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 Abstract 
 
 
 
 
 
 

Synthesis of digital systems, involves a number of tasks ranging from 

scheduling to generating interconnections. The interrelationship between these 

tasks implies that good designs can only be generated by considering the overall 

impact of a design decision. The approach presented in this report provides a 

framework for integrating scheduling decisions with binding decisions. The 

methodology supports allocation of a wider mix of operator modules and covers 

the design space more effectively. The process itself can be described as 

incremental synthesis and is thus well-suited for applications involving partial 

presynthesised structures. 
 
 

Specifically, the report deals with the tasks of scheduling, binding 

operations to operators and intermediate values to storage units. Further, the 

generated structure is optimized by examining the feasibility of merging storage 

units to form memories. All the optimization tasks are modelled as constrained 

0-1 integer programming problems with the objective of reducing 

interconnections. 
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 1. INTRODUCTION 
 
 
 
 
1.1 A Brief Survey 

 
 

Synthesis, in the context of design automation of digital systems, usually 

refers to the process of transforming a behavioural design description into a 

structural design. This design process is equivalent to one to many mapping and 

thus the notion of a design space. Though a number of constraints an different 

parameters are to be satisfied for realizing the synthesised design, maximum 

emphasis is placed an the delay time (execution time of the behavioural 

description by the synthesised design) and the cost (considered proportional to 

the design area). 
 
 

Both the delay time and the cost are closely related to scheduling, resource 

allocation and binding. Traditional synthesis approaches perform these tasks in 

a sequence (referred to as vertical synthesis by some authors). Tseng’s [1) 

approach is typical where the synthesis is mapped to three steps, each modelled 

as a clique partitioning problem. The steps are 
 
 

i) Storage allocation and binding, 

ii) Operator allocation and binding and 

iii) Interconnection allocation and binding 
 
 

Another example is MIMOLA [2,3] which starts by generating a maximum 

parallel schedule (as late as possible) by analysing the data dependency among 

the operations. The global module allocation problem is modelled as an integer 

programming problem. The system is capable of handling complex multi-function 

modules and the clocktime is determined by the maximum propagation delay path. 

The interaction between the different tasks is limited. 
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Synthesis in many other systems follows a similar approach with some 

variations. There have been various attempts to perform the tasks together 

(global optimization), iteratively or as an expert system. HAI. [4,5] has a 

force-directed scheduling algorithm which performs scheduling within a 

time-constraint along with the minimization of required number of operators. 

Pfahler[6] describes a model based an a two-dimensional arrangement of 

operations for scheduling, processor mapping and register assignment. MAHA[7] 

performs scheduling of operations and allocation and binding of resources 

iteratively by first considering the operations in the critical path and then 

the other operations. The cost model is essentially that of operators with 

storage locations and interconnections ignored. SPLICER [8] presents a heuristic 

method for binding operations to operators and intermediate values to registers 

with a view to keep interconnections low. The results indicate that a look-ahead 

of a large number of subsequent control steps do not significantly affect the 

result. Peng [9] presents an iterative synthesis methodology (he calls it 

horizontal synthesis) based an a Petri-net model for design representation. The 

synthesis is carried out by a sequence of semantic preserving transformations an 

this representation. A key difference is the integration of a simple 

floor-planner within the design iteration. 
 
 

Some results have been reported for predicting the design-space or more 

specifically to explore the area-time tradeoff [10-12]. Jain et al.[11] 

describe a model for predicting the area-time curves based an operator 

utilization. The approach presently makes a number of simplifying assumptions 

an module types and considers the cost as the sum of individual operator costs. 

On the other hand, McFarland [12] makes startling observations about area-time 

curves. His results point to two significant conclusions: 
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i) The area-time curve shape changes dramatically when one considers lower 

level details (like multiplexers, interconnections and layout). 

ii) 

  

The design points do not lie an a smooth curve. 
 
 

A number of synthesis systems have been proposed which deal with a specific 

application area or a specific target architecture. Parker and Park [13-15] have 

reported extensively an designing pipelined systems. De Man et al. [16] describe 

a CAD system with a synthesis interface for signal processing applications. 

Kowalski[17] presents a knowledge based approach for processor design. The 

present state of the synthesis systems is summed up in two papers presented at 

the 25th Design automation conference [18-19]. 
 
 
 
 
 
 
1.2 objectives of Our Approach 

 
 

The synthesis approach presented in this report is intended to overcome 

some of the limitations of the approaches discussed in [4-9]. We describe the 

key features below. 
 
 

a) All synthesis systems are capable,of handling designs with multiple 

operator modules, though only some of them can handle multi-function 

operators. On the other hand, nobody tackles the designs with a mix of 

different speed operators for the same operation. Jain et al.[14] present a 

scheme for module selection for pipelined designs but do not consider the 

possibility that a mix (like one high speed multiplier and one slow speed 

multiplier) could constitute a good design point. In that sense, present 

synthesis systems do not explore the potential design space spanned by the 

module library. 
 
 

b) In many real-life design projects a partial pre-synthesised structure may 

need to be integrated efficiently i.e. to use the existing resources as 

much as possible for realising the behavioural description while 

synthesising only the extra struc 
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tures needed. We refer to this as incremental synthesis and our methodology 

can handle such situations very naturally. 
 
 

c) Area-time tradeoff seems to be a key to exploring the design space but none 

of the current synthesis systems seem capable of handling design decisions 

based an such a tradeoff, That is to say, A decision X is acceptable as it 

results in an expected extra area of only y whereas not (X) would result in 

an expected extra delay time of z. It is claimed that our approach provides 

a preliminary framework which can be extended for handling such tradeoffs. 

At present, design decisions are evaluated to minimize interconnections but 

it is intended to integrate a floorplanner to handle more accurate area 

projections (see Chapter 6) . 
 
 
 
1.3 Summary 

 
 

The report is organised into six chapters and two appendices. Chapter 2 

presents a brief overview of the synthesis system along with its salient 

features and limitations. Chapter 3 discusses the scheduling approach and the 

options available. Optimizations needed at different steps are modelled as 

zero-one integer programming. The zero-one integer programming model, the 

binding of operations to operators and the binding of values to storage elements 

are discussed in Chapter 4. The discrete storage locations can be merged to form 

multi-port memories as presented in Chapter 5. A simple running example in 

Chapters 3, 4 and 5 illustrates the approach while a more comprehensive example 

is presented in Appendix A. The results are discussed in Chapter 6. The 

extension of the synthesis approach by integration of a floor-planner along with 

other proposed future work is also discussed in Chapter 6. The approach is being 

implemented as a tool within the MIMOLA system. The present state of the 

interface along with its integration to the MIMOLA software system is discussed 

in Appendix B. 
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z. SYSTEM OVERVIEW 
 
 
 
 
2.1 A Brief Description 

 
 

Figure 1 shows an overview of the synthesis system. The input to the 

synthesis program is a data flow graph with nodes representing the operations 

and arcs representing the values i.e. inputs, intermediate values and outputs. 
The operator modules which implement the operations and storage elements which 

store the values are the resources. The inputs are 
 
 

a) Program Data Flow Graph : The data dependency of the operations in the 

source program is analysed to generate a data flow graph. 
 
 

b) Module Library : The definition of the resources needed to synthesize the 

structure constitutes the module library. At present it only includes the 

definition of operators, registers and memories declared in the source. 
 
 

c) Allocated Resources : The module library elements declared as parts by the 

designer are instantiated as preallocated resources. Apart from the 

elements of the module library, the predeclared interconnections also 

constitutes this set. 
 
 

For the present state of the input interface and the MIMOLA constructs 

supported by the implementation, refer to Appendix B. 
 
 

A set of operations called candidate operations are prepared based an the 

data dependency and operator availability. These operations are bound to the 

available operators optimally i.e. to minimize extra interconnections. The 

values generated by the scheduled operations are bound to the available 

registers, again with a view to minimize interconnections. This is followed by 

updating the structure based an the current bindings. Once all operations are 

scheduled and bound, multi-port memory synthesis [21] is attempted for allocated 

memories. First the maximum number of registers, 
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FIGURE 1. Overview of the Synthesis Process 



 
within the specified memory size and satisfying the simultaneous access 

constraints of the memory ports are grouped to form the memory. This is followed 

by assigning ports to the accessed locations for each cycle so that ’minimal’ 

extra interconnections are generated. 
 
 

Before we take up the details in the next chapters, we describe the key 

features and some constraints of our synthesis system. Some of the constraints 

are related only to the present implementation and Chapter 6 an future work 

describes the proposed enhancements. 
 
 
 
2.2 Key Features 

 
 

a) A mix of operator modules implementing the same operation at different 

speeds can be allocated together e.g. the synthesis program could schedule 

operations an a fast and slow multiplier simultaneously. This feature allows 

us to explore the design space more extensively. 
 
 

b) At every synthesis step extra interconnections are generated only if no 

binding of operations and values is feasible with the ’present’ structure. 

Thus, the algorithm is inherently suitable for incremental synthesis. It is 

possible to specify a partial structure (i.e. predeclared parts with some 

interconnections) and utilise it effectively for further synthesis. 
 
 

c) All ’optimizations’ are mapped to a ’Zero-one’ Integer programming model. 

The Pascal version of a standard algorithm[21] is used for four different 

tasks 
 
 

- Binding scheduled operations to available operators 

- Binding generated values to available registers 

- Identifying registers which can be grouped into a memory 

- Assigning ports to accessed locations for each cycle 
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2.3 Some Constraints 

 
 

a) All operators have an unique associated delay time. Thus a multi-function 

operator is assumed to implement all functions/ operations with the same 

delay time. 
 
 

b) Designers can specify the resources or let them be instantiated at an 

associated cost during synthesis. This option is necessary for treating all 

operators uniformly as low cost operators (like gates) are more likely to be 

allocated afresh instead of being shared. This is especially true if sharing 

involves creating additional paths and multiplexers. Presently, however all 

resources(operators and storage elements) need to be preallocated to 

generate a point in the design-space. 
 
 

c) All the operations included in the set of candidate operations are 

scheduled. Thus, the candidate set is so generated that it is feasible to 

schedule all the operations in the set. Refer to Chapter 6 for a detailed 

discussion of the changes required and for the effect of removing this 

constraint . 
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 3. SCHEDULING 

3.1 Scheduling Modes 

 
 

The data flow graph (dfg) is analysed and the longest delay path for each 

operation is computed. The delay time associated with the operator implementing 

an operation is used as the delay time of the dfg node. In case of operations 

being implemented by operators with different delay times, the allocated 

operator with the least delay time is chosen as the delay of the operation node. 

The scheduling can be performed in three different modes: 
 
 

a) Forward scheduling (FS) : This is based an scheduling operations as soon as 

their source operands are available. 
 
 

b) Backward scheduling (BS) : This involves scheduling operations based an as 

late as possible technique. 
 
 

c) Double headed scheduling (DHS) : In this mode scheduling is done 

 by alternating between forward and backward scheduling. As long 

 as the operations being scheduled lie an different paths, 

 scheduling is continued in forward (backward) mode. A switch 

 from forward (backward) to backward (forward) is performed so 

 that no two operations lying an any one path are scheduled 

 between two mode changes. 

3.2 Selection of Candidate Operation 

 
 

The set of candidate operations are chosen based an data available 

operations and available operators. For forward scheduling, data available 

operations are those all of whose predecessors have been scheduled whereas for 

backward scheduling, it means those all of whose successors have been scheduled. 

The available operators are those which have been free at least for the duration 

of their delay time. In the present implementation, the selection of operations 

to the candidate set is performed by choosing at most one 
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FIGURE z. Example Illustrating Scheduling Options 
 
 
3.3 Scheduling Example 

 
 

The example dfg in Figure 3 is used to illustrate scheduling. The dfg is 

taken from Paulin’s paper an force directed scheduling (4) . 

The module library assumed for the following discussion consists of four 

Operator types 
 
 

MF : Fast Multiplier, delay time = 2, Operation = (’*’) 

MS : Slow Multiplier, delay time = 4, Operation = (’*’) 

AF : Fast Accumulator, delay time = 1, operations = (’+’,’-’,’<’) 

AS : Slow Accumulator, delay time = 2, operations = (’+’,’-’,’<’) 
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The result of scheduling the dfg of figure 3 with an allocated Operator set 

of {1MF, 1MS, 1AF} is shown in Figure 4. Table 1 lists the results of scheduling 

an different Operator sets. The last column lists the results from [4]. 

 
 OPERATOR SET SCHEDULE TIME  
  DHS FORWARD BACKWARD HAL  
 (1 MF, 1 AF) 13 13 13 13  
 (1 MF,1 MS, 1 AF) 10 10 11 -  
 {1 MF,2 MS, 1 AF} 9 9 9 -  
 ( 2 MF, 1 AF1 8 8 8 8-12  
 { 2 MF, 2 AF} 7 7 7 7  
 { 3 MF, 1 AF1 7 7 7 7  
 (3 MF,1 AF, 1 AS} 6 6 6 -  
 { 3 MF, 2 AF } 6 6 6 6  
 ( 4 MF, 1 AF) 6 6 6 6  
 

 

TABLE 1 : Schedule Time as a Function of Operator Allocation 
(Example Figure 3) 
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����Zero-one Integer Programming Model 

In the current implementation, cost of a binding is decided by the number 

of extra interconnections required due to the binding. A simple procedure to 

compute this tost is as follows 
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TABLE 2 : Results from Scheduling and Binding the dfg in Figur
 Operator Set : {2MF, 2AF) and Scheduling Mode : FS 

 OPERATOR SET SCHED. SCHED. INTER- MUX STORAGE  
  OPT. TIME CONNECTS INPUTS  LOCATIONS  
  DHS 13 12 6 5  
 {1 MF,1 AF1 FORW. 13 9 9 3  
  BACK. 13 13 6 6  
  DHS 10 13 6 5  
 (1MF,1MS,1AF} FORW. 10 11 6 3  
  BACK. 11 12 6 5  
  DHS 9 11 4 5  
 {1MF,2MS,1AF} FORW. 9 10 2 4  
  BACK. 9 12 6 5  
  DHS B 12 4 4  
 {2 MF,1 AF) FORW. 8 8 2 3  
  BACK. 8 14 6 6  
  DHS 7 11 2 4  
 {2 MF,2 AF) FORW. 7 9 2 3  
  BACK. 7 10 0 9  
  DHS 6 12 2 5  
 {3MF,1AF,1AS} FORW. 6 12 4 4  
  BACK. 6 13 4 5  

 

TABLE 3 : Results from Scheduling and Binding the dfg of Figure 3 
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The approach presented till now produces designs with isolated discrete 

storage units. We refer to these storage units as registers in this section 

while remembering that the term is used in a general context i.e. they Gould be 
registers or latches. On the other hand, merging these registers to form 

memories has some potential advantages. The generated design is likely to be 

more Compact due to reduction in number of interconnections, multiplexers and 

multiplexer Inputs. This results from sharing of interconnections present 

between Operators and isolated registers. Further, the generated design is 

better ’testable’ or at least the area overhead for testing is expected to be 

smaller. Of course, we do make an assumption that additional area required for 

address paths and address decoders are Small compared to the reduction from 

shared data paths. 
 
 

The general strategy is to consider multi-port memories because Single port 

memories cannot satisfy the simultaneous access requirements even for a few 

merged registers. The present implementation Supports four types of specialised 

memory ports 

 
 

i) Read only ports : rd 

ü) Write only ports : wr 

iii) Read or write ports : row 

iv) Read and write ports : raw 
 
 

A point about the 'raw' type ports needs to be clarified. We assume such a 

port can read and write at an address specified by the Port address in a Single 

control step/cycle. Further, the write is 
 
 
 
* 
--------------- 

The discussion in this chapter is based an work reported elsewhere [20]. 
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performed at the end of the control step. This is to support merging of 

registers with a similar characteristic i.e. read during the cycle and Write at 

the trailing edge. Only if such a port is present, the registers read and 

written in the saure cycle would be considered for merging. 
 
 
 
5.2 Approach 

 
 

All the declared memory units are considered as potential units for 

replacing registers which can be merged into them. In the present 

implementation one memory at a time is tried and the corresponding structure 

generated. It is intended to augment it with a strategy for automatic selection 

of ’best’ design. Another possibility in case of designs with a large number of 

registers, is to repeat the process after removing the merged registers. 
 
 
 

The process itself is performed in two steps 
 
 

i) a set of registers is identified which can be merged into a specific 

memory unit. 

ü) a port assignment is made for every accessed location. 
 
 

The grouping of registers (step i) is performed globally whereas the 

assignment of ports to accessed locations (step ü) is performed considering one 

control step at a time. 
 
 
 
5.3 Grouping Registers 
 
 
 
 

The problem of grouping registers can be defined as follows 

For an allocated memory,identify a maximal set of registers (maximal is in terms 

of number of elements) whose access requirements at any control step can be 

satisfied by the availability of ports in the memory. 
 
 

It is easy to visualise the modelling of the above problem as a 0-1 integer 

programming problem. 
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For the simple model presently being employed, the weight is taken to be 1 

for all registers. A better heuristic is to Base the weight (at least partially) 

an the number of connections to the register. It is more advantageous to group 

registers with larger number of interconnections as the potential for sharing 

paths and thus area reduction is larger. 
 
 

The constraints originate from the simaultaneous access requirement of 

registers. For access at each control step, upto four constraints can be 

defined. 
 
 

i) Number of locations being read should not exceed the number of read ports 

(i.e. ports of type rd/row/raw). 

ü) Number of locations being written should not exceed the number of write 

Ports (i.e. Ports of type wr/row/raw). 

iii) Number of locations being read/written should not exceed the 

 number of read/write Ports (i.e. Ports of type rd/wr/row/raw). 

iv) Number of locations being 'read and written' should not exceed 

 the number of 'read and write' Ports (i.e. Ports of type raw). 
 
 

One global constraint results from the size of the memory i.e. no more than 

m registers can be grouped in a m word memory. Though, the number of constraints 

appear large (4k + 1 for a k step schedule) 
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but most of them are trivially satisfied and are removed by a prunner. The above 

Problem is also mapped to the minimization Problem of Section 4.1 and solved. 
 
 

The supply of source operands from memory units through Ports introduces a 

major complication. As a source Operand supplied from a Port at the start of a 

multi-cycle Operation has to be maintained at the saure Port throughout the 

execution of the Operation, Port availability at different steps cannot be 

considered completely independently. 
 
 
 
5.4 Assigning Ports 

 
 

The Problem of assigning Ports to accessed locations globally, while 

minimizing the number of interconnections, leads to a formulation with a large 

number of variables [20]. Thus the Problem is broken down and the Ports are 

assigned to accessed locations by considering one control step at a time. 

Further, the optimization criteria is modified to minimizing extra 

interconnections required over and above the existing structure. 
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Again, the computation of weight takes care of commutative operations. A 

solution to the above optimization results in a low cost binding of locations to 

ports while generating the memory-port/ Operator interconnections required. 

Further, the solution of this integer programming problem is also required for 

control Synthesis as the memory addresses for all ports in each control step are 

assumed to be supplied by a Controller. 
 
 
 
5.5 Example 

 
 

The dfg of Figure 3 is again used as the example. The effect of multi-port 

Synthesis is presented in Table 4 and Figures 5 and 6. 
 
 

Table 4 contains an overview of the result produced by allocating memory 

modules differing in number of ports and port definitions. The Input for memory 

Synthesis was the structure and schedule produced by allocating an Operator set 

of (1MF, 1AF} with DHS as the scheduling mode. (Refer to row 1 of Table 3 in 

Section 4.9). The set of registers that can be merged into the memory (col 2) 

along with the interconnections saved (col 3) give an indication of the benefits 

of allocating a particular memory module. 
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Figure 5 is essentially included for comparison with Figure 6 and is the 

structure before memory synthesis. The case presented again corresponds to an 

Operator set allocation of {1MF,1AF} with DHS scheduling. The Output of memory 

synthesis is shown in Figure 6 and corresponds to row 4 of Table 4. Along with 

the reduction in the number of interconnections, one multiplexer has,, also been 

removed. For a more complex example refer to Appendix A. 

  
MEMORY PORTS REGISTER SET INTERCONNECTS SAVED 
M1 = (1 row ) {R2,R4} 1 
M2 = {1 raw ) {R3,R4} 2 
M3 = {1 rd,1 raw) {R2, R5} 2 
M4 = {1 row,1 raw) (R2, R4, R5) 2 
M5 = {1 row,2 raw} {R2, R3, R4, R5} 4 
   

 

TABLE 4 : Results from Memory Synthesis 
Operator Set : [IMF, 1AF} and Scheduling Mode : DHS 
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FIGURE 5 Structure Before Memory Synthesis 
Operator Set {1MF,1AF}, Scheduling Mode DHS, Connects 12, Mux 3* 2:1 

FIGURE 6 Structure After Memory Synthesis; Memory with {1raw,1row} 
Operator Set {1MF,1AF}, Scheduling Mode DHS, connects 10, Mux 2* 2:1 
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All the results in this section are based an data flow graphs available in 

the literature. The module Set for these examples are the saure as the one 

Chosen for the example in Chapters 3,4 and ���The cpu time refers to the time an 

a DN 4000 $32//2�Workstation with 4 MB memory. 
 
 

The second example we present is the digital filter discussed in 6(+:$>��@��

The accumulators in the module Set can be replaced by adders for this example. 

The results from our Synthesis are presented in Table 5. Interconnections (col 

4), number of multiplexer Inputs (col 5) and storage locations required (col ���

along with the Operator set(col 1) collectively represent the design area. The 

storage for multiplication constants and paths for routing it to multipliers 

were assumed to be available. The cpu time an the $32//2� Workstation ranged 

between 1 and 5 seconds for all Gases. 
 
 

Another example we present is the fifth-order digital elliptic filter 

discussed in [5) and adopted as a benchmark example by the Synthesis Workshop 

group. The flow-graph is relatively large with 34 operations (additions and 

multiplications). The module Set was the saure as used in the last example. 

Table 6 presents the Best result(s) for each of the eight Operator Sets. In two 

Gases more than one choice is presented as the one with the lower schedule time 

appeared to haue higher path cost. The cpu time an the $32//2�Workstation for 

all Gases presented below ranged from ��to 8 seconds. 
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 OPERATOR SET SCHED. SCHED. INTER- MUX STORAGE 
  OPT. TIME CONNECTS INPUTS  LOCATIONS 
  DHS 18 18 15 6 
 11 MF,1 AF) FS 18 11 4 5 
  BS 18 19 11 8 
  DHS 15 15 5 6 
 {2 MF,1 AF) FS 15 11 6 4 
  BS 15 18 8 8 
  DHS 12 30 23 8 
 {1MF,2MS,3AF} FS 12 24 14 B 
  BS 12 21 15 6 
  DHS il 23 15 7 
 {2 MF,2 AF} FS 11 19 11 7 
  BS 11 12 6 4 
  DHS 10 24 15 6 
 {3 MF,2 AF} FS 10 21 12 6 
  BS 10 13 6 9 

 

TABLE 5 : Results from Scheduling and Einding the FIR Filter [15) 

 
OPERATOR SET SCHED. 

OPT. 
SCHED. 
TIME 

INTER- 
CONNECTS 

MUX 
INPUTS  

STORAGE 
LOCATIONS 

 

(3 MF,3 AF) FS 17 38 32 8  
{2 MF,3 AN FS 18 35 30 7  

{2 MF,2 AF) FS 
BS 

19 
18 

33 
37 

30 
27 

8 
11 

 

{1MF,1MS,2AF} FS 20 28 24 6  
{1 MF, 1 MS, 
1 AF,1 AS} 

DHS 22 35 26 10  

{1 MF,2 AF) FS 22 28 26 6  
{1MF,1AF,1AS} FS 23 33 30 8  
{1 MF,1 AF} DHS 

BS 
28 
29 

23 
26 

17 
17 

11 
10 

 

 

TABLE 6 : Results from Scheduling and Binding the Elliptic Filter[5] 
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Table 7 presents the results from allocating a two port memory for four 

different Operator allocations representing a range of time schedules.Columns 4 

and 5 list the number of interconnections before and after memory synthesis 

while column 7 specifies the number of locations that can be merged. Again the 

cpu time was of the Order of 6 to 10 seconds. 

 OPERATOR SET SCHED. SCHED. CONNECTS LOCATIONS 
   TIME   
  OPT.      
    BEFORE  AFTER TOTAL MEMORY 
  DHS 19 40 35 10 4 
 12 MF,2 AF} FS 19 33 34 8 3 
  BS 18 37 34 11 4 
  DHS 21 35 33 10 4 
 {1MF,1MS,2AF} FS 20 28 26 6 3 
  BS 21 38 31 11 9 
  DHS 23 34 28 11 5 
 {1MF,1AF,1AS} FS 23 33 28 8 4 
  BS 23 39 27 10 5 
  DHS 28 23 17 11 4 
 11 MF,1 AF} FS 28 33 22 10 6 
  BS 

 
29 26 19 10 6 

 

TABLE 7 : Results from Memory Synthesis for the Elliptic Filter 
 Data Flow Graph; Allocated Memory Ports {1 raw,1 row) 

6.2 Analysis of Results 

 
 

Table 1 illustrates an important advantage of our design procedure. More 

effective coverage of the design space is realized due to inclusion of Operators 

with different speeds. This is seen in not only covering up of the time gaps but 

also in reaching the minimal possible schedule time of 6 with an Operator set 

with smaller cost (considering only the Operator area). The cpu time for 

scheduling this small example was less than 0.6 seconds an the APOLLO 

workstation for all Gases. 
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Results from scheduling the FIR filter (Table 5) show hardly any difference 

in schedule time for different modes. In fact experiments an a number of other 

large flow graphs indicated only small differences (if at all) in schedule time. 

Double headed scheduling (DHS) matched the faster schedule except for few 

exceptions an Small flow graphs. On the other hand, the effect of scheduling 

Option an area Parameters was large and varied. First two sets in Table 5 

indicate Forward scheduling to be superior whereas the next three indicate 

Backward scheduling to be superior. DHS was always poor in terms of storage 

locations as short paths in the data flow graph scheduled from both sides locked 

up a number of locations as unavailable. Surprisingly, Small routing area for 

backward scheduling in the 4th and 5th Set represent abrupt area changes against 

regular changes in schedule time. This seems to confirm the Observation by 

McFarland [12] that design points an a area-time graph do not lie an a smooth 

curve. 
 
 

The results of scheduling are easily comparable to those reported by Paulin 

et al. using force-directed scheduling[5]. Table 6 provides one basis for 

comparison. Our Best Gase schedule time always matched that produced by 

force-directed scheduling and at least for one Gase (Set 3 Backward Option) it 

was better. They haue reported that their schedule times are optimal except for 

one Gase (not specified). Further, some results produced by a mix of Operators 

seem to be very attractive design points, e.g. Set 4 in Table 6. 
 
 

The Table 7 Shows the effect of memory Synthesis. on an average, the 

interconnections saved as well as the locations that can be merged decrease with 

increase in the number of allocated Operators. The increase in number of 

Operators represent less potential for sharing interconnections by merging 

registers. This is similar to the effect an forming buses. Increase in number of 

Operators also result in an increase in the frequency of register accesses and 

thus reduce the number of registers that can be merged. Though, these trends are 

important, but more important is to generate and pick out exceptional Gases. For 

example, in set 4, the Forward scheduling 
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produced a rather poor alternative with 10 registers and 33 interconnects. But, 

after memory synthesis it gets transformed into a good alternative with a 

reduction of 11 interconnects by merging 6 registers to form a two port memory. 
 
 
 
 
 
 
6.3 Future Work 

 
 

As mentioned in the introduction, the present system provides a framework 

for a Synthesis based an area-time tradeoff. The key to this is the adjustment 

of optimization weights which govern the binding decisions based an both area 

and time. In the absence of a floor-planner, the set of candidate operations are 

so Chosen that all of them can be scheduled an the available Operators. But once 

an area estimate for binding an Operation is obtainable from a floorplanner, the 

schedule-bind decision would be based an weighting the expected ’extra’ area 

against the expected ’extra’ time. The extra area can be estimated from the need 

to instantiate extra Operators as well as interconnections. The ’extra’ time of 

not binding an Operation can be estimated by comparing the unscheduled portion 

of the longest data flow path associated with a candidate Operation with other 

candidate operations. in this case, the candidate operations would be a Superset 

of the operations to be scheduled. Similarly,the weights for value-binding would 

more closely represent actual area. The designs generated are expected to 

reflect area-time tradeoff. 
 
 

The incorporation of multi-port memory Synthesis as a postprocessor 

provides a further means for area optimization. This also means an explosion in 

the number of design points if the module library contains a large variety of 

memories. A strategy to automatically select a few ’good’ designs would be 

highly desirable. The scope for forming Buses is rather limited after memory 

Synthesis but it is possible to merge interconnections to form Buses based an 

the Same model as memory Synthesis as indicated in [20]. 
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Presently, the System accepts only a Subset of MIMOLA[16] for program Input 

specification and hardware module declaration. We are working to extend it so 

that a complete Synthesis including microcode generation Gould be performed 

under the MIMOLA environment. The major improvements required are in handling 

the interconnections to input/output ports and to modules storing constants. For 

a more detailed specification of the current Status of the implemetation refer 

to Appendix B. 
 
 
 
 
 
 
6.4 Concluding Remarks 

 
 

This report presents a Synthesis tool based an integrating scheduling with 

binding decisions. The two binding decisions considered are: operations to 

Operators and values to storage locations. The designs generated can be further 

optimized by merging registers. The approach Supports a more flexible mix of 

Operator modules which results in a more extensive cover of the design space 

than previously reported techniques. The methodology is naturally suited to 

projects involving partial pre-synthesised structures. Further, it is indicated 

how the system Gould be extended for taking schedulebind decisions based an 

area-time tradeoff. The approach is illustrated with examples. The reported cpu 

time for synthesis is Small enough to permit design space exploration by 

allocating different Operator Sets. The System is being integrated into an 

existing CAD environment and thus would provide an alternative to the present 

vertical synthesis strategy. 
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APPENDIX A : A comprehensive Example 

We illustrate the methodology presented in this report with a complete 

example. The dataflow graph shown in figure A.1 corresponds to the Elliptic 

filter referred to in [5]. The definition and allocation part of the MIMOLA 

description is shown in figure A.2. Theo Operator set (1 MF, 1 MS, 2 AF) is 

allocated and forward scheduling mode is used. The generated schedule is shown in 

figure A.3 and requires 20 time units. Figure A.4 shows the schematic with 28 

interconnects between 6 storage units and the allocated Operators. 

Multi-port memory synthesis is illustrated with an allocation of (1 MF, 1 AF) 

as the Operator set and forward scheduling. Figure A.5 shows the schematic before 

the memory synthesis; 33 interconnects with 10 locations. Six of these locations 

can be merged to form a two port (1 row, 1 raw) memory reducing the interconnects 

to 22. The final schematic is shown in figure A.6. 



 

 

II 

Figure A.2 Example MIMOLA Hardware Desription (Version 4.0) 



 

 

III 

Figure A.3 Schedule with Operator Set (1 MF, 1 MS, 2 AF} 
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APPENDIX B : Interface to MIMOLA 
 
 
 
 
 
 

MIMOLA is a procedural hardware description language [22] and Supports 

definition of hardware modules as well as algorithms to be realized in hardware. 

A number of design tools haue been developed within a design environment named 

MDS [3]. A common intermediate representation called TREEMOLA acts as the link. 

A frontend translator (MSSF) converts the MIMOLA source to the TREEMOLA format. 

The datapath Synthesis technique described in this report accepts a TREEMOLA 

Input. A number of restrictions are placed an the MIMOLA source which 

essentially relate to present state of the implementation. 
 
 
 
 
 

i) The Synthesis program accepts only 3-address Statements for generating 

the dataflow graph. Due to this the synthesis is capable to handle only 

scalar variables and dyadic operations. 
 
 

ü) The connections from the input/output ports as well as modules generating 

constants are not yet considered during Synthesis (this restriction can 

be easily removed). 
 
 

iii) The program handles only simple straight line Segments in the source 

program. An existing tool (MSSI) translates all control constructs in the 

source to a version with conditional jumps intersparsed with straight 

line Blocks. It is intended to develop an Interface such that the present 

microprogram control Synthesis can be utilized along with the generated 

datapath. This can be achieved by traversing the TREEMOLA structure 

generated by MSSI and invoking the datapath Synthesis for every simple 

block between two consecutive jump Statements. 
 
 

iv) Modules during one design process are assumed to be of the saure width. 

Hence different bitwidths and catenations of Bitranges are not supported. 



VIII 

The above mentioned restrictions would be removed with the development of a 

new frontend to the program, which is under progress. This will include an 

intraprocedural dataflow analysis, decomposition of complex expressions and 

generation of the flowgraph. 


