th Design Automation
Conf., 1983, p. 490-496

[15] P. Marwedel: The MIMOLA Design System: Tools
for the Design of Digital Processors, 21st
Design Automation Conference 1984, p.
587-593

[16] N. Wirth, Algorithmen and Datenstrukturen,
Teubner, Stuttgart, 1975

[17] G. Zimmermann : MDS - The MIMOLA Design
Method, Journal of Digital Systems,Vo1.4,
30980), S. 337-369

[18] P. Marwedel : A Retargetable Compiler for a
High-Level Microprogramming Language, 17th
Annual Microprogramming Workshop (MICRO-17),
1984, p. 267-276

[19] G. KrUger: Automatic Generation of SelfTest
Programs - A New Feature of the MIMOLA
Design System, 23th Design Automation Conf.,
1986

[201 A. Arya, A. Kumar, V.V. Swaminathan and A.
Misra: Automatic Generation of Digital
System Schematics, 22nd Design Automation
Conf., 1985, p. 388-395

