
A new synthesis algorithm for the MIMOLA software system

Peter Marwedel

Institut fiir Informatik und Prakt.Math., University of Kiel
Olshausenstr. 40-60, D-2300 Kiel 1, W. Germany

Abstract
The MIMOLA software system is a system for the
design of digital processors. The system includes
subsystems for retargetable microcode generation,
automatic generation of self-test programs and a
synthesis subsystem. This paper describes the syn-
thesis part of the system, which accepts a PASCAL-
like, high-level program as specification and pro-
duces a register transfer structure. Because of the
complexity of this design process, a set of sub-
problems is identified and algorithms for their
solution are indicated. These algorithms include a
flexible statement decomposition, statement schedu-
ling, register assignment, module selection and
optimizations of interconnections and instruction
word length.

1. Introduction

Synthesis methods for the design of digital hard-
ware have received a significant amount of atten-
tion, since these methods are capable of producing
correct designs in a short turn-around time. Al-
though some major contributions have been made in
this area (e.g. [5,6,8,19,22,23]), there is still a
lack of fast methods for the synthesis of hardware
structures from high-level specifications. One of
the reasons is that the design process consists
of solving a large number of highly interdependent
design problems, each being computationally com-
plex.

By carefully partioning the design process into a
sequence of subprocesses we have tried to reduce
the complexity and to keep interactions between
subprocesses as small as possible. Decisions are
delayed until they cannot be postponed any longer.
In one of the subprocesses, a decision is required,
before its consequences are known. In this case,
several possible solutions (versions) are handed
over to the succeeding subprocesses until one of
them is selected.

Algorithms for the subprocesses have been designed
and implemented in our MIMOLA software system,
version 2 (MSS2).

This research has been supported by the German
Ministry of Research and Technology (BMFT) under
contract NT 2816 9.

2. Global view of the MIMOLA software system

Work on the MIMOLA software system was initiated by
c. Zimmermann in 1976. A first version of the
design tools, called MSSI, was completed in 1979.
As a result of the experiences with MSSl, work
on an enhanced version, called MSS2, was started.

MSS2 presently supports 3 main applications (c.f.
Fig. 1):

l.Synthesis of register transfer CRT-) structures
from high-level PASCAL-like specifications.

2.Retargetable generation of (micro-) code for
PASCAL-like programs and known RT-structures[lQ].

3.Generation of (micro-) diagnostics for known RT-
s true tures .

At the RT-structure level, hardware is described in
terms of registers, random access memories, ALUs
and their interconnections. At the RT-behaviour
level, the operation of hardware is specified in
the form of assignment statements and interconnec-
tions are implicit [18].

design iterations

*
manual I\ 1

documentation of results
(including (micro-) code)

Fig. 1 Global view of the MSSE

23rd Design Automation Conference

073&100X/86/0000/0271 $01 .OO 0 1986 IEEE
Paper 15.2

271

Previous papers described the motivation behind
MSS2 and its general outline [13,15]. The aim of

MSSR generates an RT-level behavioural description
which still contains IF-statements. In addition

the present paper is to present details of the to the usual implementation of IF-statements by
recently designed and implemented synthesis sub- and unconditional
system. A companion paper [g] demonstrates features

conditional jumps assignments,
MSS2 provides for hardware-implemented conditional

of the test generation subsystem. assignments and conditional expressions.

3. Synthesis with MSS2

3 _ 1 Design specification

Examples:
The following forms are equivalent to the above
example:

Design specifications for the synthesis subsystem
consist of an algorithmic specification of the
desired behaviour plus a set of design constraints.

conditional jump:
HP:= (IF SM(1) > 1 THEN Ll ELSE L2 FI);

Ll: SM(1):: SM(2) - SM(3); RP:=Lx;
L2: . . .

The behaviour is described by a PASCAL-like pro-
gram. The program may be either an interpreter for
a given instruction set or an application program
(e.g. a logic simulator). Programs may include high
level language elements like recursive procedure
calls, multi-dimensional arrays and PASCAL-like
variables. There is no one-to-one correspondence
between variables and registers.

conditional assignment:
(/../ corresponds to CDL's label)

/SM(l) > l/ SM(l):= SM(2) - SM(3);
RP:=(IF SM(:) >l THEN Lx ELSE L2 FI);

L2: . . .

Design constraints include limits for the number of
immediate fields in the instruction, types of ALUs,
and the type and number of available random access
memories.

Sequential execution is necessary for the first
form and an implementation requires at least two
(micro-) instructions.

Details about the specification and its syntax have
been included in previous papers [13,151.

In contrast, both assignments in the second form
can be done in parallel. Therefore, it can be
implemented by a single (micro-) instruction if a
sufficient amount of hardware is available.

3.2 Front-end tools

MSS2 consists of a number of independent PASCAL
programs, called components. Communication between
components is via intermediate files.

MIMOLA design specifications are translated into
intermediate files by a component called MSSF. MSSF
checks for conformance to the MIMOLA syntax and
compile-time semantics.

It is hard to anticipate, which implementation
will be the fastest, if only a limited number
of hardware resources is allowed. Therefore the
design decision is delayed by generating up to
three different versions of control flow implemen-
tations in a component called MSSI. One of these
versions is selected after the number of required
instruction steps has been computed for each ver-
sion.

MSSR is a component which maps high-level algorith-
mic programs to programs at the RT-behaviour level.
One of the tasks of MSSR is to assign memory
locations to variables. Variables can be bound to
locations either manually or automatically. For
both methods, static bindings (like in FORTRAN) or

. . dynamic bindings (on a run-time stack) can be gene-
rated.

MSSF:translation into intermediate language
MSSR:mapping to RT-behaviour level
MSSO:optimizations (optional)
MSSP:detection of parallelism (optional)
MSSI:control flow transformations
MSSS:simulation of RT-behaviour (ootional) I front

end
tools

Example:
v

1 MSSH:statement decomposition, Ithard-

Let SM(i) denote location i of memory SM and let RP
be the name of' the program counter. Then, the
program segment

IF a > 1 THEN a:= b - c; GOT0 Lx FI

could be transformed by MSSR into

IF SM(1) > 1 THEN SM(1) := SM(2)-SM(3); RP:= Lx FI

statement scheduling, ware
register assignment,
module selection,

I

syn-
generation of interconnect and control, the-
generation of completely bound programs sis
I I I I I

evaluation of generation of

.
In this case, static bindings (constant addresses)
for variables a:, b and c were assumed.

,
1 MSSS:

back

end

tools

Fig. 2 Steps in the synthesis of RT-structures

Paper 15.2
272

MSSF, MSSR and MSSI are three of the so-called
front-end tools. The execution of these tools
precedes the execution of the synthesis algorithm
(see Fig. 2). Other front-end tools are MSSS (a
simulator capable of simulating RT-behaviour), MSSO
(an optimizer for RT programs) and MSSP (a com-
ponent detecting possible parallelism).

3.3 The synthesis subsystem

3.3.1 Statement decomposition

The synthesis system uses instruction bits in order
to generate (address- and data-) constants. Design
constraints may include a maximum for the number
of immediate bits per instruction. Hence, complex
statements, containing many constants, must be
decomposed into a sequence of simpler statements
not violating these design constraints. Necessary
temporary variables must be introduced.

For the present version of the MIMOLA system it is
also assumed that there is no reassignment of
hardware resources during the execution of a gene-
rated instruction. As a consequence, e.g. the num-
ber of memory references per instruction cannot
exceed the number of memory ports (available memo-
ries are described as part of the design con-
straints). Therefore, statements containing many
memory references must also be decomposed into
simpler statements.

Other design constraints include a maximum for the
number of ALUs to be generated. Hence, the maximum
number of arithmetic operations per instruction
also is restricted.

Finding an optimal decomposition is known to be
NP-complete. Traditional compiler techniques like
[21] are optimal only for special cases. One of the
frequent simplifications is ignoring the existence
of common subexpressions. Our previous experience
however indicates that taking advantage of common
subexpressions is required for acceptable designs.
Optimal algorithms, which do consider common sub-
expressions (e.g.[20]), do not handle general ex-
pressions.

We therefore developed a heuristic method. The
virtue of this method is that it is very flexible
with respect to different design constraints and
that it takes advantage of common subexpressions.

Let t be an arbitrary expression or assignment.
Define treetoobig (t) such that treetoobigc t)
is true if t cannot be evaluated in a single cycle
and false otherwise. The precise definition
of treetoobig includes the number of available
memory ports, the upper limit for the total in-
struction length and predictions of the cost to
implement arithmetic operations present in t. For
example, treetoobig is true, if the number of
memory references in t exceeds the number of avai-
lable memory ports.

In order to allow the design of fast parallel
machines of the horizontally microprogrammed type,
the MSS2 tries to schedule several assignments for
parallel execution. That is, MSS2 tries to pack
several statements into a single instruction,
thereby creating parallel (micro-) instructions.
Parallel execution of statements is allowed as long
as treetoobig remains false for the parallel in-
struction.

Example:
The two assignments

SM(1) := SR(v2) and RP := Lx

Let t again denote an arbitrary expression or
mostcomplex

can be compacted into a single instruction, if
assignment. Define to mean a sub- the number of memory ports is the only design
expression e of t, where e is by some heuristic restriction.

criteria the most complex subexpression of t, which
can be assigned to a temporary variable without
violating design constraints. In MSS2, the number
of memory references is the most important cri-
terion for the selection of e.

Using treetoobig and mostcomplex, statements are
decomposed by the following procedure:

PROCEDURE decompose(s);
BEGIN

FOR ALL subexpressions t of statement s,
starting with the leaves DO

WHILE treetoobig(t) DO
e :: mostcomplex(
generate assignment of e to temporary variable;
push assignment onto the top of a stack;
replace e by a read operation of the temporary
variable; replace all subexpressions of the
current (parallel) block being equal to e by a
read operation of the temporary variable;

OD; OD;
push statement s onto the top of a stack;

END;

Example:
Consider one of the assignments shown in section
3.2:

SM(1) := SM(2) - SM(3)

Let SM be a memory with a single port and let SR
be a (small) multiport memory. Then decompose will
deposit the following sequence of statements in
the stack:

contents of stack
SR(vl):=SM(2):

pushed when t is equal to
SM(2) - SM(3)

SRiv2):=SRivl)-SM(3); SM(l):= SR(v1) - SM(3)
SM(1) :=SR(v2) (by final push (s))

SR(v1) and SR(v2) are temporary variables. In
order to simplify the following steps, there is
only a single assignment to each of the temporary
variables. Although decompose assigns a memory
(SR) to temporary variables, it leaves their
addresses (vl and v2) unspecified.

3.3.2 Statement scheduling

Paper 15.2
273

Scheduling statements for parallel execution is
also known as microcode compaction. Several algo-
rithms for microcode compaction have been pub-
lished (see e.g.[12]).

For the MSS2, we modified the pair-wise comparison
algorithm, which was first proposed by Dasgupta and
Tartar [3]. Necessary modifications include the
following:

I-In the Dasgupta/Tartar algorithm, assignments to
temporary variables (e.g. SR(v2):=..) are placed,
before their references (e.g. SH(l):=SR(v2)) are
considered for compaction. As shown in [161,
backtracking may become necessary, if a cyclic
data dependence exists. Such a cyclic data depen-
dence may occur in a language like MIMOLA, which
allows parallel blocks like parbegin a:=b, b:=a
parend (this parallel block denotes a swapping of
variables). Backtracking can be avoided, if
statements are considered for compaction in the
reverse order, that is: assignments to tempora-
ries are considered for compaction only after all
references to them have already been placed.
It is for this, reason, that decompose deposits
statements on a stack. Compaction starts with
statements at the top of the stack (with SM(l):=
SR(v2) in the last example).

2.Usually compaction algorithms assume that tempo-
rary variables have been bound to memory loca-
tions before compaction starts. This may result
in an unnecessary data dependence between two
variables, which have been assigned to the same
location (to t'e more precise, this may result in
an anti-data dependence [17]). Therefore the
decomposition procedure assigns only a certain
memory to each of the temporary variables and
delays the assignment of locations within that
memory.

As the name indicates, the pairwise comparison
algorithm compares statements pairwise for data-
dependence and resource constraint violations. This
comparison is limited to statements contained in
the same block. Hence, the complexity of the
pairwise comparison algorithm grows quadratically
with respect to the size of blocks and linearly
with respect to the number of blocks. This com-
plexity is equal to that of the statement decom-
position phase, because decompose requires that
common subexpressions within a block are detected.
Detecting common subexpressions also requires a
pairwise comparison of expressions.

At the end of the scheduling phase, the behaviour
of the RT-program has been decomposed into the
behaviour of each of the instructions. The number
of instructions for every version generated by MSSI
therefore is known and the shortest instruction
sequence can be selected.

3.3.3 Register assignment

After all statements have been assigned to one of
the instructions, locations are assigned to tempo-
rary variables. Since optimizations at this step

are limited to straight-line sequences of instruc-
tions, this step is almost trivial:

Mark all locations being available for temporaries
as deallocated.
FOR ALL instructions i in the present sequence DO

if i contains the last reference of some
temporary variable then deallocate the location
used by this variable;

if i contains an assignment to a temporary
variable then find an unallocated location and
allocate it.

OD;

Example:
Consider the sequence listed in section 3.3.1:

SR(v1) := SM(2);
SR(v2) := SR(vl:I - SM(3);
SM(1) := SR(v2:I;

Scanning this sequence from the top to the bottom,
we will allocate the same physical location to
both SR(v1) and SR(v2).

For a given sequence of parallel instructions, this
algorithm uses only the minimum number of required
locations. If one would change the sequence after
allocating temporary locations, this feature would
be lost. During the scheduling phase the sequence
of statements is frequently changed. Hence, too
many locations would be required, if the allocation
would already be done in the statement decompo-
sition phase.

3.3.4 Module selection

The previous design steps did not synthesize an
RT-structure. They just transformed the program
such that the selection of hardware resources is
simplified. The next design step now is the first
of those steps which actually build up an RT-
structure.

As a result of the scheduling phase, arithmetic and
logic operations in each of the instructions are
known. We now use this knowledge in order to
generate arithmetic/logic units (ALUs).

There are basically three methods for the gene-
ration of ALUs by a synthesis system:

1.

2.

3.

Available functional modules are completely
specified in the design specification [63.
Based upon information about concurrently exe-
cuted operations, new ALUs are designed by the
synthesis system [22, 231.
The design specification includes types of pre-
designed modules. The synthesis system then
selects an appropriate number of incarnations
of these modules.

All three methods may be used in a single synthesis
system. Our present system, however, concentrates
on the last method. This last method is required
for a standard-cell silicon compiler.

It is assumed that for each module type m, there
is an associated cost 'm' The task then is to

Paper15.2
274

select an appropriate number x of incarnations
m

of each type such that there is a sufficient amount
of hardware for every instruction and such that
total cost c : sum(xm * cm) is minimal.

m

Let f. be the number of operators of type j being
193

used in instruction

the set of operators

be the powerset of

subsets of Fi.

i. Let Fi= {j 1 fij >O}be
,

used in instruction i. Let Fy

Fir that is, the set of all

Then, a sufficient and necessary condition for a
sufficient number of incarnations is that:

V i, V g E FT: sum (xm) 2 sum (fi j 1, (I)
m jEg '

where the sum over m is taken over those ALU types,
which are able to perform some operation j E g.

Let b
Q

I max (sum fi j 1.
i jEg '

Let F* : U F? be the union of the F7l.s and
i 1

let a
g,m

be 1 if module type m is able to perform

some operation j E g and 0 otherwise.

Then, from (1) it follows that

t/ g EF* : sum (ag m l xm) 2 bg
mEM '

The selection task therefore reduces to minimizing
c q sum (xm * cm 1 subject to the set (2) of con-

straints. This is a classical integer programming
(IP) problem.

The virtue of our module selection method lays in
the fact that it combines global optimization
with a low algorithmic complexity. The number of
integer variables is equal to the number of module
types. The number of relations typically grows
sublinearly with respect to the length of source
program. This behaviour can be demonstrated by the
folowing example:

Example:
Assume, there are two instructions. In one of them
there are two occurences of operation type 11+A and
one occurence of operation type "-". In the other,
there are two occurences of operation type tl-t' and
one occurence of operation type "+'*. The powersets
for both instructions are identical and equal to
the union of the powersets:

F* = { {11+11}, {ff-f1), {ff+Tf, If-11‘) }.

Therefore there are three algebraic relations:

l.The number of ALUs being able to add is > 2.
2.The number of ALUs being able to subtract is-22.
3.The number of ALUs being able perform either

operation is) 3.

The following table contains actual numbers of
relations, variables and CPU-times for the GOMORY I
IP-algorithm [lOI.

program kernel of kernel of logic
a parser an expert simulator

system

B lines 562 1330 430
Q relations 20 33 5
variables 11 11 7
CPU-time [ms 1 35 30 33

. (1 Mips)

The worst case number of relations is an exponen-
tial function of the number of operation types in
the source language (and independent of the size of
the program). The only way to create a large set of
relations is to generate instructions with a large
number of different operation types. But even if 7
or 8 different operation types were present in a
single ins true tion, the IP-problem would be mana-
gable because the structure of the relations is
such that only few iterations are required.

Integer programming has already been proposed as a
solution to the module selection problem. In [71 it
is described as a method to select logic gates. At
the gate level, a large number of binary decision
variables has to be used to model the fact that
there are various ways to implement simple logic
operations. This large number seemingly has pro-
hibited using this method. At the RT-level, there
is essentially but one way to implement I'+" or "-"
(Leive [ll] focusses on the aspect of having
multiple choices to implement an operation). Hafer
[5] used mixed integer linear programming to select
ALUs. In Hafers approach, module selection is
included in a large set of relations. Therefore it
became impossible to solve large design problems in
reasonable time.

At the end of this design step, all major hardware
components have been selected. However, behavioural
level operations have not yet been bound to speci-
fic hardware modules.

3.3.5 Generating interconnect

Allocating hardware modules to behavioural level
operations implies the existence of physical paths
from source modules to sink modules. The problem is
to find assignments of modules to operations such
that the cost for interconnect is minimal. Unfortu-
nately we are unable to predict the effect of such
an assignment in terms of wiring area. We therefore
use a simplified design objective: minimize the
total number of paths!

The optimization problem is formulated as follows:
For each operation to be performed by one of the
instructions, there is a set of matching hardware
resources. E.g. for each arithmetic operation,
there is a set of functional modules, which are
able to perform this operation and for each con-
stant CO-ary operation), there is a set of instruc-
tion fields of the required length. Now, for each
operation find a resource from this set such that

Paper15.2
215

no resource is {assigned to more than one operation
per instruction and such that the minimal number of
paths between resources is required.

In the present implementation of the MSS2, a
branch-and-bound algorithm is used to solve this
assignment problem. Unfortunately the complexity of
this algorithm makes it impossible to generate
globally optimal assignments. Therefore, it is
necessary to solve the assignment problem for one
instruction at a time, starting with the most com-
plex instruction.

In the case the above algorithm computes a solution
requiring more than a single path to an input,
multiplexers are generated by the MSS2 in a
straight-forward manner.

3.3.6 Generating control

In the MSS2 we assume that the hardware is control-
led by instructions with a format similar to hori-
zontal microinstructions. More specifically, we
assume that the direct encoding method [I] is used
to control RT-modules: for each module with a
control input, there is a corresponding instruction
field fi, which may be used to select one of the
modules operations. Since not all the modules are
used simultaneously, some of them may share in-
struction bits.

Let li denote the length of field fi in bits and

let ci j:true denote that fields fi and fj are used

concurGently in at least one of the generated
ins true tions. The task then is to find a mapping
from fi to the set of instruction bits, such
that:

l.No two fields fi and fj, for which ci j is true,
7

share an instruction bit and
2.the total number of instruction bits is minimal.

This problem is equivalent to scheduling a number
of tasks (fi), each with execution time li and with

resource conflicts c. .
time is minimized. lrJ

such that the completion

This problem is one of the hard scheduling pro-
blems. The solution used in the MSS2 is one of the
common scheduling policies: shedule long fields and
fields with many conflicts first.

Most of the previously published methods for word
length minimizations [4] are not applicablg to the
direct encoding model, because they use Wilkes
original microinstruction model (which Dasgupta [43
calls direct control). In Wilkes model, there are
no multi-functional modules like ALUs.

The only optimization method for direct control the
author of this paper is aware of, is the use of
cliques [23], which cannot be easily applied to
fields of different length.

The instructions, which are generated by our system
could be called "microinstructions", because they

are parallel instructions and because they are
directly interpreted by the hardware. However,
these "microinstructionslV are not necessarily
interpreting tlmaclline instructions". This will only
be the case if the specification contains an
instruction set interpreter.

3.3.7 Generating completely bound programs

Using the results of sections 3.3.5 and 3.3.6, so-
called completely bound programs can be generated.
Completely bound programs explicitly specify all
used hardware resources and all used instruction
bits [13]. Completely bound programs may be pro-
cessed by the back-end tools MSSM, MSSS, MSSB, MSSE
and MSSG (c-f. Fig. 2).

MSSM generates a MIMOLA description of the re-
sulting RI-structure and of the bound program. This
is possible, because MIMOLA can be used to describe
structure and behaviour (the companion paper [q]
contains an example of a structural hardware des-
cription in MIMOLA). This unique feature of MIMOLA
simplifies supporting design iterations.

MSSS is a simu:Lator capable of simulating RT-
structures. MSSB generates listings of binary in-
struction code. MSSE evaluates RT-structures. MSSG
is currently being implemented. Its purpose is
to generate a graphic description of the RT- struc-
ture (schematics).It is modelled after an algorithm
developed at the IIT in Delhi [2].

4. First results

The algorithm just described performs significantly
better than the one which has been used in MSSl.

A processor, which had been designed with MSSl, has
been partly redesigned with MSS2. The number of
interconnections, which had been produced by MSS1,
has been manually reduced by about 50%. The design
produced by MS.52 contains the same number of
interconnections as the manually optimized design.

The reduction of the number of generated connec-
tions has been made possible by a more global
(although not yet completely global) optimization
during the allocation of hardware resources to
operations. This in one of the achievements in
MSS2.

MSSl and MSS2 also differ in the way they handle
control lines. In the MSSl, some of the control
lines were not explicitly represented. This flaw
made it difficult to handle all instruction fields
in a uniform manner. One of the design principles
of the MSS2 therefore was to avoid any implied
hardware structures and make all design decisions
explicit. This approach made it possible to modu-
larize the design system (the MSS1 basically con-
sisted of a single, large program).

Because of the full inclusion of the control
section, it was possible to quantify the effect
resulting from conditional assignments and condi-
tional expressions if the number of memory ports is
large (Fig. 3):

Paper 15.2
276

100

80

65

50

40

30

4 Number of generated instructions

k
11 input : sorting

*'+
algorithm (mergesort)

\' '
*+'+

\\'
$\
\\$
\’ ’ cond.
i+ +x J

jumps only

+-+-+
cond.

+\
jumps and

' +
/

cond. expressions
\ -+
'+

'+ ::_:J
no restrictions

4;: :; :::;
number of ports

w
12 3 5 7 9 1317 of the main memory

Fig.3 Effect of different implementations
of IF-statements

Using a sorting algorithm as input, we designed a
processor being about as complex but about twice as
fast as our SIEMENS 7.760 instruction set processor
(about 1 MIPS). Although the MSS2 design contains
only a minimum amount of instruction decoding, the
size of the code for the MSS2 design is about the
same as the size of the code generated by the
SIEMENS PASCAL compiler.

5. Conclusion

The task of generating structural descriptions for
high-level behavioural specifications is a complex
task, which has to be decomposed into a number of
subtasks in order to achieve acceptable design
times. This paper introduces such a decomposition
and identifies associated sub tasks. For each of
the subtasks, at least basic ideas for possible
solutions are included in the paper. The complexity
of the algorithms presented typically grows quadra-
tically with respect to the size of the blocks and
linearly with respect to the number of blocks in
the design specification. Therefore this method can
be applied to large design specifications. Although
we are not yet able to globally optimize the
interconnection structure, we were able to signi-
ficantly improve the results obtained with an
earlier design system.

6. References

[II A.K. Agrawala and T.G. Rauscher: Foundations
of Microprogramming,Acadamic Press, New York,
1976

[2] A. Arya, A. Kumar, V.V. Swaminathan and A.
Misra: Automatic Generation of Digital System
Schematics, 22nd Design Automation Conf.,
1985, P. 388-395

[31 s. Dasgupta and J. Tartar : The Identifi-
cation of Maximal Parallelism in Straight -
Line Microprograms, IEEE Trans. Comp., Vol.
C-25, 10(1976), p. 986-992

[41 s. Dasgupta : Some Aspects of High - Level
Microprogramming, Computing Surveys, Vol. 11,

3(1980), p. 295-323
[51 L. Hafer and A. Parker : A Formal Method

for the Specification, Analysis and Design of

Register-Transfer Level Digital Logic, IEEE
Trans. on Computer-Aided Design, Vol. CAD-2,
1(1983), p.4-18

[6] C.-L. Huang: Computer-Aided Logic Synthesis
Based on a New Multi-Level Hardware Design
Language -- LALSD II, PhD thesis, State
University of New York at Binghamton, 1981

[7] U.R. Kodres : Partioning and Card Selection,
in: M.A. Breuer (ed.) : Design Automation of
Digital Systems,Vol.l, Prentice Hall, Engle-
wood Cliffs, 1972

C81 T.J. Kowalski and D.E. Thomas: The VLSI
Design Automation Assistant : Prototype
System, 20th Design Automation Conf., 1983,
p. 479-483

[9] G. Krtiger : Automatic Generation of Self-Test
Programs - A New Feature of the MIMOLA Design
System, these proceedings

[IO] H. Langmaack: Gomory I, Collected Algorithms
of the ACM, Algorithm 263A. 1978

[ll] G.W. Leive : The Design, Implementation and
Analysis of an Automated Logic Synthesis
and Module Selection System, PhD thesis,
Carnegie-Mellon University, Pittsburgh, 1981

[12] P.W. Mallett : Methods of Compacting Micro-
programs, PhD thesis, University of South-
western Louisiana, Lafayette, 1978

[13] P. Marwedel: The MIMOLA Design System: Tools
for the Design of Digital Processors, 21st
Design Automation Conference 1984, p. 587-593

[14] P. Marwedel : A Retargetable Compiler for a
High-Level Microprogramming Language, 17th
Annual Microprogramming Workshop (MICRO-171,
1984, p. 267-276

[I51 P. Marwedel : The MIMOLA Design System : A
Design System Which Spans Several Levels,
in: W.K. Giloi and B.D. Shriver ted.): Metho-
dologies for Computer System Design, North
Holland, 1985, p. 223-237

[I61 P. Marwedel: Ein Software-System zur Synthese
von Rechnerstrukturen und zur Erzeugung von
Mikrocode, habilitation thesis, University
of Kiel, Germany, submitted Sept. 1985

[17] D.A. Padua, D.J. Kuck and D.H. Lawrie : High-
Speed Multiprocessors and Compilation Tech-
niques, IEEE Trans. Comp.,Vol. C-29, 9(1980),
p. 763-776

[183 A.C. Parker : Automated Synthesis of Digital
Systems, IEEE Design and Test of Computers,
Vol.1, 4(1g84), p. 75-81

[19] A.C. Parker, F. Kurdahl and M. Mlinar : A
General Methodology for Synthesis and Verifi-
cation of Register-Transfer Designs, 21th
Design Automation Conf., 1984, P. 329-335

[20] B. Prabhala and R. Sethi : Efficient Compu-
tation of Expressions with Common Subexpres-
sions, Journal of the ACM, Vol. 27, 1(1980),
p. 146-163

[21] R. Sethi and J.D. Ullman : The Generation
of Optimal Code for Arithmetic Expressions,
Journal of the ACM, Vol. 17, 4(1970), p.
715-728

[22] S. Takagi: Rule Based Synthesis, Verification
and Compensation of Data Paths, Int. Conf. on
Computer Aided Design (ICCAD) 1984, p.133-138

[23] C.-J. Tseng and D.P. Siewiorek : Facet :
A Procedure for the Automated Synthesis of
Digital Systems, 20th Design Automation
Conf., 1983, p. 490-496

Paper 15.2
277

