Automatic Generation of Self-Test Programs - A New Feature of the
MIMOLA Design System

Gerd Kruger

Institut fur Informatik u. Prakt. Math., Universitat Kiel
Olshausenstr. 40-60, D-2300 Kiel 1, W.-Germany

Abstract

A method to automatically generate functional self-
test programs for arbitrary processor systems including
microprogrammable anJ custom designed special
purpose types is presented. Only commonly available
user information is needed, but gate-level details can
be utilized as well. The generated self-test programs
perform user guided tests for memory function and
register decoding, functional or gate-level derived
tests for combinational modules, and a machine status
check to detect undesired side-effects. The programs
are given in the micro- or machine code of the target
system, ready for execution. First applications have
shown promising resufts.

1. Introduction

The ever growing complexity of modern digital circuits
creates serious problems for the verification of the
system's correct function. Formerly successful methods
cannot be used any more, because they are based on a
gate-level description that if available might cover tens
of thousands of gates. Test generation on this level
becomes prohibitively costly.

Functional testing offers an alternative. Especially for
microprocessors methods have been developed that
use only readily available user information to derive a
sequence of machine test instructions!.2.3. Correct
execution of this sequence is supposed to sufficiently
validate the circuit's correctness. These methods are
fixed upon a given set of standard machine instructions
for sequential data processing. They do not take into
account the implementation of the instruction,
common use of hardware resources, or an underlying
microprogramming level. Rigid use of the proposed
algorithms might lead to an unwieldy amount of
symbolic test instructions4.

Lai> presents a more comprehensive testing metho-
dology. For all digital systems he claims that test
generation can be done within four independent
steps: functional specification, functional analysis, test
case synthesis, and program code synthesis. Only the
first two steps of his methodology are implemented. A
demonstration on a standard sequential architecture
(PDP 11 minicomputer) only covered stuck-at fauits on
data paths.

This work was supported by the Federal Ministry for
Research and Technology (BMFT), W. Germany

A new component of the MIMOLA - Software System
(MSS2)6,7 now offers automatic generation of self-test
programs especially for microprogrammable and
custom designed special purpose processor systems
(Fig. 1). In addition to the test programs, the test code
generation software delivers valuable information
about the testability of the system under test. Internal
modules with poor controllability or observability are
reported. As a part of the hardware design process
using the MIMOLA design system, self-test programs
can be generated on various design stages and for
several alternative solutions. With a couple of iterative
steps, feeding back the testability information along
with other rating data, an optimum of performance,
cost, and testability is approached. Hardware design
without consideration of testability is obsolete.

[T 1
/

/ application / application
rograms rograms
P g+ P g+ complete
hardware complete RT-structure

constraints RT-structure

It It it

Hardware Retargetable Self-Test
Synthesis Microcode Program
Generation Synthesis

bound
programs
+
complete
RT-structure

design iterations

h 4

Simulation
b
simulation program hardware
report + hardware performance
o~ listings statistics

Fig. 1 : The MIMOLA Software System 2 (MSS2)

23rd Design Automation Conference

Paper 23.2
378

0738-100X/86/0000/0378$01.00 ©1986 IEEE

For processor systems that have not been designed
with MSS2, self-test programs can be generated as
well8. A functionally equivalent model of the system
must be provided, using the computer hardware des-
cription language (CHDL) part of MIMOLA (Machine
Independent MicrOprogramming LAnguage).

2. Global Concepts

The test generation part (MSST) of the MIMOLA soft-
ware system is a tool that automatically produces self-
test programs based on user specified test patterns for
internal register-transfer level modules. The main
features of MSST are:

- Only the common user information about the
processor system (instruction formats, operation
codes) is absolutely nescessary.

- A register-transfer structure? is used to specify the
sKstem under test. The original system structure
should be preferred, but any functionally equi-
valent model of interconnected registers, memo-
ries, arithmetic-logic units, multiplexers, and busses
is acceptable.

- Implementation details down to the gate level can
be incorporated in the circuit model and in the fauit
models, thus being considered for test generation.
Ln I’chis case simple gates are treated like RT-mo-

ules.

- In addition to modules and connections along the
data paths, address- and control logic are specified.
Tests especially tailored for these parts of the
system can be generated.

- Expensive external test hardware (a test machine) is
not needed. Self-test programs run on the system
under test. Monitoring the program counter or
program execution time is sufficient to detect and
roughly localize a fault.

- A generated self-test program consists of four
phases:

(1) Initialization of registers and memory locations,

(2) tests for the register decoding and memory
addressing function along with functional tests
for the storing modules,

(3) functional or gate level derived tests for the
combinational modules,

(4) verification of the current machine status in
order to detect undesired side-effects.

- For any kind of misbehaviour of a system-internal
RT-module special testpatterns (input patterns for
this module) can be provided in a library file.
Default patterns (0101...01 and 1010...10) are used
if no entry is found in the library.

- Modules that cannot be controlled or observed via
the data path can be checked indirectly by speci-
fying special address or control signals for the test
of other modules.

- The generated self-test programs are given directly
in the micro- or machine-code of the system under
test, ready for execution. For documentation out-
puts on a higher level (MIMOLA) are available. The

amount of details shown (path width, modules
traversed, function codes) can be selected.

Self-test Programs

On the way to an economically attractive solution of
the testing problem several good reasons call for the
use of self-test programs. The obvious restriction to
programmable systems is not really significant. Today
nearly all of the more complex switching tasks are
realized by processors. Integrated circuits that contain
only parts of a processor system can be tested in the
user environment they are designed for. Besides, a
simple test environment with a processor structure is
easily constructable. The self-test concept remains
applicable.

The minimal configuration for the use of self-test
programs must include :

- A comparator, or a test on zero after a subtraction
(addition of the two's complement) or an “exclusive
OR" operation, and

- a way to change the flow of the program,
depending on the resuit of the comparator gump
conditionally), in order to report the occurrence of
an error.

Hardly any processor does not provide these opera-
tions.

Two of the fundamental goals of the MSST testin
concept in combination are within reach only for selt-
test programs:

- Total independence of additional test hardware
that is not covered by the circuit model specifica-
tion,

- no limitation to a class of "easily testable” circuits,
e.g. circuits that follow rigid design rules or contain
built-in test aids (e.g. Scan Path).

For any type of processor system a more or less
successful test generation should be possible. The rate
of fault coverage achievable by the generated self-test
programs depends on the controilability and the ob-
servability (as seen from the comparator) of the system
under test. Basically it is unquestioned that carefully
designed self-test programs show good fault coverage,
e.g. for off-the-shelve microprocessors2.3.10. This holds
especially for tests on the microprogramming level
with its extended facilities to control and observe in-
dividual modules!1. Localisation of faults is a far more
difficult task and MSST aims at it only secondarily.

Self-test programs are equally suited to be employed
by manufacturers and users. The advantages of ex-
ternal test equipment shrink at the rate that system-
internal testpoints become inaccessible. When testing
a fully integrated system, all the external equipment
can do is to supervise the execution of a test program
(and check the electrical parameters on external /O
pins). The step to self-test programs then is short and
obvious, regarding the cost advantage.

The MSSTApproéch

According to the MIMOLA philosophy the generation
of self-test programs is not supposed to be a fully

Paper 23.2
379

automated solution. The human test engineer must be
enabled to feed his experience into the test programs.
Using MSST it is up to him to decide about fault
models, test strategy, fault coverage, and test length.
In a test pattern library he can supply MSST with input
patterns for all internal modules and functions
specified in the circuit model (Fig.2).

\Sram (mainram)
#5555 Addr.: #0000
#$AAAA Addr.: #FFFF
\Acomp
#0000 #0001 #0002 #0004 #0008 #0010
#0020 #0040 #0080 #0100 #0200 #0400
#0800 #1000 #2000 #4000 #8000 #FFFF
\END
(* #... denotes hexadecimal numbers *)

Fig. 2: Extract from a MSST test pattern library
(for the system shown in Fig. 4)

For memory modules the input patterns may cover not
only data but address inputs as well. Any functional
memory test procedure can be specified by a sequence
of data and address input patterns. it is then translated
into automatically generated self-test program code.

For combinationai modules the specified input pat-
terns correspond to “primitive cubes of a logic fault”
for the D-algorithm. Just like these “cubes” represent
fault detecting input patterns on the gate level,
patterns in the MSST library should be designed to
detect faults inside of register-tranfer level modules.
The main difference lies in the possibly far more
complex module function and in the fact that input
patterns now are bit-vectors of varying length instead
of single bits.

If the gate level structure of a combinational module is
known, then the input patterns to test for faults inside
the module can be generated with any one of the gate
level test generation procedures (e.g. D-algorithm or
derivations). Considering the limited complexity of
single RT modules this should be manageable.

Fig. 3 shows the four parts of the self-test programs
generated by MSST. Default initialization is omitted if
special input patterns for the memory modules are
specified in the library. For all memory modules that
have been initialized by default a simple check of the
address decoding function is carried out. Tests for the
memory function follow. One step to test a memory
module consists of loading an input pattern, reading it
out again and comparing it with the original. On
equality the (micro-) program counter is incremented
and the test program continues. Otherwise a jump to a
user defined “errorexit” label is executed. Loading is
not done if the last value written into the memory in
an earlier step is equal to the current input pattern.

For combinational modules a test for a certain module
function can be performed within one symbolic self-
test instruction for each input pattern. The program
flow jumps to “errorexit” if the output of the module
differs from the expected value while the specified
input patterns are applied and the module is con-
trolled to execute the desired function. The machine

Paper 23.2
380

a) Initialization steps:
register:=initvalue,
prog.counter:="increment"
({prog.counter);

b) memory test steps:
register:=input pattern,
prog.counter:="increment"
(prog.counter);

prog.counter:=
IF register=inp.pattern
THEN "increment" (prog.counter)
ELSE errorexit;

c) teststeps for combinational modules:
prog.counter:=
IF mod.output
(mod.function, inp.pattern)
= expected value
THEN "increment" (prog.counter)
ELSE errorexit;

or:
register:=mod.output
(mod.function,inp.pattern),
prog.counter:="increment"
(prog.counter);

prog.counter:=
IF register=expected value
THEN "increment" (prog.counter)
ELSE errorexit;

d) machine status verification:
prog.counter:=
IF register=last value loaded
THEN "increment" (prog.counter)
ELSE errorexit;

Fig. 3: Symbolic samples of the generated self-test
program steps

status is verified by checking all registers and memory
cells that have been accessed during test program
execution wether they still hold the expected value.

A chance to localize a detected fault is given by simply
keeping track of the individual module functions acti-
vated so far. A fault should be looked for primarily
within those functions of the activated hardware that
are executed for the first time. Statistics on module
function occurrences (where first) and their frequen-
cies in the generated self-test program can be obtained
by MSST and other MSS2 output.

3. Realization

The main task of MSST now is to generate program
code for the symbolic test instructions shown in Fig. 3.
Depending upon the specification of the processor's
control section sequences of micro- or machine code
will be generated. In any case the generated program
is situated on the lowest programming level in the
circuit model. If possible a microprogramming level
should always be specified, because it offers extended
capabilities for testing and it receives special support
from MSS2.

Lai5 does not mention any approach to realize his
concept of test program synthesis. Bellon et al.3 con-
clude that "writing test programs is a tedious job” and
go back to external test circuitry. In order to produce
program code, paths within the hardware leading to
the modules to be tested must be found and control
signals to activate these paths must be generated.
Similar to the D-algorithm implication steps and con-
sistency checks have to be performed. Backtracking will
be necessary at least sometimes. Aggravating is the
fact that sequential paths (storing modules) must be
reckoned with on all branches of the signal paths (data
and control).

The task to automatically generate program code for
symbolic test instructions is equivalent to a retarget-
able (micro-) code generation. On the one hand there
" are a couple of simplifying limitations, on the other
hand even stronger requirements occur. The set of
symbolic statements is very small and there is no need
to sqeeze the elementary operations into a sequence
of minimal length or runtime. Higher demands are
made on the flexibility of the code generation,
exceeding simple transformations (e.g. based on
commutativity). It must be possible to use paths
crossing modules that alter the data transported. MSST
accepts such modules on all paths, e.g. on the path
from a data source to an input of a module to be tested
{Myy), a shifter with a “shift left logic” function can be
passed if the signal expected at the output of the
shifter represents an even number.

At the inputs of an altering module and at the data
source then no longer the original testpattern pg speci-
fied for Myt is expected. instead a pattern p, must be
supplied such that:

@ fi(f2(...falpn)...) = Po.

where f1,f5,...fn are the functions of all modules
M1,M3,....Mn between Myt and a data source. On the
way to a comparator the output value of Myy may be
altered as well. However, for all mappings on this path
an inverse must exist. If py now is the output value of
Myt and pg = f1(f2(...fa{pn):..) is the pattern that results
at the comparator then aditionally ® must hold:

®@ fn'(fn-1'(..F17{po)...) = pn,

where fn',fao17',....f17! are the inverse functions of the
modules between M and the comparator.

For modules that by no means have access to the
specified input patterns, these patterns are altered
automatically bit by bit until they fit into the set of
accessible patterns. An input pattern that depends on
the current state of the program counter is applied to
modules on paths that only lead to the program
counter and cannot-be compared explicitly. This input
pattern effects a jump to the address after the next
instruction. The next instruction is an unconditional
jump to the errorexit label. In this way the program
control logic is being tested.

In order to carry out a machine status check at the end
of the self-test program all changes of the status must
be recorded. The machine status heavily depends on
the currently generated program. Sequential detours
not foreseeable on the symbolic level result in arbitrary
changes. Obviously a test program synthesis indepen-
dent from test generation will fail in many cases. The

MSS2 retargetable microcode compiler12 therefore
could not be used. Experiences gained in this field
turned out to be very helpful though, while imple-
menting MSST.

Limm Limm
main- l out2
ram ‘ ‘ h 4 I_’ addr
\ maddrj[l.cma malu
l.02a| regbank
ctri l¢ l.cram N ctrl
cre r
addr ¢ 99—
l.ioa —+ addr

dbus
outl

inout
l.driv inp
=

¢‘V¢
_mee /4

l.mpc

4
A
pi
Al

h 4
| pe | h 4

A 4

S incrmt ;

addr microinstruction memory -

*+ out: l.o2a lioa l.creg Lalu l.cma l.driv Lmpc L.cram Limm

....... Imlm'lmlmlu1'"1'“1;'"l”";

Fig. 4. RT-structure diagram for a simple example
processor

4. Example

The strategy of MSST operation can be seen best on an
example. Suppose test programs are to be generated
for the simple processor system shown in Fig. 4. It
consists of RAM, register-file, data bus, ALU, zero flag,
some multiplexers, program counter, and incrementer.
All is controlled by a 32 bit (horizontal) micro-
instruction, stored in an instruction memory not ex-
plicitly specified.

Inputs to MSST are an RT level structure specification
(Fig. 5) written in MIMOLA and translated into MSS2
intermediate code by MSS2 front end software, and
optionally a test pattern library (Fig. 2).

For default initialization (no patterns in the library) all
memory words are assigned the value of their address.
For a register in the register file this can be done by
one instruction (Fig. 6). The MSST output shown there
represents one MIMOLA program step (one instruc-
tion) headed by a Label (L...) and containing two
statements to be executed in parallel (separated by a

Paper 23.2
381

maddr, malu

TARGET processor;

STRUCTURE
TYPE word = (15:0); (* 16 bits wide *)
PARTS (* %... denotes binary numbers *)
mainram : MODULE Sram

PORT io

(OUT out : word; IN in : word;
ADR addr : word; FCT ctrl : (1:0));
BEGIN

CASE ctrl OF

$00: out := TRISTATE;

$01: out := TRISTATE, Sram(addr):=in;

310: out := Sram(addr);
$11: out := Sram(addr), Sram(addr):=in;
END

END;

regbank : MODULE Sreg
PORT io
(OUT outl : word; IN inp : word;
ADR addr (2:0); FCT ctrl (1:0));

BEGIN '
CASE ctrl OF
$00: outl := TRISTATE;
$01: outl := TRISTATE, Sreg(addr):=inp;
$10: outl := Sreg(addr);
311: outl := Sreg(addr), Sreg(addr):=inp;
END

END;

PORT 02 (OUT out2 word; ADR addr (2:0));

BEGIN
out2:=Sreg(addr)

END;

alu : MODULE Boperator
(IN datal,data2:word; OUT res:word;
FCT ctrl:(1:0));

BEGIN
res := CASE res OF

%00 : datal;
%01 : data2;
$10 : datal "+" data2;
%11 : datal "-" data2;
END

END;

: MODULE N2mux
(IN d1,d2:word; OUT dat:word; FCT sel:(0));
BEGIN

dat := CASE sel OF
0: di;
1: d2
END
END;

driv : MODULE Adriv

(OUT dbus: word; IN dat: word; FCT sel:
BEGIN

(0));

dbus := CASE sel OF
0: TRISTATE;
1: dat;
END
END;
Paper 23.2

382

pc : MODULE RP (*program counter *)

(OUT iaddr word; IN dat : word);
BEGIN

RP := dat,

iaddr := RP
END;

comp : MODULE Acomp (* zero test *)

(OUT flag : (0); IN dat word);
BEGIN

flag := "=0" dat
END;

flag : MODULE Rff (*cond. code flip-flop *)
(OUT o : (0); IN i : (0));
BEGIN

END;

inrcmt : MODULE Aop (* incrementer *)
(OUT res : word; IN dat : word);
BEGIN
res := "INCR" dat
END;

mpc : MODULE N3mux
(OUT iaddr:word; IN d0:(0);
IN d1,d2:word; FCT sel:(1:0)):

BEGIN
iaddr := CASE sel OF
0: di1;
: d2;
2: IF d0 THEN dl1 ELSE d2 FI;
: IF dO THEN d2 ELSE dl FI1;
END
END;
BUS dbus word;
INSTRUCTION

I: (02a(31:29), ioa(28:26), creg(25:24),
alu(23:22), cma(21), driv(20),
mpc(19:18), cram(17:16), imm(15:0));

CONNECTIONS

regbank-02 -> maddr.d2; mpc -> pc.dat;
regbank-02 -> malu.dl; flag -> mpc.do;
regbank-io -> dbus; maddr -> mpc.dl;
mainram-io -> dbus; incrmt -> mpc.d2;
dbus -> mainram-io.in; I.mpc -> mpc.sel;

maddr -> mainram-io.addr; driv -> dbus;
I.cram ~> mainram-io.ctrl; pc -> driv.dat;
alu -> regbank-io.inp; I.driv ~> driv.sel;
I.ioa -> regbank-io.addr; comp -> flag.I;
I.creqg -> regbank-io.ctrl; alu -> comp.dat;

I.02a -> regbank-o2.addr; I.cma -> malu.sel;
malu -> -alu.datal; I.imm -> malu.d2;

dbus -> alu.,data2; I.alu -> alu.ctrl;
I.cma -> maddr.sel; I.imm -> maddr.dl;
pc -> incrmt.dat;

END,

Fig. 5 : MIMOLA specification of the example

processor

L0020
(* I #1D280005
$XXX11101001010000000000000000101 *)
regbank-io(%$101) := #0005,

pc := "INCR" (pc);

Fig. 6: Default register initialization

comma). The corresponding hexadecimal and binary
program code is shown as a commentary.

For a test lateron in the program a sequence of in-
structions (Fig. 7) is generated, verifying that the initial
value is still iept in register 5. This is done for both
output ports of the register file, starting with port

"

10,

LOODY
(* I #15A4FFFB
$XXX10101101001001111111111111011 *)

flag := "=0"("+"(#FFFB, regbank-io(%101))),

pc := "INCR" (pc);
LOODA
(* I = §X3000000

= $XXXXXX11XX0000000000000000000000 *)
pc := IF flag THEN "INCR" (pc)
ELSE #0000 FI;

LOODB
(* I $1D28FFFB

$XXX111010010100011111111111111011 *)
regbank-io(%111) := §FFFB,
pc := "INCR" (pc);

LOODC
(* I #BD84XXXX
$1011110110000100XXXXXXXXXXXXXXXX *)
flag := "=0"("+"(regbank-02(%101),

regbank-io(%111))),

tH

pc := "INCR" (pc);

LOODD
(* I = #X3000000
=$XXXXXX11XX0000000000000000000000 *)
pc := IF flag THEN "INCR" (pc)
ELSE #0000 FI;

Fig. 7: Steps to test register 5 (both output ports)

The code generation algorithm proceeds as follows:
According to the symbolic statement in Fig. 3 ¢) a path
is traced backwards from the program counter to a
conditional multiplexer. At the condition input a
sequential path must be used. The zero flag has to be
loaded in an immediately preceding instruction. This
instruction is inserted now. From “flag” the path is
followed to the test-on-zero operator and further on
to the "alu”. The " +" operation is found suited to
realize a comparison. From the right input of the “alu”
the output port to be tested is reached via the data bus
(non-altering modules and busses not shown in Fig. 7).
For a zero result the two's complement of 5 is tracked
down from the left "alu” input. The source for this
value is the immediate data field of the instruction
word. An increment statement for the program
counter then is generated and work continues with the
conditional assignment in the (now) second instruction

(LOODA). When the sources for the incremented value
of the program counter and the errorexit jump address
have been found, then this test step is completed.

In order to test output port “02” of the register file
three instructions are necessary. The add-up value (-5
= #FFFB) can only be found on the sequential path
through port “io” in register 7 (% 111).

A desired value at the output of a module is traced
back to the inputs and on to a final source (memory,
hardwired constant, instruction field or external inter-
face). Required module control signals are traced back
first, then address inputs and finally data inputs.

A step to check the function “-” of the combinational
module “alu” (with default input patterns) is shown in
Fig. 8. The right "alu” input pattern (#0000) is accessed
sequentially in register 6. As the output cannot be
compared directly, it is stored in register 6. The follo-
wing comparison and conditional jump is equivalent to
aregister test step.

LO17C
(* 1 $19280000
$XXX11001001010000000000000000000 *)

regbank-io(%110) := #0000,

pc := "INCR" (pc);:
LO17D
(* I $19EC5555

$XXX11001111011000101010101010101 *)
regbank-i0(8110) :=
"-.alu" (#5555,regbank-io(%110)),

pc := "INCR" (pc);
LO17E
(* I = $19A4AAAB
= $XXX11001101001001010101010101011 *)
flag := "=0"("+"(4AAAB, regbank-io(%110})),
pc := "INCR" (pc);
LO17F
(* I = $X3000000
= $XXXXXX11XX0000000000000000000000 *)
pc := IF flag THEN "INCR" (pc)

ELSE #000

Fig. 8: One step to test a combinational module

5. Applications

Since and during the development of MSST it has con-
tinuously been tried on a variety of digital processors.
Apart from simple examples like the one shown here
self-test programs have been generated for real-life
hardware and commercially used systems, e.q :

- A high speed special purpose processor built up in
bipolar bit-slice technology (AMD) and used for
high resolution picture processing equipment. Due
to very long data and control paths (up to 15 RT
modules in a row) and a high degree of encoding
the generation of microprograms was most time
consuming for this example (up to 3 cpu hours on a
Siemens 7.760 mainframe).

- A telephone processor in one-chip CMOS design
(Siemens). The architecture and instruction set of
this system resembles very much to common micro-
processors. Test generation could be done nearly

Paper 23.2
383

without problems. A default test (1200 machine
instructions) took about 800 cpu seconds.

- A prototype of an innovative architecture (data
driven timing) general purpose processor, designed
for high throughput by means of massive paralle-
lism on the microprogramming level. The prototype
has been built at the Kiel University!3 using stan-
dard TTL logic chips. On this example MSST test
programs for the first time were brought into
action. For different configurations of the system
self-tests were generated and ran even on the still
incomplete {(only one of two ALUs, two of four
memory ports etc.) hardware. Some component
failures and a couple of wiring fauits could be
detected and tracked down to the corresponding
RT-module with the MSST default test. Errors that
could not be detected did not occur so far. A
manual generation of test programs for this proces-
sor (142 bits horizontal microinstruction) would be
quite unreasonable. Probably a lot more errors
would be in the programs than in the hardware.
MSST generated about 3000 fault free microinstruc-
tions within less than 20 minutes (cpu time).

6. Conclusion

An approach to the testing of digital systems especially
suited for microprogrammable and special purpose
custom designed processors has been presented. MSST
is a tool for the test and design engineer that works on
the register transfer level and utilizes the natural parti-
tion of the system into RT modules. It automatically
generates self-test program code that locally applies
user provided module input patterns to test for faults
in the interior of system internal RT modules. As with
all tools the quality of the product still depends on the
skills of the user. A test with default patterns makes
shure that at least stuck-at faults and shorts between
adjacent bit-lines on the module interconnections are
detected. All features of MSST are fully implemented
and first applications have shown promising results.
Experiments to compare the fault coverage achievable
with that of other testing methods are under way.

References

[1] S.M.Thatte, J.A.Abraham: "Test Generation for
Microprocessors”, IEEE Transactions on Com-
puters, Vol.C-29, No.6, June 1980, pp.429-441

[21 A.Hunger: "Neues Verfahren zum Selbsttest von
Mikroprozessoren”, Verlag TUV Rheinland, KéIn
1982

[3] C.Bellon, A.Liothin, S.Sadier, G.Saucier, F.Grillot,
R.Velasco, M.Issenman: “Automatic Generation
of Microprocessor Test Programs”, 19th Design
Automation Conference, 1982, pp. 566-573

[4] A.K.Susskind: “Overview of Microprocessor
Testing”, |IEEE Int. Conference on Computer
Design (ICCD) 1983, pp.45-48

[51] K.W.Lai: "Functional Testing of Digital Systems”,
PhD Diss. CMU-CS-81-148, Dec. 1981, Pittsburgh
PA

[6] G.Zimmermann: “The MIMOLA Design System :
A Computer Aided Prozessor Design Method”,
16th Design Automation Conference, 1979, pp.
53-58

Paper 23.2
384

(7]

(91

[10]

(1]

[12]

(13]

P.Marwedel: “The MIMOLA Design System:
Tools for the Design of Digital Processors”, 21st
Design Automation Conference, 1984, pp.587-
593

R.J6hnk, G.Kriiger, P.Marwedel: "MIMOLA Soft-
ware System 2 User Guide”, online documen-
tation 1985

A.C.Parker: “Automated Synthesis of Digital Sys-
tems”, IEEE Design&Test of Computers, Vol.1,
No.4, 1984, pp.75-81

D.Brahme, J.A.Abraham: "Functional Testing of
Microprocessors”, IEEE Transactions on Compu-
ters, Vol.C-33, No.6, June 1984, pp.475-485

C.V.Ramamoorthy, L.C.Chang: "System Model-
ing and Testing Procedures for Microdiagnos-
tics”, IEEE Transactions on Computers, Vol.C-21,
No.11, Nov. 1972, pp.1169-1183

P.Marwedel : “A Retargetable Compiler for a
High-Level Microprogramming Language”, 17th
Annual Microprogramming Workshop (MICRO
17), 1984, pp.267-276

L.Nowak :“Entwurf und Realisierung eines neu-
artigen Rechnerkonzeptes”, PhD Diss., Institut

~ far Informatik und Praktische Mathematik, Uni-

versitat Kiel 1986

