Graph Based Retargetable Microcode Compilation
in the MIMOLA Design System

Lothar Nowak

Institut fiir Informatik und Praktische Mathematik, University of Kiel,

Clshausenatr. 40-60,

Abatract

This paper describes a retargetable compiler,
which is able te¢ compile programs into the machine
code of a specified hardware (target). The target
ias deseribed at register-transfer structure level
by module specifications and netlists. The program
can be defined at several levels of abatractilon,
spanning the range from algerithmic description
{e.g. PASCAL) down to RT-level behavioural de-
geription. If the program is the complete target’'s
behavioural specification the compller can be used
to verify the structural against this behavioural
description.

1 Introduction

The general motlvation for the design of retarge-
table compilers has been intensively discussed in
the literature {see e.g. [MarBi]). It need not be
repeated. Retargetable compilers require a formal
descoription of the target machine, for which code
is to be generated. Many different forms of target
machine deacriptions have been used. This paper
describes a retargetable compiler using the true
hardware structure as machlne specification. This
means that the apecification consists of a de-
acription of the target's RT-modules and thelir
interconnection. Thia approach has several advan-
tages:
- easy integration into a general CAD-system,
- consistent machine description during the design
process,useful for other toecls, e.g. simulators,
- the specification language is easy to learn for
hardware engineers.

Thia paper presents a retargetable compller, which
supperts target architectures with single level
interpretation and monophase execution. This clasas
represents most of all micrccoded systems; even
nultiphase asyatems can often be modelled by monc-
phases. The input to the compiler is the struc-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 ACM 089791-250-0/87/0012/0126 $1.50

D-2300 Kiel,

128

W. Germany

tural reglster-tranafer level description of the
target, together with a preprocessed program. Pre-
procesaing means: allocation of wvarlables and
replacement of high level constructs like FOR or
REPEAT. Different preprocessors are available,
e.g. for PASCAL programs. The compiler and theae
preprocessors are tools of the MIMOLA Design
System {Mar85,Mar87]. This system supports the
deslgn of digital hardware and contains several
tools used in this area. Common to all tools is
the language MIMOLA (machine independent micropro-
gramming language) [MarB84, J6M87]. MIMOLA is a
superset of PASCAL, which allows the description
of programs as well as the deseription of hardware
structures.

Earlier work [Mar84] demonstrated that the ap-
proach outlined above is feasible. However, until
recently, retargetabls code generation was too
slow to be used for large programs. The present
paper describes a novel approach speeding up the
compilation by a significant amount. The compila-
tion process ia devided inte three phases: the
preallocation phase, the allocation phase and the
scheduling phase. The hardware allocation 1s based
on the Connection-Operation-Graph (CO-Graph), con-
atructed during the preallocation phase. This
graph representa the target structure as well as
all operation codes. In the allccation phaze a
pattern matching algorithm searches subgraphs,
which are eguivalent to the dataflow graph defined
by the aasignment to be allocated. The resource
allocation 1s reprezsented by the corresponding
setting of the instruction word.These settings are
desceribed by apecial atructures, called I-Tresa.
Finally all allocated assignments are scheduled
and mapped inte instructions.

The main difference to cther retargetable com=-
pilera can be seen in human interactiocn needed for
the compilation. While, e.g. the system of Mueller
et al [Muv83,MVABU] relies on wmanually bound
flowgraphs for data transfers, Vegdahl's asystem
[VegB2,VegB2a,VegB3] uses procedural descriptions,
e.g. how to generate constants. In contrast, our
aystem's input 1s the pure structural deseription
of the target. Another difference 1s given by the
handling of wversionsa: in general,cne data transfer
can be mapped to the target structure in different
ways. This aspect was first astated by Mallett
[Mal78] b®but not considered in retargetable code
generation. Versions offer more fresedom in the
scheduling phase [MVAB4] and are an essential
concept of our compller.

2 Definition of I-Trees

Def. 2.1:
Let B, := {0,L} and
»
Bq i= B2 = P(52) the power set of Bz'
The eslementa of Bu are:
@ :={}, 0 := {0}, 1 :s (L}, X:= [0,;??

With binary operations '+','®' and a unary
operation '-' as stated below (B~,+,',-)
defines a boolean algebra.

(=
-

« | & X s , d01X a |-a
& | 801X g |l apgeas 8| X
olooxx 0O|eéceo D[1
11x1x 1]/8ée11 100
X | xxxx | eo1x x| e

An interpretation of this algebra is given by the
following treatment. Aasume a (boolean) variable &
{e.g. a bit of the instruction werd) and some
conditions, which assert A to be set to specifie
values. Distinguish four casea:

- 4 should be set to {0}, write A:=

= A should be set to {L}, write A:=

- A should be set either to {0} or to {L},

© write A:=0+1

= A could never be set to {0} and {L}

aimultanecusly, write A:=0%1

The value *X' (={0,L}) offers a choice between the
alternatives '0f or 'L'. The value '@' (={}) can
be treated as the result of some incompatible as~
sertions. Since (B,,+,%,-) 1s a boolean algebra
the distributive law holds; for example: 1%#(1+0)
= 18 = 1 = 148 = (1%3)+(1%0) ,

To handle n-dimensional wvariables (e.g. the com-
plete 1nstruction word} an extented algebra using
boolean vectora can be defined.

Def. 2.2: '
n
Let Bg'.- { (21,b2,...,bn) [b, e an} and
32 = P(Bz) the power set of BZ'
.
(B; 4 %,-) with '+', #' and '-' defined by

the set-theoretlic operations union, intersection
and complement defines a boolean algebra.
Equivalent to the 1-dimensional case B (=B), an
element of B2 {e.g. the set {v1,v2,v3], vy ® Bz)
can be interpreted as the alternative settings
(v1,v2 or v3} of a n-dimensional booclean variable.
The interpretations of union and intersection are
obvious. Since Bg contains 2" elements, a2 compact
n*
repregsentation of B2
by I-Trees, a recursively defined

posed of I-Nodea.

must be found: it is given

structure com-

127

Daf. 2.3:
Let By t= {(bysby,eneyb)) | by @ By = £,0,1,X})
The n-dimensional vector v e Bﬂ is called I-Node

Let vi=(v11.vi2,...,vin) I-Nodes. Define the
operation '*i' ¢ I-Node x I-Node -> I-Node by
* = * .

MR T PP PET) SPA PYTETIL S PWe B
I-Nodes can be mapped into elements of B a
mapping F:

Def. 2.4:
Let v = (v},za, A)l e BH
F: Bu -> B with
3 vy, v, =€ -> F(v) = {}
v,=X => Fiv) = {(v1,..,vi_1,0,...vn).
(v1, .,vi_1,L,..,an}
alse => F(v} = (v}

It can be shown that F{a
helds if a,b are I-Nodes.
n n#*
F(B,) C B,
But let's

4 b} = Fla) # F(b)
Due to F's property
an inverse mapplng cannot be defined.
*

If v5

n n¥®
element of BZ' the elements of B, are (1, {vi} or

have a look at BD denotas an

sets of the form {v ,v }. The latter one is
equivalent to the algebraic expression {v } o+
{vj} Therefore, each element of B2 can be ax-

pressed by an I-Node (e.g. {} by (@,6,..,8) or
{vi} by vi) or by an algebraic expression of
I-Nodes (e.g. J}' Having

this in mind we define a structure representing

{v1,..,vJ} by v, +...e v

algebraic expreasions of I-Nodes.
Daf. 2.5;

An I-Tree is a recursively defined structura
composed of I-Nodes and the two relations ‘'+!

and *#'. It is an:
i} I-Node or
11) I-Node * I-Tree ar

iii) 1-Tres + I-Tree

An I-Tree can be graphlcally represented by a

tree, using following conventions (A,B & I-Tree):

- A+ B <==> B i3 brother of A

- A % B <zz> B is son of A

- 11i} demands for a dummy root node,
root=(X,X,...,X)

e.g.!

For example:

the algebraic expression A ® (B + C + (D*E)) + F
and its distributive form A%B + A®C + AMDYE 4+ F ia
represented by the following left (right) I-Tree:

E E
I |
BCD BC D
U [
A F AA AF
N/ A\ WA
root root

Since I-Trees are representations of algebraic
expressions commutativity, asscciastivity and dis-
trivutivity holds on I-Trees too. Using diatri-
butive law each I-Tree can be transaformed into a
disjunctive form like

k 7l
%1 f£1 Vig ot Vij I-Nodes

Due to the correspondence between the operations
'# ' and ‘% I-Trees can be reduced to expressions
of "the form

k
§1 v, » Vv, I-Node
"
Therefore,each I-Tree represents an element of Bg

Bn.'s operations ({'+','#') correspond to represen-
tationas on I-Trees. Therefore, these c¢perations
could be done on I-Trees directly. While operaticn
'+' is already defined on I-Trees the operation
'#' must be extended from I-Node x I-Tree to
I-Tree x I-Tree. This can be done using distribu-
tive law. To aveld some confusion the correspon-
ding operations are called ‘'merge' and 'cut'’, re-
spectively {(let A,B,R a I-Tree):

Def. 2.6:

merge : I-Tree x I-Tree -> I-Tree ,

merge(A,B) := A+RB

Daf. 2.T:

eut : I-Tree x I-Tree -> I-Tree ,

cut{A,B) := R
with R := FOR all leaves a; of A
DO a;:=a,*B (distributive law)

The example, given above, demonstrated that all
conjunctive terms can be found as pathes from the
root to a leave without regard of the represen-
tation. A path P -is called conflicting, Iff
3 a,beP, a*=(...,8,...). Since {...,8,...) i=
equivalent to the wvoid set {} all conflicting
pathea can be removed from I-Treea. This clearup
ahould be made after each ocut operation to keep
the resulting I-Trees small.

3 Definition of the Connection-Operation-Graph

The Connection-Opsration-Graph {(CO-~Graph)} is the
key structure used in the allocation phase. It
repregsents the target structure as well as all
operations the target is able to perform and their
operation codes., The target'a description level iz
the register-transfer structure level. It consists
of the behavioural aspecifications of RT-modules

and a netlist,
modules.

describting the interconnecticon of

The specification of a RT-module contains informa-

tion about

= the interface,
Wwidths,

- the operaticns performed by the module and their
corresponding control-codes and

e.g. inputs, outputs and their

" = the timing, e.g. clock, delay-times.

128

Fig.3.1 shows an example of & RT-module described
in MIMOLA ('$..' denotes a binary constant, the
delay-times are measured in time units).

MODGLE &lu (IN ir1,in2: word;
OUT outp: word; FCT ctr: {1:0});
BEGIN
CASE ctr OF
200 : outp <- inl + in2 AFTER 10 ;
%01 : outp <= in2 - in1 AFTER 10 ;
$10 ; outp <~ ini AFTER 5 ;
END
END;

Flg.3.1: Example of a MIMOLA RT-module description

Those RT-level module descriptions can be expres-
sed by M~Graphs. A M-Graph is a directed acyelic
graph, representing the module s=specification. It
conslats of a liat of operation trees linked at a
common root node, equivalent to the module cutput.
fach tree represents one operation of the module
and the argument inputs. Special M=Graphs are used
for hardwired constants and for fields of the
instruction word. An example of a M-Graph is given
in fig.3.2. Some additicnal information, e.g.
widths and timing, is attribute of the nodes and
not ahown.

in1 in2 ctr
ini1 in2 etre in2 if1 ctr in1 etr
* [100] T [%01] %8%1210)
outp
Fig.3.2: Example of a M-Graph (see fig.3.1}

Due to the underlying modell of the aynchroneocus
automaton, loadable modules (reglsters, memories)
can be used twice per state transition: they can
be read and loaded. This is raflected in our
treatment by splitting registers and memories into
two M-Graphs. Cne graph represents all load-opera=-
ticns, the other one all read-operations. The
porte of multiport-memories are treated as sepa-
rate modules,

M-Graphs are used to construct the Connection-Ope-
ration-Graph (CO—Graph).The CO-Graph iz a directed

graph. It consists of the target's M-Graphs con-
nected by directed arcs according the intercon-
nection astructure given by the netlist. Additio-
nally, all data sainks (registers and memories) are
linked at a commen node: the CO=Graph root. ¥ia
this node all M-Graphs can be acceased. An example
of a target and its CO-Graph is shown in fig.3.3,
and fig.3.4, respectively.

I.Imn

Alu <= I.Alu

RO

|

<= I.RO I.R1 -> R1

Fig.3.3: Example of a target

RO I.Imm
N/
Mux —» I.Mux R
\ /
Alu_ —» I.Alu
/ \
RO —» I.RO R1 = I.R1
root

Fig.3.4: Egquivalent CO-Graph
(internals of M-Graphs not shown)

4 The Freallocation Phase

The basiec idea used here iz the representation of
rescurce allocation by I-Trees. Since the rasource
allocation is contrelled by the inatructlon code
(e.g. choice of ALU operations, routing through
multiplexers), resocurces conflicts will result in
instruction conflicts. Therefore, these conflicts
can be mapped to I-Tree conflicta. This treatment
holda if no sideeffects are present. The only
sideeffects to be considered here are bus con-
flicts, These can be removed by special tranafor-
mations on the CO=Graph.

In the preallecation phase the CO-Graph is con-

173

structed using the MIMOLA hardware deseription of
the target., Additicnally, some local transforma-
tions are done; e.g. insertion of commuted or
conversed operation trees, generation of vias {(see
below) and transformations handling bussea. The
operation codes are now treated as assertions for
the corresponding control input: the operatlon
tree input must be supplied with the code value
(or alternative values). Operations may correspond
to one, more or even no assertion. Additionally,
assertions are produced by the generation of vias.
A via 1s defined by an operation, which does not
modify data if the remaining argument(s) is set to
a specific value (the neutral element). An example
is given by 'a + 0' or by ‘'a AND #FF'. Fig.4.1
ahows a part of the modified CO=-Graph, conversed
operations are not shown. Assertions are denocted
by "!', the operation ‘'dat' is equivalent to tha
identity operation.

'%00 '0 1400 1501
in? in2 etr 1in1 in2 etr in2 ind otr

T

via (+) -

\\/-/'

outp

1410
in1 etr

M

Fig.8.1: Alu's M-Graph with assertions

Next it ia tried to satisfy all asaertiona found
at the CO-Graph. Since assertions are constants to
be delivered at certain medulae inputs, this ocan be
done by programming the target. The corrssponding
instruction codes are reprezented by I-Trees and
attached to assertion's operation tresa. If more
than one assertion is attached to an cperation the
resulting I-Tree is the out of all correaponding
I-Trees. The JI-Trees can be generated by the
following algorithm.

PROCEDURE alloc_conat(value,m_graph,i_ tree) {1}
BEGIN
i_tree:={};
CASE m_graph COF
hard_const: {2}
IF conat_valuesvalue
THEN i_tree:={(X,X,...,X)};
inat_field: {3}
i_tree:={{X,X,..value..,X)};
(OTHERWISE:
FOR all operations of m_graph DC {4}
IF operation=‘dat/via' THEN
BEGIN
alloc_const(value,arg(operation),tmp}; {5}
tmp:=cut{tmp,operation_itree}; (&6}
IF tmp<>{(} {7}
THEN i_tree:smerge(i_tree,tmp);
END
END_CASE

END;

Hotes:

1) The algorithm must be called with the assertion

value and the first M-Graph linked at the as-

sertion node (arg(assert_node)). The result
ia returned at i_tree.

The M-Graph representa a hardwired constant:

if {t matches the value 1s found and a dummy

I-Tree generated,otherwlse the I-Tree is empty.

3) The M-Graph represents a field of the instruc-
tion word: the fleld is set to the wvalue.

4) The M-Graph represents a module: all operation
trees are tested.

5) A dat-operation ls found:
recursively.

6) To route the value found, the correct operation
must be aselected: this ls guaranteed by cpe-
ration’s I-Tree.

7) One version is found:
found ones.

2)

try to get the value

merge it with previously

The algorithm assumes that the I-Trees of all
reachable dat-operations are already known. There-
fora, constant allocation has to be done 1n a cer-
tain order. Care must be taken in case of cyelic
dependencies, caused by such unknown I-Trees.

The I-Trees found during the allocatlon are linked
at their operation nodas. For all satiafled asser-
tions the corresponding 1nputs are deleted. Ope-
rationa with unsatisfled aasertions can never be
executed and are deleted too. The result is the
preallocated OO-Graph. An example is shown in
fig.4.2, the I-Trees are represented by [...]. The
following instruction bit assignment ia assumed:
I.RO, I.R1, I.Mux: (..3), I.Alu: (2:1), I.Imm: (O)

ini inz in2 in2 int ini
\ / I [x¥X0]) \ /
+ [x00X] wia [x00X] - [x01X], dat [x30X]

//'

outp
Fig.4.2: Preallocated graph (only Alu shown)

5 The Allocation Fhase

This part performs the statement allocation. It is
based on a pattern matching algorithm. This algo-
rithm +tries to find all subgraphs of the preallo=-
cated CO-Graph, which are equivalent to the data-
flow graph defined by the aasignment to be alloca-

ted. Equivalent means: the structures must be
equal, but additional dat/via-cperations are al-
lowed. Additionally, all I-Trees found at the

operatiocn nodes must be compatible. If an equiva-
lent structure with compatible I-Trees is found,
the cut of these trees represents all versiona for
{1-cyele) execution of the assignment. It is
stated that no distinetion is made between data
and contrel effecting statements: in this sense a
conditional jJump is an assignment to the program
counter register using a special conditional-ope-
ration. A rough description of the allocation al-
gorithm is given below.

130

PROCEDURE alloc_assign{a_node,m_graph,i_tree) {1}
BEGIN

1_tree:={};

FOR all operations of m_graph DO (2}

IF operation=a_node THEN
BEGIN
tmp1:={all};
FOR all arguments of operation/a_node DO {3}
BEGIN
alloc _assign
{arg{a_node},arg(operation),tmp2);

tmp1:=cut(tmpt,tmp2); {4}
END;)
tmp1:=cut(tmpl,operation_itree); {4}
IF tmpl<>{} {5}
THEN i_tree:=merge(i_tree,tmpi};
END
ELSE
IF operation=tdat/via' THEN {6}

BEGIN
alloc_assign{a_node,arg(operation},tmp1);
tmp1:=cut{tmp1,operation_itree);

IF tmp1<>{} THEN
i_tree:=merge(i_tree,tmp1);

END;

END;

{4}
{5}

NMotes:

1) The algorithm is calied with the asaignment
root and the matching M-Graph (sink node of the
corresponding storage location). The result is
returned at i_tree.

2) Teat all veralons of the M=Graph for matching
operations and for dat/via-operations.

3) A matching operation 1s found: test all argu-
ments recursively.

L) gut the resulting argument and operation
I-Trees.

5) One version is found: merge 1t with previously
found ones.

6) A dat/via-operation 1s found:
matching operation recursively.

try to get a

If an asalgnment cannot be allocated, a detalled
error report, (e.g.: "no path froem ... to ...",
"jpatruction conflict at ...") 43 generated by
alloc_assignh. This error report is then used for
selecting a subexpresaion which will be aasigned
to a temporary variable. The original assignment
wlll be split 1intoc a sequence of two statements.
Allocation continues for both parts recursively.
Special wuser defined astorage locations (memory
cells, registers) are used as temporary variables.

6 The Scheduling Phase

The input to this phase 1s a collection of allo-
cated assignments, which originate from a parallel
block {or stralght lines of those blocks). The
resourge allocation is represented by I-Trees. A
schedule muat be found, which maps the assignments
into instructions. The assignments are partially
ordered by the two relations ‘'data dependent' and
fdata anti-dependent' (a formal definition can be
found in fMar8s]).

Def. 6.1:
Let S1,S2 be assignments.
82 is data dependent on 51, iff 31 writes into

a storage location, which will be read by S
(51 produces data for Sz).

5, is data aoti-dependent on 5., iff 8, zover-
writes a storage locatlon still to be read by S1

(32 destroya data of S1).

For example:
82 data dependent S1 :

SEQBEGIN R1 := ... ; ... :t= R1 SEQEND
32 data anti-dependent S.t H

PARBEGIN ... := R1 ; 'R1 := ... PAREND
Def. 6.2:

Let Si’sj be asaignments.

GE(S,) { sj | sJ data anti-dependent S, }

5, a GE(Si) 1s dencted by 5, < Sj
GT(8;} := (S‘j | S; data dependent S, 1

S, @ GT(Si) is denoted by Si <8

J h]

The greater-than and the greater-equal relations
can be interpretated in terms of schedule times.
The corresponding sets are constructed for all
assignments of the ilnput collection.

Def. 6.3:
4 collection C of assignments is called cyelie
dependent., iff S1 < 52 £ ... % Sn £5,, Si e

A cyclle dependency can only be satisfied by
S1=S =...z3 . Therefore, all cycle members must be
scheguled ag one inatruction. Thia can only be
done if the resulting I-Tree Icye = cut(Il,...,In)
ia not empty. All cycle membeis are represented by
Teye and treated like a single assignment. GE- and
GT-sets must be updated accordingly.

Each 1instructioh contains a set of registers and
memories to be loaded and implieitly the comple-
mentary set of storagea to be not loaded. The
latter one is denoted by the noop set. To avoid
unintended atate transitions all members of this
get muat ‘execute' the noload-operation (disable
writing). The corresponding instruction codes are
represented by I-Trees too. Additionally, all
versions to increment the program counter (inclu-
ding, e.g. the jump at the followilng instruction)
are treated as a special noop. It is added to the
set, 1if no explicite jump is present. If N1,...,Nn
are the I-Trees of the noop set under considera-
tion, then Inoop=cut(N1,...,Nn) is a precondition
for all instructions to be scheduled currently.

If GT(S)={} and GE(S)={} holds for an assignment
S, 5 is ready (to be packed). The definition of
'ready' shows a main objective of the scheduling
algorithm: the last inatruction is packed first.
Due to the np-completeness of the problem, the
algorithm uses heuristies.

2

131

PROCEDURE achedule(31,...,3n,inst_list); {1
BEGIN
generate GE- and GT-sets for all Si;
handle oyelic dependencies;
REPEAT
generate common noop ast {2}
for all 51 with GT(Si)={};
i_tree:zcut{all I-Trees of noop set); {3}
REPEAT
Sx:=get one of $i, which is: {4}
ready, not packed, not tested;
IF cut(i_tree,3x_itree) <> {} THEN
BEGTN
i_tree:zcut{i_tree,5x_itree); {5}
remove Sx from all GE-sets;
END;
UNTIL all tested; {6}
cut i_tree with remalning noops; {1}
set unused busses to tristate; {8}
link iI_tree at inst_list;
remove all packed 51 from GT-set; {9}

regset tested flags;
UNTIL all packed;
END;

Notes:

1} The algorithm gets a collection of assignments
and returns a sequence of instruction versions,
represented by I-Trees.

2) Only assignments with an empty GT-set are can-
didates for the next instruction to be packed.

3) An instruction will be generated and 1s set up
with the noopfs I-Trees.

4) A1l assignments in the ready state are tested
for compatibility.

5} A compatible assignment is found: it is added
to the inatruction; satisfied data anti-depen-
dencies can be removed.

6) If all assignments are tested, the instruction
is cloged.

7) Some noops may be in the complement of the
instruction's load set but not in the noop set.
Multiport memories need a special handling.

8) Bus usage is a sideeffect and must be handled
similar to the noops.

9) The preceding instruection is generated next:
corresponding data dependencies are satiafied.

The example shown in fig.6.1 i3 based on a true
hardware design (a processor constructed of AMD
29203 bit slicea}. Allocation and scheduling are
handicapped by the use of memories with common
read/urite addresses. The order of scheduling
depends on heuristica: if several assignments are
ready, ¢the firat one is chosen (SR[2] denotes a
cell with addresa 2 of the register bank SR, RQ ia
a regiater, [&x] denotes symbolic addresses }.

T _ Results

In this paper a retargetable compller suited for a
large class of targets is presented. In contrast
to other known compllers retargetability is a--
chieved by a pure structural description of the
target. No additional information is needed. Ba-
cause an error measage la returned if an assign-
ment cannot be allocated, the compiler can be used
a8 a verifier: the behavioural target description

Assignments at the register-transfer level:

PARBEGIN
sR[2] := SR[1]+SRL3] ;
SR[1] iz ¢(((RQ+SR[2])+(SR[3]+SR[2]}) + RQ} +

((5R[3)+SRL41)+SRL2]) ;
PAREND;
Sequentialization (temp.locations: SR[A1..85]):
1at assignment:
BEGIK
{ 1} srR[&1] := SR[1] ;
{ 2} 3R(&1] := SR(&1)+3R[3] ;
{ 3} sr{2] := SR[&1] ;
END;
2nd assignment:
BEGIN
{ 4} sR[&2] := SR[3] ;
{ 5} sRL&2] := SR{&2]«SR[2] ;
{ 6} SR[&3] := RQ+SR[2] ;
{ 7} SRL&3] := SR[&3]+3R[%2] ;
{ 8} sr[ak4] := SR[(3] ;
[9} SR(&4] := SR{&41+3R(4] ;
{10} SRL[&4] := SR[&4]+SR{2] ;
{11} sRr[&5] := SR[&3]}+RQ ;
{12} sRr[a5) := SR[&5]+SR[&4] ;
{413} SR[1] := SRI&5] ;
END;

List of the asaignments, one order of packing:

Stmt# GE GT order

1 13 2 '}

2 - 3 2

3 - - 1 &= laat inatr.
L - -] 12

5 3 T 11

6 3 7 13 <~ first inst.
T - 1 10

8 - 9 8

9 - 10 T

16 3 12 6
11 - 12 9

12 - 13 5

13 - - 3

Fig.6.1: Example for scheduling {AMD 29203)

has to be compiled wusing its structural descrip-
tion.

The rescurce allocation 1s mapped to the handling
of I-Trees: an algebraic representation of in-
struction word versions and thelr relations. This
can be done because resource conflicts lead {with
the exception of busses) to instruction code con-
fliets. Using I-Trees, all data transfer versions
can be handled at once, Even in the scheduling
phaze the I-Tree representation 1is used. This
results in a scheduling algorithm, which considers

132

versions of allocated asaslgnments and tests them
all for compatibility. Versiona should not be
ignored: 1in some cases we found more than 100
different verslona for the execution of an asalgn-
ment. Additionally, the scheduling algorithm hand-
les noload-operationa {disable writing) explieit-
1ly. Classical scheduling thecries consider a de-
.fault setting of the instruction word and ignore

“the problem. In reality this can be done only for
a limited class of procesaors: e.g. this does not
hold for all processors using the AMD 2910 se-
gquehcer.

The compiler 1is implemented as one tool of the
MIMOLA Design System. Machine code waa generated
for many designa. Compilation rates about 10 to 1
generated instructions per second are achieved.
This even holds for complex deslgns. For example,
the CO-Graph of such a deaign [KleB6] consists of
66 M=Grapha with 233 operation trees.

8 References

[J&M871 R.J8hnk, P.Marwedel: MIMOLA Language Refe-
rence Manual, Language Version 3.4, report
of the Inatitut fiir Informatik und Prak-
tische Mathematik, Univeraity of Kiel, 1987
M.Klein: Entwurf eines mikroprogrammier-
baren Coprozessors fiir die effiziente Ab-
wicklung wvon Algorithmen des logischen
Entwurfs, dipl.thesis,Fachbereich Elektro-
technik,University of Kaiserslautern, 1986
P.W.Mallett: Methods of Compacting Micro-
programs, Ph.D.thesis Unlversity of South-
western Loulsiana, Lafayette, 1978
P.Marwedel: & Retargetable Compiler For A
High-Level Microprogramming Language, ACM
SIGMICRO Newsletter, Vol.15, No.#, 1984,
p.267=-2T4
P.Marwedel: Ein Software-System zur Syn-
these von Rechnerstrukturen und zur Erzeu-
gung von Mikrocode,habilitation thesis and
report of the Institut fUr Informatik und
Praktische Mathematik, University of Kiel,
1985, 197 pages
P.Marwedel: On the Use of Hierarchies in
the MIMOLA Hardware Design Syatem,proceed.
COMP EURO 87, Hamburg, 1987, p.9ul-948
R.A.Mueller,J.Varghese: Flow Graph Machine
Models in Microcode Synthesis, 16th Annual
Microprogramming Workshop (MICRO-16), 1983
p.159-167
R.A.Mueller, J.Varghese, V.H.Allan: Global
Methods in the Flow Graph Approach to Re-
targetable Microcode Generation, 17th Ann.
Microprogramming Workshop (MICRO-17), 1984
p.275-284
S.R.Vegdahl:Local Code Ceneration and Com-
paction in Optimizing Microcode Compilers,
Ph.D.theais,report CMU-CS-82-153,Carnegie-
Mellon University, Pittaburgh, 1982
[VegB2a]S.R.Vegdahl: Phase Coupling and Constant
Generation in an Optimizing Microcode Com-
piler, 15th Annual Microprogramaming Work-
shop (MICRO-15), 1982, p.125-133
[Veg83] 5.R.Vegdahl; A MNew Perspective on the
Classical Microcode Compaction Problens,
SIGMICRO Newsletter, Vol.14, 1983, p.11-14

[Kle86]

{Ma178]

[Mar8h]

iMards]

[Mar87]

[Muv83]

[MVABY]

[VegB82]

