
On the Use of Hierarchies in the MlMOLA Hardware Design System

Peter Marwedel

Institut für Informatik und Prakt.Math., University of Kiel,

Olshausenstr. 40-60, D-2300 Kiel 1, w. Germany

Abstract

Until recently, the use of hierarchies in CAD for
VLSI has almost exclusively been restricted to layout

and simulation problems. The paper describes represen-

tation and handling of design hierarchies in the
MIMOLA design system, featuring RT-level synthesis,
test program generation and retargetable code gene-

ration. A method of embedding these tools in a common

design environment, providing access to the hierarchy,
is described. Advantages of having a design hierarchy
are presented for each of the tools. In addition,

relevant features of the MIMOLA language are ex-

plained.

The MSS, as described in [11], did not make use of

design hierarchies. This paper describes our ap-

proach for extending the MSS towards a hierarchical,

integrated design system.

Two major issues have to be solved: that of suitable

design language and that of a suitable design system.

Let us first consider the language issue by briefly
reviewing some relevant features of the present ver-

sion (version 3.4) of MIMOLA.

I. Introduction

2. Hierarchical features of the MIMOLA lanQuaQe

MIMOLA has been specifically designed to support

RT-level synthesis. It is an important characteristic
that the specification at the algorithmic level as

well as synthesized RT-structures can be described
with this language. Hence, both the specification and

the implementation can be represented in MIMOLA.

This could also be done with a sufficiently general
simulation language like CAP (DACAPO) [5,16J or VHDL.

In a typical design process using such a language,

one would first simulate the specification. Next,

one would manually design an implementation. This

implementation would again be simulated. In such an
approach, simulator does not need to know whether it
is simulating a specification or an implementation.

This knowledge exists only in the user's mind.

In the design automation area, hierarchy has almost

exclusively been used for simulations and for layout

systems [9]. In these cases, the problem of designing

hierarchical tools has been addressed for a single
tool. With the advent of integrated design systems,

covering more design problems and more levels of
abstractions, it is becoming necessary to handle

hierarchies in a more general context [9].

The hardware design system MSS (MIMOLA Software Sys-
tem) which we developed during recent years, includes

tools to solve several design problems. The MSS

;s based upon MIMOLA (machine independent micro-

programming language) [7], a language covering several

levels of abstraction. The situation is different for tools handling seve-

ral levels of abstractions simultaneously, like syn-

thesis, abstraction, or verification tools. The MSS,
for example, allows the user to specify a behaviour

and a partial structure {e.g. some memories) and to

synthesize interconnections and control automatically.
The RT-synthesizer must be able to distinguish between

specified behaviour and a partially specified struc-
ture. There are two ways of providing the required
information:

The highest level is the algorithmic level, similar

to the level at which PASCAL programs describe algo-

rithms. The lowest level is the register transfer
(RT-) structure level. At this level, hardware is

described in terms of memories, registers, arith-

metic/logic units (ALUs), multiplexers, busses and

the interconnections between these elements [14].

The tools within the MSS perform the following tasks:

1.Simulation.
2.Synthesis of RT-structures from an algorithmic spe-

cification [12,13].

3.Generation of the binary form of an algorithm
described at a PASCAL-like level. The machine des-

cription is part of the input ("retargetable com-

piler") [10].
4.Automatic generation of self-test programs for a

given machine [8].
5.Generation of schematics [18].

1. The d;st;nct;on between structure and behav;our
;s made ;n the des;gn language.

2. The des;gn env;ronment prov;des th;s ;nformat;on,

e.g. behav;our and structure could be kept ;n

d;fferent f;les.

For MIMOLA (as well as for CIRCAL [2] and SBL [3]),

the f;rst alternat;ve has been chosen. Th;s cho;ce

allows the ;nclus;on of behav;our and structure ;n

a s;ngle l;st;ng.

Behavloural speclflcatlons ;n MIMOLA use a syntax and

semant;cs that ;s almost equ;valent to that of PASCAL.
Ava;lable language features ;nclude recurs;ve proce-

dures, dynam;c var;ables, and, ;n add;t;on to PASCAL,
constructs of systems ;mplementat;on languages l;ke

C. D;fferences between MIMOLA and PASCAL ;nclude
the follow;ng:

This research has been supported by the German Mini-

stry of Research and Technology (BMFT) under contract
NT 2816 A9.

944

CH2417-4/87/0000/0944$01.00 @ 1987 IEEE

Pointer: MODULE Reg «SIZE=l»
(IN i: word; DUT 0: word;
FCT 5:(0); CLK C:(O));

functions cannot have side effects,

static (own) variables are possible,

there are no REAL variables,

for hierarchical designs, the body of the "main

program" is of a restricted form.

Since MIMOLA is a hardware design language, implemen-

tation descriptions are restricted to denoting hard-

ware structures. Hardware structures are described
in terms of modules and a netlist. The MSS pro-

vides the user with a check for the completeness of

the netlist. Thus, the MSS detects errors which cannot
be detected in systems not requiring a netlist. Users

have reported that this check turned out to be valu-
able for many applications. The netlist is a basic

source of information, both for the code generator
and for the test program generator MSST. As a result,

MSST is able to generate a small set of machine

instructions testing for stuck-at errors on physical
wires.

BEHAVIOUR

BEGIN
AT c 00

CASE s OF
O : Reg := i;

1 : 0 <- Reg;

END;
END.,

(*incomplete netlist*)
-> Memory .c;

-> Pointer.c;
-> Memory .a;

-> Memory .d;

CONNECTIONS

clock

clock

Pointer

data

END-structure;

BEHAVIOUR (*behaviour of Stack*)

PROCEDURE push (IN i: word);

BEGIN

Memory[Pointer]:=i;
Pointer := "INCR" Pointer

END;

RT-modules, in turn, are specified by their behaviour

and/or their structure. Thus, hierarchical nesting
of modules is possible:

module

/ \

behaviour structure

(specification) (implementation)

/

module-list. netlist

module 1.1.. module 1.3.-

PROCEDURE pap (OUT o : ward);
BEGIN

Pointer:= "OECR" Pointer; (*assign to store *)
o <- Memary[Painter]; (*assign to signal*)

END;

PROCEDURE read (OUT o : ward);
BEGIN

o <- Memory[Painter];

END;

module 1.2

I I
behaviour structure..

modul~

module 1.2.1 module..

behäviour behaviour behciviour

PROCEDURE clear

BEGIN

Pointer:=O;
END;

BEGIN behaviour
AT cTock 00

CASE ctl OF
O : push(data);

1 : pop (data);
2 : read(data);

3 : clear;

END case;

END-behaviour;

Procedures and functions, which are called in the
block enclosed by BEGIN behaviour and END behaviour

are exported by the module "Stack". Hence-;- modules
are similar to abstract data types and to monitors

(c.f. [3,16]). They contain some private storage
and some public operations (procedures). Note that

MIMOLA in contrast to most other languages requires

that public operations can be selected by control

codes (the case labels). In the module header, control

code inputs are denoted by FCT .Control code inputs
can only be used as CASE-selectors. Clock inputs

are denoted by CLK. Clocks can only be used in
an AT-statement.

Fig. 1 Implementation hierarchy

Note that for the bottom level modules, the "leaf

modules", only the behaviour is defined in terms of
some primitive operations of the language.

The following is an example of a hierarchically struc-

tured MIMOLA description:

~DULE Stack (INOUT data:(15:0); (*16 i/o lines*)

FCT ctl : (1:01 ; CLK clock : (0));

STRUCTURE (*incomplete structure decription of*)

(*Stack: no control logic specified *)
TYPE

word = (15:0); (*bitstring of length 16*)

PARTS

Memory

3. Common Tool Environment

.et us now start studying the design system issue.

(*incomplete module list*)

MODULE SRam «SIZE=#10000»
(INOUT d:word; (*data i/o lines *)
ADR a:word; (*address input *)
FCT s:(O) ; (*function select*)
CLK c:(O)); (*clock input *)

(*no structure defined for leaf module*)
BEHAVIOUR

BEGIN
AT c DO

CASE s OF
O : SRam[aJ:=d; (*write*)
1 : d <- SRam[aJ; (*read *)

END;
END.,

The integration of severa] design too]s requires
a suitab]e too] environment. Propab]y the most im-

portant parts of such an environment are a common
design data base and a common system monitor [6]. The
purpose of the]atter is to ca]] appropriate too]s,

<145

ist netlist

"
2.2 module 1.2.3

rn cooperation with CADLAB of Paderborn, we will
generate tightly coupled implementation, taking full

advantage of todays workstation technology.

check ccnsistency cf the design data base, and tc

prcvide an interface tc help, display and edit func-
ticns. In a tightly ccupled system, it handles all

ccmmunicaticn with the user. In a lccsely ccupled
system, tccls are allcwed tc ccmmunicate with the

user directly. 4-. Use of the hlerarchy by exlstlng tools

4.1 The simulatorAfter careful analysis of our design tools, we con-

cluded that none of these needs to process hierarchi-

cally structured inputs. Hierarchies can be expanded
before these tools start operating. This does not

mean, however, that the hierarchy is lost. The tools

just work on an expanded copy of the design descrip-
tion and the result of the tool execution is stored

in an appropiate level of the design hierarchy.
Hierarchy expansion is another part of the common

tool environment.

The separation of the hierarchy expansion and the

simulation eludes the need for handling the hierar-

chy explicitly in the simulator. The hierarchy is
just expanded to give the required amount of simu-

lation details. The only requirement for the simu-
lator is that it covers all relevant levels of

abstraction. Our current simulator for RT-structures
will be extended to fulfill this requirement.

This environment and the tools available in the
present MIMOLA design system are shown in Fig. 2: 4.2 The retargetable compiler

Currently; the most frequent application of our re-
targetable compiler [10] is the generation of micro-

code for designs based upon the AMD-2900 series

of chips [1]. These chips include arithmetic/logic
units as well as registers and RAMs. The compiler
requires that modules are either functional or sto-
ring. Hence, the description of AMD-chips must be

expanded until this condition is met.

With an automatic expansion of the hierarchy, it is

possible to store descriptions of AMD2gxx- or simi-

lar chips in a library and to describe a processor

by selecting and interconnecting elements from the
library. This description then defines the target

architecture for which the retargetable compiler gene-
rates binary code. The behavioural specification is

considered to be the high-level source program.

Example

This example is used to explain how a connection
to the address input of memory port B is expanded.
Only those parts of the description which are rele-

vant to the expansion are presented.

Assurne the following module types are present in

the data base:

};
I.

MODULE AMD29203(IN baddr:(3:0); STRUCTURE

PARTS
RAM : MODULE 51 «5IZE=16»

PORT A (ADR addr : (3:0);
PORT B (ADR addr : (3:0);

ALU: MODULE Al (...)

CONNECTIONS

baddr -> RAM.B.addr;

END;

MODULE Mem4k(OUT io:(31:0);

The user could describe his design as follows

MODULE MyProcessor;

STRUCTURE
PARTS

Slice5 : MODULE AMD292O3; EXTERNAL;
CtlMem : MODULE Mem4k ; EXTERNAL;

Fig. 2 Common tool environment

This scheme is applicable ta several degrees of

integration. Currently we are implementing a loosely

coupled system, using (with very few exceptions) only

standard PASCAL. In this approach, all the boxes

shown in Fig. 2 are separate programs, communicating
via files. The resulting system is highly portable.

946

CONNECTIONS

CtlMem.io.(13:10) -> Slices.baddr;

END;

2:

Expand the current processor down to RT-modules;
3:

Let MSST compile binary code resulting in an appli-
cation of the test patterns to internal nodes and

and in branches to ErrorExit if the response is

wrong.

The code generator would operate on the following

expanded form of the target description:

MODULE MyProcessor;

STRUCTURE

PARTS
Slices/RAM : MODULE ...;

Slices/ALU : MODULE ...;
CtlMem : MODULE ...;

CONNECTIONS

CtlMem.io.(13:1O) -> Slices/RAM.B.addr;

END;

4.3 Test program generation

The test program generator MSST [8] is a tool which

automatically generates selt-test programs tor a given
processor. MSST generates binary machine code tor
the tollowing tasks ot a selt-test program:

1. application of test patterns to the inputs of RT-

level modules.
2. observation of the module's response.
3. propagation of the response to the input of a

comparator.
4. comparision with the known good response.

5. observation of the result of the comparison.

Example:

Assurne the following conventions are used:

4.4 The RT-Synthesizer

The input to our RT-level synthesizer MSSH [11,12,13]

contains a complete behavioural specification and a

partial description of the structure. Typically, the
latter consists of a description of the data memories.
MSSH selects appropriate functional modules, generates

the control unit and generates the netlist.

MSSH can be used hierarchically by changing the

"current module under design (CUO)".

For example, the description of modl}le "Stack", as

it has been given above, could be used as input

to MSSH. MSSH would select modules for operations

"INCR" and "OECR" and it would generate control
and the netlist.

The resulting design of "Stack" could be used as PART
of a processor requiring operations "push" and "pop",

This design sequence is called "bottom-up design".

Top-down design would also be possible.

MSSH is an adequate design tool for complex modules,

because it generates a control unit containing a pro-

gram counter and an instruction store. For simple
modules, a separate tool for logic synthesis is re-

quired.

RT-level synthesis is a special case in that hierar-
chical outputs for a fixed CUO could be useful. Fre-

quently, the library of predesigned modules contains
devices which have to be augmented to fit into a

particular application. For example, tristate drivers
have to be added to some of the outputs, or an ALU has
to be augmented with some additional circuitry. In

other cases, simple decoders have to be added to the
control inputs of some modules. Synthesis is simpli-
fied if the resulting augmented, "ideal" modules can

be treated like available library modules.

-"%" denotes binary numbers,
-"PC" is the name of the program counter,

-"CC" is the name of the condition code register,

-"ErrorExit" is the entry point of a routine re-

porting errors.

Then, the following three instructions could be

generated for a test of location 0 of memory M:

(*apply test pattern:*)

M[O]:= %0101..01;

Generation ot hierarchical outputs by MSSH would not
be required, it a separate logic synthesis step were
used to create the "ideal" modules.

It is still an open question whether or not the

synthesizer could accept a hierarchically structured
input tor a tixed CUD. Many ot the available compo-
nents like microprocessors and bit slice devices are

hierarchically structured. But only tew ideas exist,
on how these devices could be used in a synthesis

system. There are many open questions in the only

approach I [Pee84] to this problem we are aware ot.

(*observe response of M[OJ; propagate through the*)
(*ALU by addin9 0; compare response: *)

CC := (M[OJ + 0) <> %0101..01;

(*ob.serve result of comparison:*)
PC := IF CC THEN ErrorExit ELSE .'INCR" PC;

By default, MSST applies patterns of alternating
ones and zeroes to all the inputs of RT-level modules.
Fault coverage is improved, if the user explicitly

defines good test patterns. For combinatorial circuits
with a known gate- or switch-level description, these

patterns can be computed by using conventional TPG-
tools.

Therefore, generation of self-test programs using
MSST and a TPG tool consists of the following steps:

4.5 Schernatics generation

Textual descriptions of hardware structures are diffi-
cult to comprehend. Therefore, we designed a program

generating schematics from a given textual hardware

descriptiofi [17]. Again, the separation of hierarchy
expansion and schematics generation simplified the
tool.

1 :

FOR each Rr-module of the current processor

00

expand the module down to the gate level;

generate test patterns using some conventional

ArG tool;

store the result in the data base;

OD;

947

4.6 Future expansions of the tool set

In cooperation with the universities of Kaiserslau-

tern and Paderborn, we are currently workihg on an
extension of the current MIMOLA design system down
to the layout level. The environment shown in Fig. 2

is general enough to accomodate additional tools

like hierarchical floor planners [18], TPG tools,
fault simulators, logic synthesizers and layout syn-

thesizers. It would also provide a suitable setting

for verifiers like VERENA [4].

Conclusion

It is commonly accepted that the complexity of VLSI

systems makes hierarchical design tools necessary.
While this is true in general, methods for handling

the hierarchy in a particular tool are not obvious.
This paper demonstrates how the hierarchy can be

taken into account bya set of non-standard design
tools, using an integrated tool environment. Tools

operate on an expanded copy of the current design
and therefore (with the exception of RT-level syn-

thesis) tools do not need to worry about the hierar-
chy. Nevertheless, hierarchy information is kept

throughout all phases of the design.

Conference, 1986, p. 271-277
[13] P. Marwedel : An Algorithm for the Synthesis

of Processor Structures from Behavioural Specifi-

cations, Microprocessing and Microprogramming,

Vol. 18, 1986, p. 251-262

[14] A. C. Parker: Automated Synthesis of Digi-
tal Systems, IEEE Design and Test of Compu-

ters, Vol. 1, 4(1984), p. 75-81
[15] A.J.H.M. Peels : A Design Method for Micropro-

cessor-Based Systems, Proefschrift, Department
of Computer Science, Twente University of Techno-

logy, Enschede, 1984
[16] F. Rammig, Hierarchical Modular Description of

VLSI Systems, Proc. IEEE Workshop on VLSI and

Software Engineering, 1982
[17] L. Terasa: Graphische Darstellung von Hardware-

Beschreibungen, master's thesis, Institut für

Informatik und P.M., University of Kiel, 1987

[18] G. Zimmermann: Top-Down Design of Digital Sys-
tems, in: E. Hörbst (ed.): Advances in CAD: Logic

Design and Simulation, North-Holland, 1986

References

[1] Advanced Micro Devices : Bipolar Microprocessor
and Interface Data Book, Sunnyvale, 1983

[2] B.S. Davie and G.J. Milne : The Role of Behaviour

in VlSI Design languages, Proc. of the IFIP WG
10.2 Conf. "From H.D.l. Descriptions to Guaran-
teed Correct Circuit Designs", Grenoble, 1986

[3] G.C. Gopalakrishnan : From Algebraic Specifica-

tions to Correct VlSI Circuits, Proc. of the
IFIP WG 10.2 Conf. "From H.D.l. Descriptions

to Guaranteed Correct Circuit Designs", Grenoble,
1986

[4] W. Grass and R. Rauscher: CAMIlOD -A Program

System for Designing Digital Hardware with Proven
Correctness, Proc. of the IFIP WG 10.2 Conf.

"From H.D.l. Descriptions to Guaranteed Correct

Circuit Designs", Grenoble, 1986
[5] K. Groning, K.-D. lewke and F. J. Rammig :

A Unified Multilevel Simulation Technique, Proc.

ICCAD, 1984
[6] A. Di Janni: A Monitor for complex CAD systems,

23rd Design Automation Conference, 1986, p. 145-

151
[7] R. Jöhnk and P. Marwedel : MIMOlA language Refe-

rence Manual, language Versions 3.4 and 4.0,
Report of the Institut für Informatik, University

of Kiel, 1987

[8] G. Krüger: Automatic Generation of Self- Test
Programs -A New Feat.ure of the MIMOlA Des i gn

System, 23rd Design Automation Conference, 1986,

p. 378-384
[9] T. lengauer : Exploiting Hierarchy in VlSI De-

sign, in: F. Makedon et al. (ed.): VlSI Algo-
rithms and Architectures, Proc. Aegean Workshop

on Computing, lecture Notes in Computer Science,

Vol. 227, Springer, 1986

[10] P. Marwedel : A Retargetable Compiler for High-
level Microprogramming language, 17th Ann. Work-

shop on Microprogramming (MICRO-17), 1984, p.

267-276
[11] P. Marwedel : Ein Software -System zur Synthese

von Rechnerstrukturen und zur Erzeugung von Mi-

krocode, habilitation thesis and report of the

Institut für Informatik und Praktische Mathe-

matik, University of Kiel, Kiel, submitted 1985
[12] P. Marwedel : A new synthesis algorithm for the

MIMOlA software system, 23rd Design Automation

948

