

RT-LEVEL SYNTHESIS BASED ON

INTEGRATED SCHEDULING AND BINDING

M. Balakrishnan*

Bericht Nr. 8813

December 1988

Institut für Informatik

der Universität Kiel

Olshausenstr. 40-60

D-2300, Kiel

W. Germany

 INDEX

ABSTRACT

1. INTRODUCTION

1.1 A Brief Survey 1
1.2 Objectives of Our Approach 3
1.3 Summary ’ 4

z. SYSTEM OVERVIEW

2.1 A Brief Description 5
2.2 Key Features 7
2.3 Some Constraints 8

3. SCHEDULING

3.1 Scheduling Modes 9
3.2 Selection of Candidate Operations 9
3.3 Scheduling Example 11

4. BINDING OPERATIONS AND VALUES

4.1 Zero-one Integer Programming Model 13
4.2 Operation-Operator Binding 15
4.3 Value-Storage Location Binding 16
4.4 Discussion and Example 17

5. MULTI-PORT MEMORY SYNTHESIS

5.1 Memory Synthesis Problem 19
5.2 Approach 20
5.3 Grouping Registers 20
5.4 Assigning Ports 22
5.5 Example 23

6. CONCLUSION

6.1 Experimental Results 26
6.2 Analysis of Results 28
6.3 Future Work 30
6.4 Concluding Remarks 31

Appendix A : A Comprehensive Example

 List of Figures

FIGURE 1. Overview of the Synthesis Process

FIGURE z. Example Illustrating Scheduling Options

FIGURE 3. Example Data Flow Graph

FIGURE 4. Scheduling Results with Operator Set (1MF,,1MS, lAF}

FIGURE 5 Structure Before Memory Synthesis

FIGURE 6 Structure After Memory Synthesis

List of Tables

TABLE 1 : Schedule Time as a Function of Operator Allocation

TABLE 2 : Results from Scheduling and Binding the dfg in Figure 3

TABLE 3 : Results from Scheduling and Binding the dfg of Figure 3

TABLE 4 : Results from memory Synthesis

TABLE 5 : Results from Scheduling and Binding the FIR Filter

TABLE 6 : Results from Scheduling and Binding the Elliptic Filter

 Acknowledgements

First of all I would like to thank Dr. Peter Marwedel for making it possible

for me to visit Kiel. The research was supported by a contract (NT 2850 6) from

The German Ministry of Research and Technology (BMFT). I have very pleasant

memories from my seven months stay in Kiel and that is primarily due to the

efforts of Peter, Reinhard and their families. I sincerely thank them for all

the technical and personal help they provided.

I acknowledge Mr. E.Lerch for interfacing the synthesis system to MIMOLA.

The interface as reported in Appendix B is primarily his work. I acknowledge the

timely help of other group members especially Lothar, Wolfgang, Detlef and

Jürgen.

 Abstract

Synthesis of digital systems, involves a number of tasks ranging from

scheduling to generating interconnections. The interrelationship between these

tasks implies that good designs can only be generated by considering the overall

impact of a design decision. The approach presented in this report provides a

framework for integrating scheduling decisions with binding decisions. The

methodology supports allocation of a wider mix of operator modules and covers

the design space more effectively. The process itself can be described as

incremental synthesis and is thus well-suited for applications involving partial

presynthesised structures.

Specifically, the report deals with the tasks of scheduling, binding

operations to operators and intermediate values to storage units. Further, the

generated structure is optimized by examining the feasibility of merging storage

units to form memories. All the optimization tasks are modelled as constrained

0-1 integer programming problems with the objective of reducing

interconnections.

Keywords

Zero-one integer programming, Design automation, Data path, Areatime tradeoff,

Design space, Data flow graph, Scheduling, As soon as possible scheduling,

 1. INTRODUCTION

1.1 A Brief Survey

Synthesis, in the context of design automation of digital systems, usually

refers to the process of transforming a behavioural design description into a

structural design. This design process is equivalent to one to many mapping and

thus the notion of a design space. Though a number of constraints an different

parameters are to be satisfied for realizing the synthesised design, maximum

emphasis is placed an the delay time (execution time of the behavioural

description by the synthesised design) and the cost (considered proportional to

the design area).

Both the delay time and the cost are closely related to scheduling, resource

allocation and binding. Traditional synthesis approaches perform these tasks in

a sequence (referred to as vertical synthesis by some authors). Tseng’s [1)

approach is typical where the synthesis is mapped to three steps, each modelled

as a clique partitioning problem. The steps are

i) Storage allocation and binding,

ii) Operator allocation and binding and

iii) Interconnection allocation and binding

Another example is MIMOLA [2,3] which starts by generating a maximum

parallel schedule (as late as possible) by analysing the data dependency among

the operations. The global module allocation problem is modelled as an integer

programming problem. The system is capable of handling complex multi-function

modules and the clocktime is determined by the maximum propagation delay path.

The interaction between the different tasks is limited.

 2

Synthesis in many other systems follows a similar approach with some

variations. There have been various attempts to perform the tasks together

(global optimization), iteratively or as an expert system. HAI. [4,5] has a

force-directed scheduling algorithm which performs scheduling within a

time-constraint along with the minimization of required number of operators.

Pfahler[6] describes a model based an a two-dimensional arrangement of

operations for scheduling, processor mapping and register assignment. MAHA[7]

performs scheduling of operations and allocation and binding of resources

iteratively by first considering the operations in the critical path and then

the other operations. The cost model is essentially that of operators with

storage locations and interconnections ignored. SPLICER [8] presents a heuristic

method for binding operations to operators and intermediate values to registers

with a view to keep interconnections low. The results indicate that a look-ahead

of a large number of subsequent control steps do not significantly affect the

result. Peng [9] presents an iterative synthesis methodology (he calls it

horizontal synthesis) based an a Petri-net model for design representation. The

synthesis is carried out by a sequence of semantic preserving transformations an

this representation. A key difference is the integration of a simple

floor-planner within the design iteration.

Some results have been reported for predicting the design-space or more

specifically to explore the area-time tradeoff [10-12]. Jain et al.[11]

describe a model for predicting the area-time curves based an operator

utilization. The approach presently makes a number of simplifying assumptions

an module types and considers the cost as the sum of individual operator costs.

On the other hand, McFarland [12] makes startling observations about area-time

curves. His results point to two significant conclusions:

 3

i) The area-time curve shape changes dramatically when one considers lower

level details (like multiplexers, interconnections and layout).

ii)

The design points do not lie an a smooth curve.

A number of synthesis systems have been proposed which deal with a specific

application area or a specific target architecture. Parker and Park [13-15] have

reported extensively an designing pipelined systems. De Man et al. [16] describe

a CAD system with a synthesis interface for signal processing applications.

Kowalski[17] presents a knowledge based approach for processor design. The

present state of the synthesis systems is summed up in two papers presented at

the 25th Design automation conference [18-19].

1.2 objectives of Our Approach

The synthesis approach presented in this report is intended to overcome

some of the limitations of the approaches discussed in [4-9]. We describe the

key features below.

a) All synthesis systems are capable,of handling designs with multiple

operator modules, though only some of them can handle multi-function

operators. On the other hand, nobody tackles the designs with a mix of

different speed operators for the same operation. Jain et al.[14] present a

scheme for module selection for pipelined designs but do not consider the

possibility that a mix (like one high speed multiplier and one slow speed

multiplier) could constitute a good design point. In that sense, present

synthesis systems do not explore the potential design space spanned by the

module library.

b) In many real-life design projects a partial pre-synthesised structure may

need to be integrated efficiently i.e. to use the existing resources as

much as possible for realising the behavioural description while

synthesising only the extra struc

 4

tures needed. We refer to this as incremental synthesis and our methodology

can handle such situations very naturally.

c) Area-time tradeoff seems to be a key to exploring the design space but none

of the current synthesis systems seem capable of handling design decisions

based an such a tradeoff, That is to say, A decision X is acceptable as it

results in an expected extra area of only y whereas not (X) would result in

an expected extra delay time of z. It is claimed that our approach provides

a preliminary framework which can be extended for handling such tradeoffs.

At present, design decisions are evaluated to minimize interconnections but

it is intended to integrate a floorplanner to handle more accurate area

projections (see Chapter 6) .

1.3 Summary

The report is organised into six chapters and two appendices. Chapter 2

presents a brief overview of the synthesis system along with its salient

features and limitations. Chapter 3 discusses the scheduling approach and the

options available. Optimizations needed at different steps are modelled as

zero-one integer programming. The zero-one integer programming model, the

binding of operations to operators and the binding of values to storage elements

are discussed in Chapter 4. The discrete storage locations can be merged to form

multi-port memories as presented in Chapter 5. A simple running example in

Chapters 3, 4 and 5 illustrates the approach while a more comprehensive example

is presented in Appendix A. The results are discussed in Chapter 6. The

extension of the synthesis approach by integration of a floor-planner along with

other proposed future work is also discussed in Chapter 6. The approach is being

implemented as a tool within the MIMOLA system. The present state of the

interface along with its integration to the MIMOLA software system is discussed

in Appendix B.

5

z. SYSTEM OVERVIEW

2.1 A Brief Description

Figure 1 shows an overview of the synthesis system. The input to the

synthesis program is a data flow graph with nodes representing the operations

and arcs representing the values i.e. inputs, intermediate values and outputs.
The operator modules which implement the operations and storage elements which

store the values are the resources. The inputs are

a) Program Data Flow Graph : The data dependency of the operations in the

source program is analysed to generate a data flow graph.

b) Module Library : The definition of the resources needed to synthesize the

structure constitutes the module library. At present it only includes the

definition of operators, registers and memories declared in the source.

c) Allocated Resources : The module library elements declared as parts by the

designer are instantiated as preallocated resources. Apart from the

elements of the module library, the predeclared interconnections also

constitutes this set.

For the present state of the input interface and the MIMOLA constructs

supported by the implementation, refer to Appendix B.

A set of operations called candidate operations are prepared based an the

data dependency and operator availability. These operations are bound to the

available operators optimally i.e. to minimize extra interconnections. The

values generated by the scheduled operations are bound to the available

registers, again with a view to minimize interconnections. This is followed by

updating the structure based an the current bindings. Once all operations are

scheduled and bound, multi-port memory synthesis [21] is attempted for allocated

memories. First the maximum number of registers,

6

FIGURE 1. Overview of the Synthesis Process

within the specified memory size and satisfying the simultaneous access

constraints of the memory ports are grouped to form the memory. This is followed

by assigning ports to the accessed locations for each cycle so that ’minimal’

extra interconnections are generated.

Before we take up the details in the next chapters, we describe the key

features and some constraints of our synthesis system. Some of the constraints

are related only to the present implementation and Chapter 6 an future work

describes the proposed enhancements.

2.2 Key Features

a) A mix of operator modules implementing the same operation at different

speeds can be allocated together e.g. the synthesis program could schedule

operations an a fast and slow multiplier simultaneously. This feature allows

us to explore the design space more extensively.

b) At every synthesis step extra interconnections are generated only if no

binding of operations and values is feasible with the ’present’ structure.

Thus, the algorithm is inherently suitable for incremental synthesis. It is

possible to specify a partial structure (i.e. predeclared parts with some

interconnections) and utilise it effectively for further synthesis.

c) All ’optimizations’ are mapped to a ’Zero-one’ Integer programming model.

The Pascal version of a standard algorithm[21] is used for four different

tasks

- Binding scheduled operations to available operators

- Binding generated values to available registers

- Identifying registers which can be grouped into a memory

- Assigning ports to accessed locations for each cycle

 8

2.3 Some Constraints

a) All operators have an unique associated delay time. Thus a multi-function

operator is assumed to implement all functions/ operations with the same

delay time.

b) Designers can specify the resources or let them be instantiated at an

associated cost during synthesis. This option is necessary for treating all

operators uniformly as low cost operators (like gates) are more likely to be

allocated afresh instead of being shared. This is especially true if sharing

involves creating additional paths and multiplexers. Presently, however all

resources(operators and storage elements) need to be preallocated to

generate a point in the design-space.

c) All the operations included in the set of candidate operations are

scheduled. Thus, the candidate set is so generated that it is feasible to

schedule all the operations in the set. Refer to Chapter 6 for a detailed

discussion of the changes required and for the effect of removing this

constraint .

 9

 3. SCHEDULING

3.1 Scheduling Modes

The data flow graph (dfg) is analysed and the longest delay path for each

operation is computed. The delay time associated with the operator implementing

an operation is used as the delay time of the dfg node. In case of operations

being implemented by operators with different delay times, the allocated

operator with the least delay time is chosen as the delay of the operation node.

The scheduling can be performed in three different modes:

a) Forward scheduling (FS) : This is based an scheduling operations as soon as

their source operands are available.

b) Backward scheduling (BS) : This involves scheduling operations based an as

late as possible technique.

c) Double headed scheduling (DHS) : In this mode scheduling is done

 by alternating between forward and backward scheduling. As long

 as the operations being scheduled lie an different paths,

 scheduling is continued in forward (backward) mode. A switch

 from forward (backward) to backward (forward) is performed so

 that no two operations lying an any one path are scheduled

 between two mode changes.

3.2 Selection of Candidate Operation

The set of candidate operations are chosen based an data available

operations and available operators. For forward scheduling, data available

operations are those all of whose predecessors have been scheduled whereas for

backward scheduling, it means those all of whose successors have been scheduled.

The available operators are those which have been free at least for the duration

of their delay time. In the present implementation, the selection of operations

to the candidate set is performed by choosing at most one

11

FIGURE z. Example Illustrating Scheduling Options

3.3 Scheduling Example

The example dfg in Figure 3 is used to illustrate scheduling. The dfg is

taken from Paulin’s paper an force directed scheduling (4) .

The module library assumed for the following discussion consists of four

Operator types

MF : Fast Multiplier, delay time = 2, Operation = (’*’)

MS : Slow Multiplier, delay time = 4, Operation = (’*’)

AF : Fast Accumulator, delay time = 1, operations = (’+’,’-’,’<’)

AS : Slow Accumulator, delay time = 2, operations = (’+’,’-’,’<’)

12

The result of scheduling the dfg of figure 3 with an allocated Operator set

of {1MF, 1MS, 1AF} is shown in Figure 4. Table 1 lists the results of scheduling

an different Operator sets. The last column lists the results from [4].

 OPERATOR SET SCHEDULE TIME
 DHS FORWARD BACKWARD HAL
 (1 MF, 1 AF) 13 13 13 13
 (1 MF,1 MS, 1 AF) 10 10 11 -
 {1 MF,2 MS, 1 AF} 9 9 9 -
 (2 MF, 1 AF1 8 8 8 8-12
 { 2 MF, 2 AF} 7 7 7 7
 { 3 MF, 1 AF1 7 7 7 7
 (3 MF,1 AF, 1 AS} 6 6 6 -
 { 3 MF, 2 AF } 6 6 6 6
 (4 MF, 1 AF) 6 6 6 6

TABLE 1 : Schedule Time as a Function of Operator Allocation
(Example Figure 3)

���

���%,1',1*�23(5$7,216�$1'�9$/8(6�

����Zero-one Integer Programming Model

In the current implementation, cost of a binding is decided by the number

of extra interconnections required due to the binding. A simple procedure to

compute this tost is as follows

14

15

16

17

18

TABLE 2 : Results from Scheduling and Binding the dfg in Figur
 Operator Set : {2MF, 2AF) and Scheduling Mode : FS

 OPERATOR SET SCHED. SCHED. INTER- MUX STORAGE
 OPT. TIME CONNECTS INPUTS LOCATIONS
 DHS 13 12 6 5
 {1 MF,1 AF1 FORW. 13 9 9 3
 BACK. 13 13 6 6
 DHS 10 13 6 5
 (1MF,1MS,1AF} FORW. 10 11 6 3
 BACK. 11 12 6 5
 DHS 9 11 4 5
 {1MF,2MS,1AF} FORW. 9 10 2 4
 BACK. 9 12 6 5
 DHS B 12 4 4
 {2 MF,1 AF) FORW. 8 8 2 3
 BACK. 8 14 6 6
 DHS 7 11 2 4
 {2 MF,2 AF) FORW. 7 9 2 3
 BACK. 7 10 0 9
 DHS 6 12 2 5
 {3MF,1AF,1AS} FORW. 6 12 4 4
 BACK. 6 13 4 5

TABLE 3 : Results from Scheduling and Binding the dfg of Figure 3

 ���

���08/7,�3257�0(025<�6<17+(6,6
�
�
�
�
����0HPRU\�6\QWKHVLV�3UREOHP�

The approach presented till now produces designs with isolated discrete

storage units. We refer to these storage units as registers in this section

while remembering that the term is used in a general context i.e. they Gould be
registers or latches. On the other hand, merging these registers to form

memories has some potential advantages. The generated design is likely to be

more Compact due to reduction in number of interconnections, multiplexers and

multiplexer Inputs. This results from sharing of interconnections present

between Operators and isolated registers. Further, the generated design is

better ’testable’ or at least the area overhead for testing is expected to be

smaller. Of course, we do make an assumption that additional area required for

address paths and address decoders are Small compared to the reduction from

shared data paths.

The general strategy is to consider multi-port memories because Single port

memories cannot satisfy the simultaneous access requirements even for a few

merged registers. The present implementation Supports four types of specialised

memory ports

i) Read only ports : rd

ü) Write only ports : wr

iii) Read or write ports : row

iv) Read and write ports : raw

A point about the 'raw' type ports needs to be clarified. We assume such a

port can read and write at an address specified by the Port address in a Single

control step/cycle. Further, the write is

*

The discussion in this chapter is based an work reported elsewhere [20].

 20

performed at the end of the control step. This is to support merging of

registers with a similar characteristic i.e. read during the cycle and Write at

the trailing edge. Only if such a port is present, the registers read and

written in the saure cycle would be considered for merging.

5.2 Approach

All the declared memory units are considered as potential units for

replacing registers which can be merged into them. In the present

implementation one memory at a time is tried and the corresponding structure

generated. It is intended to augment it with a strategy for automatic selection

of ’best’ design. Another possibility in case of designs with a large number of

registers, is to repeat the process after removing the merged registers.

The process itself is performed in two steps

i) a set of registers is identified which can be merged into a specific

memory unit.

ü) a port assignment is made for every accessed location.

The grouping of registers (step i) is performed globally whereas the

assignment of ports to accessed locations (step ü) is performed considering one

control step at a time.

5.3 Grouping Registers

The problem of grouping registers can be defined as follows

For an allocated memory,identify a maximal set of registers (maximal is in terms

of number of elements) whose access requirements at any control step can be

satisfied by the availability of ports in the memory.

It is easy to visualise the modelling of the above problem as a 0-1 integer

programming problem.

21

For the simple model presently being employed, the weight is taken to be 1

for all registers. A better heuristic is to Base the weight (at least partially)

an the number of connections to the register. It is more advantageous to group

registers with larger number of interconnections as the potential for sharing

paths and thus area reduction is larger.

The constraints originate from the simaultaneous access requirement of

registers. For access at each control step, upto four constraints can be

defined.

i) Number of locations being read should not exceed the number of read ports

(i.e. ports of type rd/row/raw).

ü) Number of locations being written should not exceed the number of write

Ports (i.e. Ports of type wr/row/raw).

iii) Number of locations being read/written should not exceed the

 number of read/write Ports (i.e. Ports of type rd/wr/row/raw).

iv) Number of locations being 'read and written' should not exceed

 the number of 'read and write' Ports (i.e. Ports of type raw).

One global constraint results from the size of the memory i.e. no more than

m registers can be grouped in a m word memory. Though, the number of constraints

appear large (4k + 1 for a k step schedule)

22

but most of them are trivially satisfied and are removed by a prunner. The above

Problem is also mapped to the minimization Problem of Section 4.1 and solved.

The supply of source operands from memory units through Ports introduces a

major complication. As a source Operand supplied from a Port at the start of a

multi-cycle Operation has to be maintained at the saure Port throughout the

execution of the Operation, Port availability at different steps cannot be

considered completely independently.

5.4 Assigning Ports

The Problem of assigning Ports to accessed locations globally, while

minimizing the number of interconnections, leads to a formulation with a large

number of variables [20]. Thus the Problem is broken down and the Ports are

assigned to accessed locations by considering one control step at a time.

Further, the optimization criteria is modified to minimizing extra

interconnections required over and above the existing structure.

23

Again, the computation of weight takes care of commutative operations. A

solution to the above optimization results in a low cost binding of locations to

ports while generating the memory-port/ Operator interconnections required.

Further, the solution of this integer programming problem is also required for

control Synthesis as the memory addresses for all ports in each control step are

assumed to be supplied by a Controller.

5.5 Example

The dfg of Figure 3 is again used as the example. The effect of multi-port

Synthesis is presented in Table 4 and Figures 5 and 6.

Table 4 contains an overview of the result produced by allocating memory

modules differing in number of ports and port definitions. The Input for memory

Synthesis was the structure and schedule produced by allocating an Operator set

of (1MF, 1AF} with DHS as the scheduling mode. (Refer to row 1 of Table 3 in

Section 4.9). The set of registers that can be merged into the memory (col 2)

along with the interconnections saved (col 3) give an indication of the benefits

of allocating a particular memory module.

24

Figure 5 is essentially included for comparison with Figure 6 and is the

structure before memory synthesis. The case presented again corresponds to an

Operator set allocation of {1MF,1AF} with DHS scheduling. The Output of memory

synthesis is shown in Figure 6 and corresponds to row 4 of Table 4. Along with

the reduction in the number of interconnections, one multiplexer has,, also been

removed. For a more complex example refer to Appendix A.

MEMORY PORTS REGISTER SET INTERCONNECTS SAVED
M1 = (1 row) {R2,R4} 1
M2 = {1 raw) {R3,R4} 2
M3 = {1 rd,1 raw) {R2, R5} 2
M4 = {1 row,1 raw) (R2, R4, R5) 2
M5 = {1 row,2 raw} {R2, R3, R4, R5} 4

TABLE 4 : Results from Memory Synthesis
Operator Set : [IMF, 1AF} and Scheduling Mode : DHS

25

FIGURE 5 Structure Before Memory Synthesis
Operator Set {1MF,1AF}, Scheduling Mode DHS, Connects 12, Mux 3* 2:1

FIGURE 6 Structure After Memory Synthesis; Memory with {1raw,1row}
Operator Set {1MF,1AF}, Scheduling Mode DHS, connects 10, Mux 2* 2:1

 ���
�
�
�

���&21&/86,21�
�
�
�
����([SHULPHQWDO�5HVXOWV�

All the results in this section are based an data flow graphs available in

the literature. The module Set for these examples are the saure as the one

Chosen for the example in Chapters 3,4 and ���The cpu time refers to the time an

a DN 4000 $32//2�Workstation with 4 MB memory.

The second example we present is the digital filter discussed in 6(+:$>��@��

The accumulators in the module Set can be replaced by adders for this example.

The results from our Synthesis are presented in Table 5. Interconnections (col

4), number of multiplexer Inputs (col 5) and storage locations required (col ���

along with the Operator set(col 1) collectively represent the design area. The

storage for multiplication constants and paths for routing it to multipliers

were assumed to be available. The cpu time an the $32//2� Workstation ranged

between 1 and 5 seconds for all Gases.

Another example we present is the fifth-order digital elliptic filter

discussed in [5) and adopted as a benchmark example by the Synthesis Workshop

group. The flow-graph is relatively large with 34 operations (additions and

multiplications). The module Set was the saure as used in the last example.

Table 6 presents the Best result(s) for each of the eight Operator Sets. In two

Gases more than one choice is presented as the one with the lower schedule time

appeared to haue higher path cost. The cpu time an the $32//2�Workstation for

all Gases presented below ranged from ��to 8 seconds.

 27

 OPERATOR SET SCHED. SCHED. INTER- MUX STORAGE
 OPT. TIME CONNECTS INPUTS LOCATIONS
 DHS 18 18 15 6
 11 MF,1 AF) FS 18 11 4 5
 BS 18 19 11 8
 DHS 15 15 5 6
 {2 MF,1 AF) FS 15 11 6 4
 BS 15 18 8 8
 DHS 12 30 23 8
 {1MF,2MS,3AF} FS 12 24 14 B
 BS 12 21 15 6
 DHS il 23 15 7
 {2 MF,2 AF} FS 11 19 11 7
 BS 11 12 6 4
 DHS 10 24 15 6
 {3 MF,2 AF} FS 10 21 12 6
 BS 10 13 6 9

TABLE 5 : Results from Scheduling and Einding the FIR Filter [15)

OPERATOR SET SCHED.

OPT.
SCHED.
TIME

INTER-
CONNECTS

MUX
INPUTS

STORAGE
LOCATIONS

(3 MF,3 AF) FS 17 38 32 8
{2 MF,3 AN FS 18 35 30 7

{2 MF,2 AF) FS
BS

19
18

33
37

30
27

8
11

{1MF,1MS,2AF} FS 20 28 24 6
{1 MF, 1 MS,
1 AF,1 AS}

DHS 22 35 26 10

{1 MF,2 AF) FS 22 28 26 6
{1MF,1AF,1AS} FS 23 33 30 8
{1 MF,1 AF} DHS

BS
28
29

23
26

17
17

11
10

TABLE 6 : Results from Scheduling and Binding the Elliptic Filter[5]

 28

Table 7 presents the results from allocating a two port memory for four

different Operator allocations representing a range of time schedules.Columns 4

and 5 list the number of interconnections before and after memory synthesis

while column 7 specifies the number of locations that can be merged. Again the

cpu time was of the Order of 6 to 10 seconds.

 OPERATOR SET SCHED. SCHED. CONNECTS LOCATIONS
 TIME
 OPT.
 BEFORE AFTER TOTAL MEMORY
 DHS 19 40 35 10 4
 12 MF,2 AF} FS 19 33 34 8 3
 BS 18 37 34 11 4
 DHS 21 35 33 10 4
 {1MF,1MS,2AF} FS 20 28 26 6 3
 BS 21 38 31 11 9
 DHS 23 34 28 11 5
 {1MF,1AF,1AS} FS 23 33 28 8 4
 BS 23 39 27 10 5
 DHS 28 23 17 11 4
 11 MF,1 AF} FS 28 33 22 10 6
 BS

29 26 19 10 6

TABLE 7 : Results from Memory Synthesis for the Elliptic Filter
 Data Flow Graph; Allocated Memory Ports {1 raw,1 row)

6.2 Analysis of Results

Table 1 illustrates an important advantage of our design procedure. More

effective coverage of the design space is realized due to inclusion of Operators

with different speeds. This is seen in not only covering up of the time gaps but

also in reaching the minimal possible schedule time of 6 with an Operator set

with smaller cost (considering only the Operator area). The cpu time for

scheduling this small example was less than 0.6 seconds an the APOLLO

workstation for all Gases.

 29

Results from scheduling the FIR filter (Table 5) show hardly any difference

in schedule time for different modes. In fact experiments an a number of other

large flow graphs indicated only small differences (if at all) in schedule time.

Double headed scheduling (DHS) matched the faster schedule except for few

exceptions an Small flow graphs. On the other hand, the effect of scheduling

Option an area Parameters was large and varied. First two sets in Table 5

indicate Forward scheduling to be superior whereas the next three indicate

Backward scheduling to be superior. DHS was always poor in terms of storage

locations as short paths in the data flow graph scheduled from both sides locked

up a number of locations as unavailable. Surprisingly, Small routing area for

backward scheduling in the 4th and 5th Set represent abrupt area changes against

regular changes in schedule time. This seems to confirm the Observation by

McFarland [12] that design points an a area-time graph do not lie an a smooth

curve.

The results of scheduling are easily comparable to those reported by Paulin

et al. using force-directed scheduling[5]. Table 6 provides one basis for

comparison. Our Best Gase schedule time always matched that produced by

force-directed scheduling and at least for one Gase (Set 3 Backward Option) it

was better. They haue reported that their schedule times are optimal except for

one Gase (not specified). Further, some results produced by a mix of Operators

seem to be very attractive design points, e.g. Set 4 in Table 6.

The Table 7 Shows the effect of memory Synthesis. on an average, the

interconnections saved as well as the locations that can be merged decrease with

increase in the number of allocated Operators. The increase in number of

Operators represent less potential for sharing interconnections by merging

registers. This is similar to the effect an forming buses. Increase in number of

Operators also result in an increase in the frequency of register accesses and

thus reduce the number of registers that can be merged. Though, these trends are

important, but more important is to generate and pick out exceptional Gases. For

example, in set 4, the Forward scheduling

 30

produced a rather poor alternative with 10 registers and 33 interconnects. But,

after memory synthesis it gets transformed into a good alternative with a

reduction of 11 interconnects by merging 6 registers to form a two port memory.

6.3 Future Work

As mentioned in the introduction, the present system provides a framework

for a Synthesis based an area-time tradeoff. The key to this is the adjustment

of optimization weights which govern the binding decisions based an both area

and time. In the absence of a floor-planner, the set of candidate operations are

so Chosen that all of them can be scheduled an the available Operators. But once

an area estimate for binding an Operation is obtainable from a floorplanner, the

schedule-bind decision would be based an weighting the expected ’extra’ area

against the expected ’extra’ time. The extra area can be estimated from the need

to instantiate extra Operators as well as interconnections. The ’extra’ time of

not binding an Operation can be estimated by comparing the unscheduled portion

of the longest data flow path associated with a candidate Operation with other

candidate operations. in this case, the candidate operations would be a Superset

of the operations to be scheduled. Similarly,the weights for value-binding would

more closely represent actual area. The designs generated are expected to

reflect area-time tradeoff.

The incorporation of multi-port memory Synthesis as a postprocessor

provides a further means for area optimization. This also means an explosion in

the number of design points if the module library contains a large variety of

memories. A strategy to automatically select a few ’good’ designs would be

highly desirable. The scope for forming Buses is rather limited after memory

Synthesis but it is possible to merge interconnections to form Buses based an

the Same model as memory Synthesis as indicated in [20].

31

Presently, the System accepts only a Subset of MIMOLA[16] for program Input

specification and hardware module declaration. We are working to extend it so

that a complete Synthesis including microcode generation Gould be performed

under the MIMOLA environment. The major improvements required are in handling

the interconnections to input/output ports and to modules storing constants. For

a more detailed specification of the current Status of the implemetation refer

to Appendix B.

6.4 Concluding Remarks

This report presents a Synthesis tool based an integrating scheduling with

binding decisions. The two binding decisions considered are: operations to

Operators and values to storage locations. The designs generated can be further

optimized by merging registers. The approach Supports a more flexible mix of

Operator modules which results in a more extensive cover of the design space

than previously reported techniques. The methodology is naturally suited to

projects involving partial pre-synthesised structures. Further, it is indicated

how the system Gould be extended for taking schedulebind decisions based an

area-time tradeoff. The approach is illustrated with examples. The reported cpu

time for synthesis is Small enough to permit design space exploration by

allocating different Operator Sets. The System is being integrated into an

existing CAD environment and thus would provide an alternative to the present

vertical synthesis strategy.

 32

REFERENCES

5.

1. C-J. Tseng and D.P.Siewiorek,"Automated Synthesis of Data Paths in Digital

Systems", IEEE Trans. Computer-Aided Design, Vol. CAD-5, No.3, pp.
379-395, July 1986.

z. P. Marwedel,"The MIMOLA Design System: Tools for the Design of Digital

Processors", DAC-21,pp.378-384,1984.

3. P.Marwedel,"A New Synthesis Algorithm for the MIMOLA Software System",
Proc. DAC-23,1986, pp.271-277.

4. P.G.Paulin,J.P.Knight and G.E.Girczyc,"HAL: A Multi- Paradigm Approach to
Automatic Data Path Synthesis", Proc. DAC-23, 1986, PP.267-277.

P.G.Paulin and J.P. Knight, "Force-Directed Scheduling in Auto

mated Data Path Synthesis", Proc. DAC-24, 1987, 195-202.

6. P. Pfahler, "Automated Data Path Synthesis : A Compilation Approach",

Euromicro Journal of Microprocessing and Microprogramming, Vo1.21, 1987,
pp.577-584.

7. A.C.Parker,J.T.Pizarro and M.Mlinar, "MAHR: A Program for DataPath
Synthesis", Proc. DAC-23, 1986, pp.461-966.

B. B.M.Pangle, "Splicer: A Heuristic Approach to Connectivity Binding", Proc.
DAC-25, 1988, pp.536-541.

9. Z. Peng, "A Formal methodology for Automated Synthesis of VLSI Systems",
Ph.D. Dissertation, Linköping University, Linköping, Sweden, 1987.

10. J.J.Granadi and A.C.Parker, "The Effect of Register-Transfer Design
Tradeoffs an Chip-Area and Performance", DAC-20, pp. 419-424, 1983.

11. R.Jain, M.J.Mlinar and A.C.Parker, "Area-Time Model for Synthesis of

Non-Pipelined Designs", Preprint, To appear in ICCAD-88, Nov.1988.

12. M.C.MCFarland, "Reevaluating the Design Space for RegisterTransfer
Hardware Synthesis", ICCAD-87, 1987.

13. N.Park and A.C.Parker, "SEHWA: A Program for Synthesis of Pipelines",

Proc. DAC-23, 1986, pp.454-460.

14. R.Jain, A.C.Parker and N.Park, "Predicting Area-Time Tradeoffs for
Pipelined Design" Proc., DAC-24, 1987, pp.35-41.

R.Jain, A.C.Parker and N.Park, "Module Selection for Pipelined Synthesis"
Proc., DAC-25, 1988, pp.542-547.

15.

 33

16. H.De Man et al.,"CATHEDRAL - II - a Computer-aided Synthesis system for
Digital Signal Processing VLSI Systems", ComputerAided Engg. Journal,
April 1988, pp. 55-66.

17. T.J.Kowalski, An Artificial Intelligence Approach to VLSI Design, Kluwer
Academic Publishers, 1985.

18. G.Borriello and E.Detjens, "High-level Synthesis : Current Status and
Future Directions", DAC-25, 1988, p477-482.

19. M.C.McFarland, A.C.Parker and R.Camposano, "Tutorial an Highlevel
Synthesis", DAC-25, 1988, p330-336.

20. M.Balakrishnan et al., "Allocation of Multi-port Memories in Data Path
Synthesis", IEEE Trans Computer Aided Design, Vol. 7, 1R��4, April 1988,
pp. 536-547.

J.L.Byrne and L.G.Proll, "Solution of linear programs in 0-1

variables by implicit enumeration algorithm 341", Commun. Ass. Comp.
Mach., Vol. 11, no. 11, p.782, 1RY��1968.

22. R.Jöhnk and P.Marwedel, MIMOLA Reference Manual, Version 3.45, Institut
für Informatik, Univ. of Kiel, Kiel, W.Germany.

21.

APPENDIX A : A comprehensive Example

We illustrate the methodology presented in this report with a complete

example. The dataflow graph shown in figure A.1 corresponds to the Elliptic

filter referred to in [5]. The definition and allocation part of the MIMOLA

description is shown in figure A.2. Theo Operator set (1 MF, 1 MS, 2 AF) is

allocated and forward scheduling mode is used. The generated schedule is shown in

figure A.3 and requires 20 time units. Figure A.4 shows the schematic with 28

interconnects between 6 storage units and the allocated Operators.

Multi-port memory synthesis is illustrated with an allocation of (1 MF, 1 AF)

as the Operator set and forward scheduling. Figure A.5 shows the schematic before

the memory synthesis; 33 interconnects with 10 locations. Six of these locations

can be merged to form a two port (1 row, 1 raw) memory reducing the interconnects

to 22. The final schematic is shown in figure A.6.

II

Figure A.2 Example MIMOLA Hardware Desription (Version 4.0)

III

Figure A.3 Schedule with Operator Set (1 MF, 1 MS, 2 AF}

IV

V

VI

 VII

APPENDIX B : Interface to MIMOLA

MIMOLA is a procedural hardware description language [22] and Supports

definition of hardware modules as well as algorithms to be realized in hardware.

A number of design tools haue been developed within a design environment named

MDS [3]. A common intermediate representation called TREEMOLA acts as the link.

A frontend translator (MSSF) converts the MIMOLA source to the TREEMOLA format.

The datapath Synthesis technique described in this report accepts a TREEMOLA

Input. A number of restrictions are placed an the MIMOLA source which

essentially relate to present state of the implementation.

i) The Synthesis program accepts only 3-address Statements for generating

the dataflow graph. Due to this the synthesis is capable to handle only

scalar variables and dyadic operations.

ü) The connections from the input/output ports as well as modules generating

constants are not yet considered during Synthesis (this restriction can

be easily removed).

iii) The program handles only simple straight line Segments in the source

program. An existing tool (MSSI) translates all control constructs in the

source to a version with conditional jumps intersparsed with straight

line Blocks. It is intended to develop an Interface such that the present

microprogram control Synthesis can be utilized along with the generated

datapath. This can be achieved by traversing the TREEMOLA structure

generated by MSSI and invoking the datapath Synthesis for every simple

block between two consecutive jump Statements.

iv) Modules during one design process are assumed to be of the saure width.

Hence different bitwidths and catenations of Bitranges are not supported.

VIII

The above mentioned restrictions would be removed with the development of a

new frontend to the program, which is under progress. This will include an

intraprocedural dataflow analysis, decomposition of complex expressions and

generation of the flowgraph.

