
0. Broß, P. Marwedel, W. Schenk
University Kiel

Institute f. Informatik u. Prakt. Mathematik
O lshausenstr .40-60

D- 2300 Kiel, W. Germany

Introd uction1 space. Only then will we be able ta generate several
reasanable designs and ta fully explare the remaining

design space.

für2 SynthesisConcepts

AIgorithm

a new

In the following, we study the ca.se of high-level syn-
thesis algorithms generating structures at the RT -
level. The constituents of these structures are RT -

components (ALUs, registers, RAMs, etc.) and their
interconnections.

A number of problems exists with current high-level
synthesis algorithms, but two related important prob-
lems are generally present: the pha.se-coupling prob-
lem and the complexity problem.

2.1 Area-oriented Designs

Synthesis decisions should trade the area occupied by
the structure versus the time needed to execute the
program. Almost every design decision has a poten-
tial to result in an unacceptable layout. The execution
time can easily be calculated from the number of con-
trol steps and the mimimal cycle time, whereas the
area can not be simply estimated from the size of the
incorporated modules [McF87] .

Phase Coupling1.1

Floor-Planning2.1.1

Most synthesis systems partition the synthesis algo-
rithrn into a nurober of phases solving subproblems.
The subproblems include e.g. the binding of variables
ta storage elements, decomposition of complex expres-
sions, scheduling, module selection, binding of opera-
tions to modules, the generation of control, module
generation, floor planning, routing, and layout gener-
a.tion. There have been attempts to combine several of
these subproblems and to solve thern in a single step.
Hawever, no one has succeeded in and no one proba-
bly will ever succeed in solving all subproblems in a

step.
Solving subproblem after subproblem does not guar-

an optimum or even an acceptable solution for
complete problem. Current synthesis systems

much time in pre- dicting the effects of a deci-
on subsequent steps. Nevertheless early design

reduce the design space without trading area
time consumption.

All relevant design decisions should be based on a pre-
liminary floor-plan. Peng [Pen87] was the first to pro-
pose such an approach. His algorithm, however, is not
general enough to handle real design problems. For
example, backtracking is restricted in order to avoid
infinite loops.

The floor-planner required for synthesis has to be
tightly coupled to synthesis. It should be an incremen-
tal floor-planner, which is able to predict the effect of
a small design change ra.pidly.

Busses2.1.2

Many synthesis systems use multiplexers for selection
of the appropriate data in a certain control step. It
is weIl known that this is not area-efficient. There
have been attempts to use busses [deM86]. However,
current systems just minimize the number of busses.
This number serves only as a very rough estimate of
the required area. Floor-planning based design deci-
sions are required for implementing area-efficient data
selection.

Complexity

a. design spa.ce a.s big a.s the design spa.ce for

synthesis a.nd with the problems of predict-

precise effects of ea.rly design decisions on the

design, it is extremely importa.nt to reduce the

spa.ce a.s much a.s possible. U nrea.sona.ble de-

be excluded by the reduction of the desigh

Fixed Control Sequence:
The scheduling ph~e of high-level synthesis ca.n be

omitted, if the ma.pping to control steps is a.lrea.dy

done by the user. Some mecha.nism is required to ex-
press this ma.pping. The mecha.nism h~ to represent
a. progra.m ~ a.s set of control steps, ea.ch of which
potentia.l1y conta.ins severa.l pa.ra.l1el ~signments. An
elega.nt solutionis a. specia.l block structure of the form

2.2 Bindings and Partial Structures

Two means for the reduction of the design space can be
identified: partial structures and binding information.

Below we discuss the use of partial structures and
binding information during architectural synthesis.
We will explain, how the bindings can be conveniently
expressed in a design language. Our own language
MIMOLA will be used as an example. The bind-
ing information cannot change semantics and hence it
is compatible with the "correctness by construction"
principle. The additional information has a potential
to speed up synthesis algorithms.

Binding Information2.2.1

SEQBEGIN
PARBEGIN

set of statemen ts

PAREND;
PARBEGIN

set of statemen ts

PAREND;

SEQEND;

High level synthesis deals with different kinds of bind-
ings. We consider the binding of variables to storage,
the operation to control step binding (i.e. scheduling),
and the binding of operations to hardware compo-
nents. The more the user specifies the bindings, the
simpler is the task of the synthesis system and the re-
sulting structure will be closer to the user's intention.
This is only possible, if the input langnage allows the
description of such bindings.

E3.ch p3.ra.llel block represents 3. control step. SEQ-
BEGIN ...SEQEND mea.ns th3.t the sequence C3.nnot
be ch3.nged by 3.ny tool.

Prebound Variables:
Procedural descriptions of the required behaviour con-
tajn a set of abstract variables. It is not obvious,
how these should be bound to hardware registers a.nd
RAMs.

In order to simplify the storage allocation problem,
MIMOLA allows the user to define variable to location
bindings. We distinguish between user and temporary
variables. U ser variables can be bound in the variable
declaration.

Preselection of Key Components:
Frequently, the user h3ß a. pretty good knowledge
a.bout the type a.nd number of required key ha.rd-
wa.re components. Key components ca.n be defined
to be those modules which perform some operation
that is explicitly listed in the required system be-
haviour. Hence, key components include RAMs, reg-
isters, AL U s etc.

The following example presents a partial description
of a. key component using MIMOLA:

Exa.mple:

Example'

VAR

counter: integer AT CounterReg;

PARTS --components
a.1u : MODULE a.dd-sub(IN a., b: word;

IN c:twobits) RETURN f : word
BEHAVIOUR AtRtLevel IS

BEGIN
f < -CASE c OF

O : a. + b;
1: a. -b;
2 : a. OR b,
3:a.ANDb

END;
END;

Here, CounterReg is the name of a. visible ha.rdwa.re

component.
Va.riables, which have not been bound by the user,

will be bound to one of the locations set a.side for user
va.riables. In MIMOLA (version 4.0), these locations
a.re defined by a construct simila.r to VHDL configu-
ra.tions.

Example
It is rela.tively e~y to use this information during

scheduling, because now all the essential resources are
known. Scheduling now reduces to the type of schedul-
ing implemented in microcode generators.

RESERVED locations 15
FOR Variables USE Ma.in[O..4095];

END;

changed during synthesis. This special case occurs due
to the following reagons:

Prebound Operations:
As a result or previous design iterations, users some-
times realize, that better designs would be generated,
ir the operation to hardware component binding would

be changed.
The results of automatic synthesis systems normally

are analysed by human designers. Frequently they dis-
cover possible optimizations, changes required to im-
prove testability and changes required to meet some
company standards. After such changes, guaranteed
correctness normally is lost. Tools, checking whether
or not a manually modified hardware still meets the re-
quirements, are needed in order to avoid this situation.
In the case of a. procedural specification this means: it
has to be checked, that the specification can be com-
piled onto the changed structure. Our retargeta.ble
code generator MSSC hand1es this special case of in-
cremental synthesis [Now89]. A typical design process
including synthesis and generation of control code for
a. fixed structure is shown in fig. 1.

Example:
a := a +'alu b

All versions of MIMOLA provided constructs for
this binding. For the sake of standardization, we are
currently moving towards a straight-forward extension
of attributes in VHDL.

2.2.2 Partial Structures

Pa.rtial structures a.re normally available for most de-
sign problems. Users of our own MIMOLA hardware
design system frequently have a pretty good know-
ledge of some pa.rts of the hardwa.re structure. They
want to express this knowledge in a pa.rtial description
of the ha.rdwa.re structure and to use the synthesis sys-
tem to design some additional circuitry like decoders,
clocks and control. The existence of a partial designs
should speed up the design process and should not

slow it down.

Beha.vioural spec. ~

initial constrajnts

Simulation
of behaviour

~ ynthesiS of RT -structure

J

Manual change
of constrajnts

" yes
./---<,... more

~hanges ?

""/
no

Partial Description of the Interconnection

Structure:
Until now we have discussed information concerning
components and the binding of operations to compo-
nents. The next step is to include at least a partial
description of the interconnection structure in the syn-
thesis input. This information shal1 be used to evalu-

ate the effects of design decisions..
A simple way of using this information is easy to

implement: Many of the synthesis tools are not glob-
al1yoptimizing. They consider hardware requirements
control step by control step. For each of the control
steps the hardware is augmented, taking into consid-
eration the hardware requirements by previous con-
trol steps. With this approach, it is relatively easy to
take advantage of information about the interconnec-
tion structure. This information is presented to the
synthesis tool as a partial structure generated by a
virtual Oth control step. This is the concept employed
in a new synthesis algorithm for the MIMOLA design

system [Bal89].

~

s
.exit

Verification by

codegeneration

Control flow during a design project withFigure 1

MSS

Full Structure Completely Fixed:
As an extreme, the specification may contain a single

block with a fixed structure. This is a limiting case
of incremental synthesis: only the control code can be

3 Implementation of the Concept 3.1.1 Transformation on the Structure

We ha.ve implemented a. new synthesis system [Bro89]
tha.t incorpora.tes the fea.tures described a.bove. At
ea.ch step the system dea.ls with a complete struc-
ture, which is subject to improving tra.nsforma.tions
(c.f. ta.ble 1). Therefore the system is ca.1led SuccAss

(successive approx:ima.tion synthesis system).

The SuccAss a.lgorithm generates an initia.l structure
that is large enough to perform each of the para11el
blocks of the program in a single instruction. The a.l-
gorithm applies transformations reducing chip area.
The iteration consecutively identi:fies partia.l struc-
tures that may be replaced by a.lternatives. A trans-
formation is ca.lled folding, if a single part is removed
from the current structure. Another t.ransformation
substitutes e.g. a bus by a few multiplexers. The a.l-
gorithm estimates the changes in terms of area and
time. The estimates of the required area are ca.lcu-
lated by a floor.planner. A transformation is applied,
if it enhances the structure; i.e. the area shrinks and
no additional control step has to be introduced, or the
area is enlarged within a certain limit and the time is
reduced.

3.1 Integration of Subproblems into a sin-
gle Synthesis AIgorithm

In thi8 a.pproa.ch to 8ynthe8i8 we employ the MIMOLA
frontend, the RT-ma.pping of the program via. tra.ns-
forma.tion rule8, ma.pping of va.ria.ble8 to memory loca.-
tion8 a.nd the pa.ra.11eliza.tion of the RT-program. The
following pha.se8 a.re integra.ted into the SUCCAS8 tra.ns-
forma.tions:

The introduction of temporary variables as re-
quired by decomposition of complex expressions,

.The allocation of hardware modules,

.The binding of operations to control steps

(scheduling),

.The binding of operations to modules,

.The generation of control.

These transformations change the current structure.
In order to preserve the required behaviour, the bind-
ings of operations to control steps and the bindings
of operations to modules are updated accordingly.
The gajn in chip area is estimated via a simple floor-
planner, which is also integrated into the system. The
design constrajns, the system deals with, are as fol-
lows:

Generate Initial Structure;
WHILE structure does not fit on the chip DO
BEGIN

apply transformations
not generating new control steps
in order to reduce area;
IF more transformations applicable

THEN
apply transformation
with least increMe in control steps
and largest decreMe in chip area;

IF size of control storage exhausted THEN
EXIT design constraints could not be met;

END;
Generate hardwired constants;
Generate Busses;
PRINT structure;

Ta.ble 1: The SuccAss a.lgorithm
the library of ava.ilable components,

the a.rea of components,

3.1.2 Changes to the Programthe delay of operations,

There are two basic cha.nges on the progra.m. The
first breaks up expressions into sma.ller subexpressions
by introducing a. temporary va.ria.ble. It is a.pplied if
the constrajnts on the a.va.ila.ble area. are viola.ted a.nd
ca.nnot be met by a.ny tra.nsforma.tion of the struc-
ture. The second cha.nges the sta.tement to control
step binding. Itbinds the sta.tements to a. feasible con-
trol step; i.e. a. time, where idle hardware resources are
a.va.ila.ble to execute the sta.tement.

the maximal a.rea for the design,

the size of the control storage,

the maximal cyle time,

-the maximal number of temporary variables,

a.1l kinds of bindings mentioned in section 2.2.1

use the designers knowledge a.bout efficient designs re-
quires mecha.nism a.llowing the user to express such

bindings.
We propose tha.t such mecha.nisms should be present

in design la.ngua.ges supporting synthesis. Syrithesis
systems using such a.n enha.nced la.ngua.ge should ha.ve
a.n improved performa.nce in the sense of reduced coni-
puta.tion time a.nd better results.

The new synthesis system SuccAss implements the
proposed properties. The results indica.te tha.t the step
to integra.ted synthesis systems is fea.sible a.nd a.ttra.c-
tive a.s we genera.te structures closer to the designers
intent.

References

M. Balakrishnan, P. Marwedel: Integrated
Scheduling and Binding: A Synthesis
Aproach for Design Space Exploration, 26th
Design Automation Conference, 1989

[Ba189]

0. Broß: Synthese von RT-Strukturen
durch schrittweise Annäherung, master's
thesis, Institut für Informatik, University of

Kiel, (in germau)

[Br089]

H. De Man, J. Rabaey, P. Six : CATHE-
DRAL II: A Synthesis and Module Genera-
tion System for Multiprocessor Systems on
a Chip, in: G. De Micheli, A. Sangiovanni-
Vincentelli, P. Antognetti (ed.): Design Sys-
tems for VLSI Circuits, Logic Synthesis and
Silicon Compilation, Martinus Nijhoff Pub-

lishers, 1987

[deM86]

[McF87] M.C. McFarland: Reevaluating the Design
Space for Register- Transfer Synthesis, Proc.

ICCAD, 1987

L. Nowak, P. Marwedel: Verification

of Hardware Descriptions hy Retargetahle
Code Generatjon, 26th Design Automation
Conference, 1989

[Now89]

z. Peng: A Formal Methodology for Au-
toma.ted Synthesis of VLSI Systems, Ph.D.
thesis, Depa.rtment of Computer a.nd InfoI:-
ma.tion Science, Linköping University, 1987

[Pen87]

