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Abstract 
The MIMOLA software system is a system for the 
design of digital processors. The system includes 
subsystems for retargetable microcode generation, 
automatic generation of self-test programs and a 
synthesis subsystem. This paper describes the syn- 
thesis part of the system, which accepts a PASCAL- 
like, high-level program as specification and pro- 
duces a register transfer structure. Because of the 
complexity of this design process, a set of sub- 
problems is identified and algorithms for their 
solution are indicated. These algorithms include a 
flexible statement decomposition, statement schedu- 
ling, register assignment, module selection and 
optimizations of interconnections and instruction 
word length. 

1. Introduction 

Synthesis methods for the design of digital hard- 
ware have received a significant amount of atten- 
tion, since these methods are capable of producing 
correct designs in a short turn-around time. Al- 
though some major contributions have been made in 
this area (e.g. [5,6,8,19,22,23]), there is still a 
lack of fast methods for the synthesis of hardware 
structures from high-level specifications. One of 
the reasons is that the design process consists 
of solving a large number of highly interdependent 
design problems, each being computationally com- 
plex. 

By carefully partioning the design process into a 
sequence of subprocesses we have tried to reduce 
the complexity and to keep interactions between 
subprocesses as small as possible. Decisions are 
delayed until they cannot be postponed any longer. 
In one of the subprocesses, a decision is required, 
before its consequences are known. In this case, 
several possible solutions (versions) are handed 
over to the succeeding subprocesses until one of 
them is selected. 

Algorithms for the subprocesses have been designed 
and implemented in our MIMOLA software system, 
version 2 (MSS2). 

This research has been supported by the German 
Ministry of Research and Technology (BMFT) under 
contract NT 2816 9. 

2. Global view of the MIMOLA software system 

Work on the MIMOLA software system was initiated by 
c. Zimmermann in 1976. A first version of the 
design tools, called MSSI, was completed in 1979. 
As a result of the experiences with MSSl, work 
on an enhanced version, called MSS2, was started. 

MSS2 presently supports 3 main applications (c.f. 
Fig. 1): 

l.Synthesis of register transfer CRT-) structures 
from high-level PASCAL-like specifications. 

2.Retargetable generation of (micro-) code for 
PASCAL-like programs and known RT-structures[lQ]. 

3.Generation of (micro-) diagnostics for known RT- 
s true tures . 

At the RT-structure level, hardware is described in 
terms of registers, random access memories, ALUs 
and their interconnections. At the RT-behaviour 
level, the operation of hardware is specified in 
the form of assignment statements and interconnec- 
tions are implicit [18]. 

design iterations 

* 
manual I\ 1 

documentation of results 
(including (micro-) code) 

Fig. 1 Global view of the MSSE 
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Previous papers described the motivation behind 
MSS2 and its general outline [13,15]. The aim of 

MSSR generates an RT-level behavioural description 
which still contains IF-statements. In addition 

the present paper is to present details of the to the usual implementation of IF-statements by 
recently designed and implemented synthesis sub- and unconditional 
system. A companion paper [g] demonstrates features 

conditional jumps assignments, 
MSS2 provides for hardware-implemented conditional 

of the test generation subsystem. assignments and conditional expressions. 

3. Synthesis with MSS2 

3 _ 1 Design specification 

Examples: 
The following forms are equivalent to the above 
example: 

Design specifications for the synthesis subsystem 
consist of an algorithmic specification of the 
desired behaviour plus a set of design constraints. 

conditional jump: 
HP:= (IF SM(1) > 1 THEN Ll ELSE L2 FI); 

Ll: SM(1):: SM(2) - SM(3); RP:=Lx; 
L2: . . . 

The behaviour is described by a PASCAL-like pro- 
gram. The program may be either an interpreter for 
a given instruction set or an application program 
(e.g. a logic simulator). Programs may include high 
level language elements like recursive procedure 
calls, multi-dimensional arrays and PASCAL-like 
variables. There is no one-to-one correspondence 
between variables and registers. 

conditional assignment: 
(/../ corresponds to CDL's label) 

/SM(l) > l/ SM(l):= SM(2) - SM(3); 
RP:=(IF SM(:) >l THEN Lx ELSE L2 FI); 

L2: . . . 

Design constraints include limits for the number of 
immediate fields in the instruction, types of ALUs, 
and the type and number of available random access 
memories. 

Sequential execution is necessary for the first 
form and an implementation requires at least two 
(micro-) instructions. 

Details about the specification and its syntax have 
been included in previous papers [ 13,151. 

In contrast, both assignments in the second form 
can be done in parallel. Therefore, it can be 
implemented by a single (micro-) instruction if a 
sufficient amount of hardware is available. 

3.2 Front-end tools 

MSS2 consists of a number of independent PASCAL 
programs, called components. Communication between 
components is via intermediate files. 

MIMOLA design specifications are translated into 
intermediate files by a component called MSSF. MSSF 
checks for conformance to the MIMOLA syntax and 
compile-time semantics. 

It is hard to anticipate, which implementation 
will be the fastest, if only a limited number 
of hardware resources is allowed. Therefore the 
design decision is delayed by generating up to 
three different versions of control flow implemen- 
tations in a component called MSSI. One of these 
versions is selected after the number of required 
instruction steps has been computed for each ver- 
sion. 

MSSR is a component which maps high-level algorith- 
mic programs to programs at the RT-behaviour level. 
One of the tasks of MSSR is to assign memory 
locations to variables. Variables can be bound to 
locations either manually or automatically. For 
both methods, static bindings (like in FORTRAN) or 

. . dynamic bindings (on a run-time stack) can be gene- 
rated. 

MSSF:translation into intermediate language 
MSSR:mapping to RT-behaviour level 
MSSO:optimizations (optional) 
MSSP:detection of parallelism (optional) 
MSSI:control flow transformations 
MSSS:simulation of RT-behaviour (ootional) I front 

end 
tools 

Example: 
v 

1 MSSH:statement decomposition, Ithard- 

Let SM(i) denote location i of memory SM and let RP 
be the name of' the program counter. Then, the 
program segment 

IF a > 1 THEN a:= b - c; GOT0 Lx FI 

could be transformed by MSSR into 

IF SM(1) > 1 THEN SM(1) := SM(2)-SM(3); RP:= Lx FI 

statement scheduling, ware 
register assignment, 
module selection, 

I 

syn- 
generation of interconnect and control, the- 
generation of completely bound programs sis 
I I I I I 

evaluation of generation of 

. 
In this case, static bindings (constant addresses) 
for variables a:, b and c were assumed. 

, 
1 MSSS: 

back 

end 

tools 

Fig. 2 Steps in the synthesis of RT-structures 
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MSSF, MSSR and MSSI are three of the so-called 
front-end tools. The execution of these tools 
precedes the execution of the synthesis algorithm 
(see Fig. 2). Other front-end tools are MSSS (a 
simulator capable of simulating RT-behaviour), MSSO 
(an optimizer for RT programs) and MSSP (a com- 
ponent detecting possible parallelism). 

3.3 The synthesis subsystem 

3.3.1 Statement decomposition 

The synthesis system uses instruction bits in order 
to generate (address- and data-) constants. Design 
constraints may include a maximum for the number 
of immediate bits per instruction. Hence, complex 
statements, containing many constants, must be 
decomposed into a sequence of simpler statements 
not violating these design constraints. Necessary 
temporary variables must be introduced. 

For the present version of the MIMOLA system it is 
also assumed that there is no reassignment of 
hardware resources during the execution of a gene- 
rated instruction. As a consequence, e.g. the num- 
ber of memory references per instruction cannot 
exceed the number of memory ports (available memo- 
ries are described as part of the design con- 
straints). Therefore, statements containing many 
memory references must also be decomposed into 
simpler statements. 

Other design constraints include a maximum for the 
number of ALUs to be generated. Hence, the maximum 
number of arithmetic operations per instruction 
also is restricted. 

Finding an optimal decomposition is known to be 
NP-complete. Traditional compiler techniques like 
[21] are optimal only for special cases. One of the 
frequent simplifications is ignoring the existence 
of common subexpressions. Our previous experience 
however indicates that taking advantage of common 
subexpressions is required for acceptable designs. 
Optimal algorithms, which do consider common sub- 
expressions (e.g.[20]), do not handle general ex- 
pressions. 

We therefore developed a heuristic method. The 
virtue of this method is that it is very flexible 
with respect to different design constraints and 
that it takes advantage of common subexpressions. 

Let t be an arbitrary expression or assignment. 
Define treetoobig ( t ) such that treetoobigc t ) 
is true if t cannot be evaluated in a single cycle 
and false otherwise. The precise definition 
of treetoobig includes the number of available 
memory ports, the upper limit for the total in- 
struction length and predictions of the cost to 
implement arithmetic operations present in t. For 
example, treetoobig is true, if the number of 
memory references in t exceeds the number of avai- 
lable memory ports. 

In order to allow the design of fast parallel 
machines of the horizontally microprogrammed type, 
the MSS2 tries to schedule several assignments for 
parallel execution. That is, MSS2 tries to pack 
several statements into a single instruction, 
thereby creating parallel (micro-) instructions. 
Parallel execution of statements is allowed as long 
as treetoobig remains false for the parallel in- 
struction. 

Example: 
The two assignments 

SM(1) := SR(v2) and RP := Lx 

Let t again denote an arbitrary expression or 
mostcomplex 

can be compacted into a single instruction, if 
assignment. Define to mean a sub- the number of memory ports is the only design 
expression e of t, where e is by some heuristic restriction. 

criteria the most complex subexpression of t, which 
can be assigned to a temporary variable without 
violating design constraints. In MSS2, the number 
of memory references is the most important cri- 
terion for the selection of e. 

Using treetoobig and mostcomplex, statements are 
decomposed by the following procedure: 

PROCEDURE decompose(s); 
BEGIN 

FOR ALL subexpressions t of statement s, 
starting with the leaves DO 

WHILE treetoobig(t) DO 
e :: mostcomplex( 
generate assignment of e to temporary variable; 
push assignment onto the top of a stack; 
replace e by a read operation of the temporary 
variable; replace all subexpressions of the 
current (parallel) block being equal to e by a 
read operation of the temporary variable; 

OD; OD; 
push statement s onto the top of a stack; 

END; 

Example: 
Consider one of the assignments shown in section 
3.2: 

SM(1) := SM(2) - SM(3) 

Let SM be a memory with a single port and let SR 
be a (small) multiport memory. Then decompose will 
deposit the following sequence of statements in 
the stack: 

contents of stack 
SR(vl):=SM(2): 

pushed when t is equal to 
SM(2) - SM(3) 

SRiv2):=SRivl)-SM(3); SM(l):= SR(v1) - SM(3) 
SM(1) :=SR(v2) (by final push (s) ) 

SR(v1) and SR(v2) are temporary variables. In 
order to simplify the following steps, there is 
only a single assignment to each of the temporary 
variables. Although decompose assigns a memory 
(SR) to temporary variables, it leaves their 
addresses (vl and v2) unspecified. 

3.3.2 Statement scheduling 
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Scheduling statements for parallel execution is 
also known as microcode compaction. Several algo- 
rithms for microcode compaction have been pub- 
lished ( see e.g.[12]). 

For the MSS2, we modified the pair-wise comparison 
algorithm, which was first proposed by Dasgupta and 
Tartar [3]. Necessary modifications include the 
following: 

I-In the Dasgupta/Tartar algorithm, assignments to 
temporary variables (e.g. SR(v2):=..) are placed, 
before their references (e.g. SH(l):=SR(v2)) are 
considered for compaction. As shown in [161, 
backtracking may become necessary, if a cyclic 
data dependence exists. Such a cyclic data depen- 
dence may occur in a language like MIMOLA, which 
allows parallel blocks like parbegin a:=b, b:=a 
parend (this parallel block denotes a swapping of 
variables). Backtracking can be avoided, if 
statements are considered for compaction in the 
reverse order, that is: assignments to tempora- 
ries are considered for compaction only after all 
references to them have already been placed. 
It is for this, reason, that decompose deposits 
statements on a stack. Compaction starts with 
statements at the top of the stack (with SM(l):= 
SR(v2) in the last example). 

2.Usually compaction algorithms assume that tempo- 
rary variables have been bound to memory loca- 
tions before compaction starts. This may result 
in an unnecessary data dependence between two 
variables, which have been assigned to the same 
location (to t'e more precise, this may result in 
an anti-data dependence [17]). Therefore the 
decomposition procedure assigns only a certain 
memory to each of the temporary variables and 
delays the assignment of locations within that 
memory. 

As the name indicates, the pairwise comparison 
algorithm compares statements pairwise for data- 
dependence and resource constraint violations. This 
comparison is limited to statements contained in 
the same block. Hence, the complexity of the 
pairwise comparison algorithm grows quadratically 
with respect to the size of blocks and linearly 
with respect to the number of blocks. This com- 
plexity is equal to that of the statement decom- 
position phase, because decompose requires that 
common subexpressions within a block are detected. 
Detecting common subexpressions also requires a 
pairwise comparison of expressions. 

At the end of the scheduling phase, the behaviour 
of the RT-program has been decomposed into the 
behaviour of each of the instructions. The number 
of instructions for every version generated by MSSI 
therefore is known and the shortest instruction 
sequence can be selected. 

3.3.3 Register assignment 

After all statements have been assigned to one of 
the instructions, locations are assigned to tempo- 
rary variables. Since optimizations at this step 

are limited to straight-line sequences of instruc- 
tions, this step is almost trivial: 

Mark all locations being available for temporaries 
as deallocated. 
FOR ALL instructions i in the present sequence DO 

if i contains the last reference of some 
temporary variable then deallocate the location 
used by this variable; 

if i contains an assignment to a temporary 
variable then find an unallocated location and 
allocate it. 

OD; 

Example: 
Consider the sequence listed in section 3.3.1: 

SR(v1) := SM(2); 
SR(v2) := SR(vl:I - SM(3); 
SM(1) := SR(v2:I; 

Scanning this sequence from the top to the bottom, 
we will allocate the same physical location to 
both SR(v1) and SR(v2). 

For a given sequence of parallel instructions, this 
algorithm uses only the minimum number of required 
locations. If one would change the sequence after 
allocating temporary locations, this feature would 
be lost. During the scheduling phase the sequence 
of statements is frequently changed. Hence, too 
many locations would be required, if the allocation 
would already be done in the statement decompo- 
sition phase. 

3.3.4 Module selection 

The previous design steps did not synthesize an 
RT-structure. They just transformed the program 
such that the selection of hardware resources is 
simplified. The next design step now is the first 
of those steps which actually build up an RT- 
structure. 

As a result of the scheduling phase, arithmetic and 
logic operations in each of the instructions are 
known. We now use this knowledge in order to 
generate arithmetic/logic units (ALUs). 

There are basically three methods for the gene- 
ration of ALUs by a synthesis system: 

1. 

2. 

3. 

Available functional modules are completely 
specified in the design specification [63. 
Based upon information about concurrently exe- 
cuted operations, new ALUs are designed by the 
synthesis system [22, 231. 
The design specification includes types of pre- 
designed modules. The synthesis system then 
selects an appropriate number of incarnations 
of these modules. 

All three methods may be used in a single synthesis 
system. Our present system, however, concentrates 
on the last method. This last method is required 
for a standard-cell silicon compiler. 

It is assumed that for each module type m, there 
is an associated cost 'm' The task then is to 
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select an appropriate number x of incarnations 
m 

of each type such that there is a sufficient amount 
of hardware for every instruction and such that 
total cost c : sum(xm * cm) is minimal. 

m 

Let f. be the number of operators of type j being 
193 

used in instruction 

the set of operators 

be the powerset of 

subsets of Fi. 

i. Let Fi= {j 1 fij >O}be 
, 

used in instruction i. Let Fy 

Fir that is, the set of all 

Then, a sufficient and necessary condition for a 
sufficient number of incarnations is that: 

V i, V g E FT: sum (xm) 2 sum (fi j 1, (I) 
m jEg ' 

where the sum over m is taken over those ALU types, 
which are able to perform some operation j E g. 

Let b 
Q 

I max ( sum fi j 1. 
i jEg ' 

Let F* : U F? be the union of the F7l.s and 
i 1 

let a 
g,m 

be 1 if module type m is able to perform 

some operation j E g and 0 otherwise. 

Then, from (1) it follows that 

t/ g EF* : sum ( ag m l xm ) 2 bg 
mEM ' 

The selection task therefore reduces to minimizing 
c q sum ( xm * cm 1 subject to the set (2) of con- 

straints. This is a classical integer programming 
(IP) problem. 

The virtue of our module selection method lays in 
the fact that it combines global optimization 
with a low algorithmic complexity. The number of 
integer variables is equal to the number of module 
types. The number of relations typically grows 
sublinearly with respect to the length of source 
program. This behaviour can be demonstrated by the 
folowing example: 

Example: 
Assume, there are two instructions. In one of them 
there are two occurences of operation type 11+A and 
one occurence of operation type "-". In the other, 
there are two occurences of operation type tl-t' and 
one occurence of operation type "+'*. The powersets 
for both instructions are identical and equal to 
the union of the powersets: 

F* = { {11+11}, {ff-f1), {ff+Tf, If-11‘) }. 

Therefore there are three algebraic relations: 

l.The number of ALUs being able to add is > 2. 
2.The number of ALUs being able to subtract is-22. 
3.The number of ALUs being able perform either 

operation is ) 3. 

The following table contains actual numbers of 
relations, variables and CPU-times for the GOMORY I 
IP-algorithm [lOI. 

program kernel of kernel of logic 
a parser an expert simulator 

system 

B lines 562 1330 430 
Q relations 20 33 5 
# variables 11 11 7 
CPU-time [ms 1 35 30 33 

. (1 Mips) 

The worst case number of relations is an exponen- 
tial function of the number of operation types in 
the source language (and independent of the size of 
the program). The only way to create a large set of 
relations is to generate instructions with a large 
number of different operation types. But even if 7 
or 8 different operation types were present in a 
single ins true tion, the IP-problem would be mana- 
gable because the structure of the relations is 
such that only few iterations are required. 

Integer programming has already been proposed as a 
solution to the module selection problem. In [71 it 
is described as a method to select logic gates. At 
the gate level, a large number of binary decision 
variables has to be used to model the fact that 
there are various ways to implement simple logic 
operations. This large number seemingly has pro- 
hibited using this method. At the RT-level, there 
is essentially but one way to implement I'+" or "-" 
(Leive [ll] focusses on the aspect of having 
multiple choices to implement an operation). Hafer 
[5] used mixed integer linear programming to select 
ALUs. In Hafers approach, module selection is 
included in a large set of relations. Therefore it 
became impossible to solve large design problems in 
reasonable time. 

At the end of this design step, all major hardware 
components have been selected. However, behavioural 
level operations have not yet been bound to speci- 
fic hardware modules. 

3.3.5 Generating interconnect 

Allocating hardware modules to behavioural level 
operations implies the existence of physical paths 
from source modules to sink modules. The problem is 
to find assignments of modules to operations such 
that the cost for interconnect is minimal. Unfortu- 
nately we are unable to predict the effect of such 
an assignment in terms of wiring area. We therefore 
use a simplified design objective: minimize the 
total number of paths! 

The optimization problem is formulated as follows: 
For each operation to be performed by one of the 
instructions, there is a set of matching hardware 
resources. E.g. for each arithmetic operation, 
there is a set of functional modules, which are 
able to perform this operation and for each con- 
stant CO-ary operation), there is a set of instruc- 
tion fields of the required length. Now, for each 
operation find a resource from this set such that 
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no resource is {assigned to more than one operation 
per instruction and such that the minimal number of 
paths between resources is required. 

In the present implementation of the MSS2, a 
branch-and-bound algorithm is used to solve this 
assignment problem. Unfortunately the complexity of 
this algorithm makes it impossible to generate 
globally optimal assignments. Therefore, it is 
necessary to solve the assignment problem for one 
instruction at a time, starting with the most com- 
plex instruction. 

In the case the above algorithm computes a solution 
requiring more than a single path to an input, 
multiplexers are generated by the MSS2 in a 
straight-forward manner. 

3.3.6 Generating control 

In the MSS2 we assume that the hardware is control- 
led by instructions with a format similar to hori- 
zontal microinstructions. More specifically, we 
assume that the direct encoding method [I] is used 
to control RT-modules: for each module with a 
control input, there is a corresponding instruction 
field fi, which may be used to select one of the 
modules operations. Since not all the modules are 
used simultaneously, some of them may share in- 
struction bits. 

Let li denote the length of field fi in bits and 

let ci j:true denote that fields fi and fj are used 

concurGently in at least one of the generated 
ins true tions. The task then is to find a mapping 
from fi to the set of instruction bits, such 
that: 

l.No two fields fi and fj, for which ci j is true, 
7 

share an instruction bit and 
2.the total number of instruction bits is minimal. 

This problem is equivalent to scheduling a number 
of tasks (fi), each with execution time li and with 

resource conflicts c. . 
time is minimized. lrJ 

such that the completion 

This problem is one of the hard scheduling pro- 
blems. The solution used in the MSS2 is one of the 
common scheduling policies: shedule long fields and 
fields with many conflicts first. 

Most of the previously published methods for word 
length minimizations [4] are not applicablg to the 
direct encoding model, because they use Wilkes 
original microinstruction model (which Dasgupta [ 43 
calls direct control). In Wilkes model, there are 
no multi-functional modules like ALUs. 

The only optimization method for direct control the 
author of this paper is aware of, is the use of 
cliques [23], which cannot be easily applied to 
fields of different length. 

The instructions, which are generated by our system 
could be called "microinstructions", because they 

are parallel instructions and because they are 
directly interpreted by the hardware. However, 
these "microinstructionslV are not necessarily 
interpreting tlmaclline instructions". This will only 
be the case if the specification contains an 
instruction set interpreter. 

3.3.7 Generating completely bound programs 

Using the results of sections 3.3.5 and 3.3.6, so- 
called completely bound programs can be generated. 
Completely bound programs explicitly specify all 
used hardware resources and all used instruction 
bits [13]. Completely bound programs may be pro- 
cessed by the back-end tools MSSM, MSSS, MSSB, MSSE 
and MSSG (c-f. Fig. 2). 

MSSM generates a MIMOLA description of the re- 
sulting RI-structure and of the bound program. This 
is possible, because MIMOLA can be used to describe 
structure and behaviour (the companion paper [q] 
contains an example of a structural hardware des- 
cription in MIMOLA). This unique feature of MIMOLA 
simplifies supporting design iterations. 

MSSS is a simu:Lator capable of simulating RT- 
structures. MSSB generates listings of binary in- 
struction code. MSSE evaluates RT-structures. MSSG 
is currently being implemented. Its purpose is 
to generate a graphic description of the RT- struc- 
ture (schematics).It is modelled after an algorithm 
developed at the IIT in Delhi [2]. 

4. First results 

The algorithm just described performs significantly 
better than the one which has been used in MSSl. 

A processor, which had been designed with MSSl, has 
been partly redesigned with MSS2. The number of 
interconnections, which had been produced by MSS1, 
has been manually reduced by about 50%. The design 
produced by MS.52 contains the same number of 
interconnections as the manually optimized design. 

The reduction of the number of generated connec- 
tions has been made possible by a more global 
(although not yet completely global) optimization 
during the allocation of hardware resources to 
operations. This in one of the achievements in 
MSS2. 

MSSl and MSS2 also differ in the way they handle 
control lines. In the MSSl, some of the control 
lines were not explicitly represented. This flaw 
made it difficult to handle all instruction fields 
in a uniform manner. One of the design principles 
of the MSS2 therefore was to avoid any implied 
hardware structures and make all design decisions 
explicit. This approach made it possible to modu- 
larize the design system (the MSS1 basically con- 
sisted of a single, large program). 

Because of the full inclusion of the control 
section, it was possible to quantify the effect 
resulting from conditional assignments and condi- 
tional expressions if the number of memory ports is 
large (Fig. 3): 
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Fig.3 Effect of different implementations 
of IF-statements 

Using a sorting algorithm as input, we designed a 
processor being about as complex but about twice as 
fast as our SIEMENS 7.760 instruction set processor 
(about 1 MIPS). Although the MSS2 design contains 
only a minimum amount of instruction decoding, the 
size of the code for the MSS2 design is about the 
same as the size of the code generated by the 
SIEMENS PASCAL compiler. 

5. Conclusion 

The task of generating structural descriptions for 
high-level behavioural specifications is a complex 
task, which has to be decomposed into a number of 
subtasks in order to achieve acceptable design 
times. This paper introduces such a decomposition 
and identifies associated sub tasks. For each of 
the subtasks, at least basic ideas for possible 
solutions are included in the paper. The complexity 
of the algorithms presented typically grows quadra- 
tically with respect to the size of the blocks and 
linearly with respect to the number of blocks in 
the design specification. Therefore this method can 
be applied to large design specifications. Although 
we are not yet able to globally optimize the 
interconnection structure, we were able to signi- 
ficantly improve the results obtained with an 
earlier design system. 
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