
INTEGRATED SCHEDULING AND BINDING : A SYNTHESIS APPROACH
FOR DESIGN SPACE EXPLORATION

M. Balakrishnan P. Marwedel
Comp. Sci. & Engg. Dept. Institut fur Informatik
I.I.T. Delhi, New Delhi University of Kiel,.Kiel
INDIA 110016 W.Germany, D-2300

Abstract

Synthesis of digital systems, involves a
number of tasks ranging from scheduling to
generating interconnections. The interrel-
ationship between these tasks implies that
good designs can only be generated by con-
sidering the overall impact of a design deci-
sion. The approach presented in this paper
provides a framework for integrating sched-
uling decisions with binding decisions. The
methodology supports allocation of a wider mix
of operator modules and covers the design
space more effectively. The process itse1.f can
be described as incremental synthesis and is
thus well-suited for applications involving
partial pre-synthesized structures.

1. INTRODUCTION

Synthesis, in the context of design auto-
mation of digital systems, usually refers to
the process of transforming a behavioral des-
ign description into a structural design. This
design process is equivalent to one to many
mapping and thus the notion of a design space.
Though a number of constraints on different
parameters are to be satisfied for realizing
the synthesized design, maximum emphasis is
placed on the delay time (execution time of
the behavioral description by the synthesized
design) and the cost (considered proportional
to the design area).

Both the delay time and the cost are
closely related to scheduling, resource allo-
cation and binding. Initial synthesis am-
roaches involved performing these tasks in a
sequence: now referred to as vertical syn-
thesis by some authors. Tseng's [I] approach
is typical where the synthesis is mapped to
three steps, each modelled as a clique par-
titioning problem. The steps are :

a) Storage allocation and binding,
b) Operator allocation and binding and
c) Interconnection allocation and binding

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the tide of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Another example is MIMOLA [2,33
which starts by generating a maximum parallel
schedule (as late as possible) by analyzing
the data dependency among the operations. The
global module allocation problem is modelled
as an integer programming problem. The system
is capable of handling complex multi-function
modules and the clock time is determined by
the maximum propagation delay path. Synthesis
in many other systems follow a similar app-
roach with some variations.

A major limitation of the above
approaches is their inability to explore the
design space. The only way a new design can be
generated is by modifying the input program or
the schedule. Further, by performing the opti-
mization in a strict sequence, interaction
between these steps is ignored resulting in
poor designs.

This led to various new approaches to
synthesis which either perform the tasks
together (global optimization), iteratively
or as an expert system. The intent is the
better exploration of the dresign space.
HAL[4,5] has a force-directed scheduling al-
gorithm which performs scheduling within a
time-constraint along with the minimization of
required number of operators. Pfahler[6]
describes a model based on a two-dimensional
arrangement of operations for scheduling,
processor mapping and register assignment.
MAHA[7] performs scheduling of operations and
allocation and binding of resources itera-
tively by first considering the operations in
the critical path and then the other opera-
tions. The cost model is essentially that of
operators with storage locations and intercon-
nections ignored. SPLICER[8] presents a heu-
ristic method for binding operations to oper-
ators and intermediate values to registers
with a view to keep interconnections low. The
results indicate that a look-ahead of a large
number of subsequent control steps do not
significantly affect the result. Pew (91
presents .an iterative synthesis methodology
(he calls it horizontal synthesis) based on a
Petri-net model for design representation. The
synthesis is carried out by a sequence of
semantic preserving transformations on this
representation. A key difference is the inte-
gration of a simple floor-planner within the
design iteration.

Some results have been reported for pred-
icting the design-space or more specifically
to explore the area-time tradeoff [lo-121.
Jain et al.[Ll] describe a model for

Paper 6.3

68

26th ACM/IEEE Design Automation Conference@

0 1989 ACM O-89791 -3lO-8/8!YOOO6/0068 $1.50

predicting the area-time curves based on oper-
ator utilization. The approach presently makes
a number of simplifying assumptions on module
types and considers the cost as the sum of
individual operator costs. On the other hand,
McFarland [12] makes startling observations
about area-time curves. His results point to
two significant conclusions:

i) The area-time curve shape changes drama-
tically when one considers lower level
details (like multiplexers, interconnect-
ions and layout).

ii) The design points do not lie on a smooth
curve.

The synthesis approach presented in this
paper is intended to overcome some of the
limitations of the approaches discussed in
[4-91. We describe the key features below.

a) All synthesis systems are capable of hand-
ling designs with multiple operator modules,
though only some of them can handle multi-
function operators. On the other hand, nobody
tackles the designs with a mix of different
speed operators for the same operation. Jain
et a1.[13] present a scheme for module selec-
tion for pipelined designs but do not consider
the possibility that a mix (like one high
speed multiplier and one slow speed multi-
plier) could constitute a good design point.
In that sense, present synthesis systems do
not explore the potential design space spanned
by the module library.

b) In many real-l!.fe design projects a partial
pre-synthesized structure may need to be inte-
grated efficiently i.e. to use the existing
resources as much as possible for realizing
the behavioral description while synthesizing
only the extra structures needed. We refer to
this as incremental synthesis and our methodo-
logy can handle such situations very natu-
rally.

c) Area-time tradeoff seems to be a key to
exploring the design space but none of the
current synthesis systems seen capable of
handling design decisions based on such a
tradeoff. That is to say, A decision X is
acceptable as it results in an expected extra
area of only y whereas not(X) would result in
an expected extra delay time of z. It is
claimed that our approach provides a preli-
minary framework which can be extended for
handling such tradeoffs. At present, design
decisions are evaluated to minimize interconn-
ections but it is intended to integrate a
f loorplanner to handle more accurate area
projections (see Section 5). This would enable
the design decisions to be based on a single
parameter representing interconnection cost,
multiplexer cost and operator cost.

2. SYSTEM OVERVIEW

The input to the synthesis program is a
data flow graph with nodes representing the
operations and arcs representing the values
i.e. inputs, intermediate values and outputs.
The operator modules which implement the op-
erations and storage elements which store the
values are the resources. Designers can spe-
cify the resources or let them be instantiated
at an associated cost. This option is nec-
essary for treating all operators uniformly as
low cost operators (like gates) are more like-
ly to be allocated instead of being shared.
This is especially true if sharing involves

creating additional paths and multiplexers. A
mix of operator modules implementing the same
operation at different speeds is allowed e.g.
different speed multipliers with the same int-
erface can be allocated together. The present
implementation restricts all operations imple-
mented by a multifunction operator to have the
same associated propagation delay. Overall
design constraints on lrea and time can be
specified but this information is used only to
reject design points.

Figure 1 shows the overview of the
design process. A set of operations called
candidate operations are prepared based on the
data dependency and operator availability.
These operations are bound to the available
operators optimally i.e. to minimize extra
interconnections. The values generated by the
scheduled operations are bound to the avail-
able registers, again with a view to minimize
interconnections. This is followed by updating
the structure based on the current bindings.
As the updated structure is used in the subse-
quent iterations, the process of incremental
synthesis is obvious. Thus it is possible to
start with a partially synthesized structure
and use it effectively to complete the syn-
thesis.

3. SCHEDULING AND BINDING

The data flow graph is analyzed and
the -longest pathlength for each operation is
computed. In case of operations being imple-
mented by operators with different delay
times, the allocated operator with the least
delay time is chosen as the associated delay
of the operation node. The scheduiing can be
performed in three different modes:

i) Forward scheduling (based on as soon as
possible)

ii) Backward scheduling (based on as late as
possible)

iii)Double headed scheduling (based on al-
ternating between the two)

3.1 Selection of Candidate Overations

The set of candidate operations are cho-
sen based on data available operations and
available operators. For forward scheduling,
data available operations are those all of
whose predecessors have been scheduled whereas
for backward scheduling, it means those all of
whose successors have been scheduled. The
available operators are those which have been
free at least for the duration of their delay
time. Contention among operations is resolved
by choosing the one with the longer unschedu-
led path-length. The marking of an operator as
available only after its delay-tine prevents
an operation with a long path-length getting
scheduled on a slow operator.

3.2 Zero-one Inteser Prosrammins Model

For binding both operations to operators
and values to storage locations, a very simi-
lar zero-one integer programming model is
used. Binding is equivalent to generating a
specific mapping from a set of candidates
(ai),i=l,.., n to a set of resources
(bj),j=l,.-,m.

BINDING: (ai) ---a-> (bj }

Paper 6.3

69

SCHEDULE A SET OF OPERATIONS
(CANDIDATE OPERATIONS)

OPTIMALLY BIND OPERATIONS

OPTIMALLY BIND VALUES
TO STORAGE LOCATIONS

UPDATE INTERCONNECTIONS

OPERATIONS
SCHEDULED ?

FIGURE 1. 0VERVIE;W OF THE SYNTHESIS PROCESS

*

8 +

+

8 <

FIGURE 2 : Example Data Flow Graph[4]

Paper 6.3

70

We define : For computing the weight Wij

ALL CASES:corresponds to examining all ports
(tk) of module Xllje

CONDl: tk is not connected at all E it is
not connected to the storage to
which the value (associated with pi)
is bound.

Xij:

:

fij:

Wij:

:

equal to 1 if ai is bound to bj else
equal to 0.
zero-one integer variable which defines
the mapping

defines feasibility of mapping ai to b.
equal to 1 if the mapping is feast le 2
else 0.

cost of binding ai to bj
computed only if the mapping is feasible.

In the current implementation, cost of a
binding is decided by the number of extra
interconnections required due to the binding.
A simple procedure to compute this cost is as
follows :

wij <- 0;

for (ALL CASES dir,ectly related to bind-
ing ai to bj) do

begin
condl : w.'
(a defini$e<- wij + %erconnection extra
for this case)
cond2 Z Wi’

(a probable <- wij + Zterconnection extra
for this case)
cond3 : Wij <- Wi-$ + 0;
(definitely no ex ra interconnection
for this case)

end:

Thus the function to be minimized is

The constraints originate from two types of
restrictions on Xij’S

i) Not more than one candidate can be mapped
to a resource during the time under considera-
tion.

2 Xij < 1

i=l
j=l , -. ,m

ii) All (or some) of the candidates have to
be bound to at least one of the resources.

2 fij Xij = 1 i=l,..,n
j=l

3.3 Operation-Operator Bindinq

Operation-operator binding involves map-
ping the set of candidate operations (pi) to
available operator modules (mj).

P-M BINDING: (pi) ------> { m
j)

We define the related terms to use the
model described in Section 3.2

xij feasible: m. performs the operation spec-
1 ied by pi AND pi has been 4.
available from data dependency
considerations for at least the
delay time of mj.

CONDZ: The value (associated with pi) is
not bound. m tk is connected to at
least one free location.

COND3: The value (associated with pi) is
bound AND tk iS connected to the
location to which it is bound.

The computation of weight takes care Of
commutative operations. The solution to the
above optimization results in a low cost bind-
ing of operations to operators.

3.4 Value-Storacre Location Bindinq

Value-storage binding involves mapping
the set of values (Vi) generated by the cand-
idate operations to the free storage locations
tsjl-

V-S BINDING: (Vi) --m-m--> (s
j)

We define the related terms to use the
model described in Section 3.2

Xij feasible: If Sj is a free location when
Vi is generated. A location is
free when the previous value
stored in it is dead. Though

this is rather simple to com-
pute for forward scheduling, it
is more complicated in case of
backward and double headed
scheduling.

For computing the weight Wij

ALL CASES:corresponds to examining all oper-
ations (pk) which use Vi

CONDl: Sj(appropriate port) is not con-
nected at all a it is not connected
to the module to which pk is bound.

CONDZ: pk is not bound m sk (appropriate
port) is connected to at least one
operator to which pk can be bound.

COND3: bound AND (appropriate
Fgrt;sis connected tSokthe module to
which it is bound.

Again, the computation of weight takes
care of commutative operations. A solution to
the above optimization results in a low cost
binding of values to storage locations while
instantiating more storage units if required.

4. EXPERIMENTAL RESULTS

All the results in this section are based
on data flow graphs available in the litera-
ture. The first example is from Paulin et
al-[41 which they have used to illustrate
their force-directed scheduling. Figure 2
shows the data flow araph taken from their
paper. Table 1 presents-the results of our
scheduling along with HAL's. The module set
for this example was :

Paper 6.3

71

MF : Fast Multiplier <time = 2, area = 40:*
MS : Slow Multiplier <time = 4, area = lo:*
AF : Fast AccumulatorCtime = 1, area = 4>
AS : Slow Accumulator<time = 2, area = l>

Table 1 illustrates an important advan-
tage of our design procedure. More effective
coverage of the design space is realized due
to inclusion of operators with different sp-
eeds. This is seen in not only covering up of
the time gaps but also in reaching the mini.mal
possible schedule time of 6 with an operator
set with smaller cost (considering only the
operator area). The cpu time for scheduling
this small example was less than 0.6 seconds
on an APOLLO workstation (DN 4000 with 4 MB
memory) for all cases.

The second example we present is the
digital filter discussed in SEHWA[lS]. The
module set is same as the one for Example 1
except that the accumulators can be replaced
by adders. The results from our synthesis are
presented in Table 2. Interconnections (co1
4), number of multiplexer inputs (co1 5) and
storage locations required (co1 6) along with
the operator set(co1 1) collectively represent
the design area. The storage for multipli-
cation constants and paths for routing it to
multipliers were assumed to be available. The
cpu time on the APOLLO workstation ranged bet-
ween 1 and 5 seconds for all cases.

It is interesting to note that the sched-
ule time was independent of the scheduling
option used. In fact, experiments on a number
of other large flow graphs indicated only
small differences (if at all) in sched.ule
time. Double headed scheduling (DHS) matched
the faster schedule except for few exceptions.
On the other hand, the effect of scheduling
option on area parameters was large and var-
ied. First two sets indicate Forward sched-
uling to be superior whereas the next three
indicate Backward scheduling to be superior.
DHS was always poor in terms of storage loca-
tions as short paths in the data flow graph
scheduled from both sides locked up a number
of locations as unavailable. Surprisingly,
small routing area for backward scheduling in
the 4th and 5th set seem to confirm the obser-
vation in [12] that design points do not lie
on a smooth curve.

The last example we present is the fifth-
order digital elliptic filter discussed in [5]
and adopted as a benchmark example by the
synthesis workshop group. The flow-graph is
relatively large with 34 operations (additions
and multiplications). The module set was the
same as used in the last example. Table 3
presents the best result(s) for each of the
eight operator sets. In two cases more than
one choice is presented as the one with the
lower schedule time appeared to have higher
path cost. The cpu time on the APOLLO work-
station for all cases presented below ranged
from 2 to 8 seconds.

The results of scheduling are easily
comparable to those reported in [5]. Our best
case schedule time always matched that pro-
duced by force-directed scheduling and at
least for one case (set 3 Backward option) it
was better. Further, some results produced by
a mix of operators seem to be very attractive
design points, e.g. set 4.

5. LIMITATIONS AND FUTDRE WORK

As mentioned in the introduction, the
present system provides a framework for a
synthesis based on area-time trade,off. The key
to this is the adjustment of optimization
weights which govern the binding decisions
based on both area and time. In the absence of
a floor-planner, the set of candidate oper-
ations are so chosen that all of them can be
scheduled on the available operators. But once
an area estimate for binding an operation is
obtainable from a floor-planner, the schedule-
bind decision would be based on weighing the
expected extra area against the expected extra
time. The extra time of not binding an oper-
ation can be estimated from the unscheduled
portion of the longest data flow path asso-
ciated with the operation. In thi.s case, the
candidate operations would be a superset of
the operations to be scheduled. Similarly, the
weights for value-binding would more closely
represent actual area. The designs generated
are expected to reflect area-time tradeoff.

Synthesis of multi-port memories[l5] has
been incorporated as a post-processor for
further area optimization. The number of in-
terconnections are further reduced as the
selection of registers to be merged in the
memory as well as port allocation for loca-
tions is based on optimally sharing intercon-
nections.

Presently, the system accepts only a
subset of MIMOLA[16] for program xnput speci-
fication. Work is going on for extending it to
accept the full MIMOLA syntax including hard-
ware module declarations.

6. CONCLUSION

This paper presents a synthesis tool
based on integrating scheduling with binding
decisions. The two binding -decisions consi-
dered are: operations to operators and values
to storage locations. The approach supports a
more flexible mix of operator modules which
results in a more extensive cover of the des-
ign space than previously reported techniques.
The methodology is naturally suited to proj-
ects involving partial pre-synthesized struc-
tures. Further, it is indicated how the system
could be extended for taking schedule-bind
decisions based on area-time t.radeoff.The
apprc ach is illustrated with examples. The
reported cpu time for synthesis is small eno-
ugh to permit design space explorat.ion by all-
ocating different operator sets.

7. ACXNOWLEDGEMENT

The authors would like to thank Mr.
R.'Johnk for his varied help through different
stages of this work.

Paper 6.3

72

I

OPERATOR SET SCHEDULE

(1 'MF, 1 AF} 13 13 13
{l MF,l MS, 1 AF} 10 10 11
(1 MF,2 MS, 1 AF} 9 9 9

{ 2 MF, 1 AF} a a a
{ 2 MF, 2 AF} 7 7 7
{ 3 MF, 1 AF} 7 7 7

{3 MF,l AF, 1 AS} 6 6 6
{ 3 MF, 2 AF} 6 6 6
{ 4 MF, 1 AF} 6 6 6

DHS FORWARD

TIME

BACKWARD HAL

13

a-12
7
7

6
6

TABLE 1 : Schedule Time as a Function of Operator Allocation
(Example Figure 2)

OPERATOR SET SCHED. SCHED. INTER- MUX STORAGE
OPT. TIME CONNECTS INPUTS LOCATIONS

DHS 18 ia 15 6
{l MF,l AF} FORW. 18 11 4 5

BACK. 18 19 11 8

DHS 15 15 5 6
{2 MF,l AF} FORW. 15 11 6 4

BACK. 15 ia a a

DHS 12 30 23 a
{lMF,2MS,3AF) FORW. 12 24 14 8

BACK. 12 21 15 6

DHS 11 23 15 7
12 MF,2 AF} FORW. 11 19 11 7

BACK. 11 12 6 4

DHS 10 24 15 6
(3 MF,2 AF) FORW. 10 21 12 6

BACK. 10 13 6 4

TABLE 2 : Results from Scheduling and Binding
Data Flow Graph [15].

the Digital Filter

Paper 6.3

73

_-
OPEmTOR SET SCHED. SCHED. INTER.- MUX STORAGE

OPT. TIME CONNECTS INPUTS LOCATIONS
-

(3 MF,3 AF} FORW. 17 38 :32 8

(2 MF,3 AF} FORW. 18 35 13 0 7

(2 MF,2 AF} FORW. 19 33 :30 8
BACK. 18 37 27 11

{lMF,lMS,2AF} FORW. 20 30 28 6

(1 MF,l MS, DHS 22 35 26 10
1 AF,l AS}

(1 MF,2 AF} FORW. 22 28 26 6

{lMF,lAF,lAS) FORW. 23 33 30 8

(1 MF,l AF) DHS 28 30 23 10
BACK. 29 25 17 9

TABLE 3 : Results from Scheduling and Binding the Elliptic Filter
Data Flow Graph [5].

8. REFERENCES

1.

2.

3.

4.

5.

6.

7.

a.

C-J. Tseng and D.P.Siewiorek,,,Automated
Synthesis of DataPaths in Digital Sys-
tems,,, IEEE Trans. Computer-Aided Design,
Vol. CAD-5, No.3, pp. 379-395, July 1986.
P. Marwedel,,,The MIMOSA Design System:
Tools for the Design of Digital Proces-
sors,,, Proc. DAC-21,pp.378-384,1984.
P.Marwedel,,,The MIMOLA Design System:
Tools for the Design of Digital Proces-
sorst*, Proc. DAC-23,1986,pp.587-593.
P.G.Paulin,J.P.Knight and G.E.Girczyc,
"HAL: A Multi- Paradigm Approach to Auto-
matic Data Path Synthesis,,, F'roc.
DAC-23,1986, pp.267-277.
P.G.Paulin and J.P. Knight, ,, Force-
Directed Scheduling in Automated Data
Path Synthesis,,, Proc. DAC-24, :L987,
195-202.
P. Pfahler, "Automated Data Path Syn-
thesis : A Compilation Approach,,, Buro-
micro Journal of Microprocessing and
Microprogramming, vo1.21, 1987,
pp.577-584.
A.C.Parker,J.T.Pizarro and M.Mlinar,
"MAHA: A Program for Data Path Synth-
esis,,, Proc. DAC-23, 1986, ~~-461-466.
B.M.Pangle, "Splicer: A Heuristic Ap-
proach to Connectivity Binding,,, Proc.
DAC-25, 1988, pp.536-541.

9.

10.

11.

12.

13.

14.

15.

16.

2. P-3, ,,A Formal methodology for Auto-
mated Synthesis of VLSI Systems", Ph.D.
Dissertation, Linkoping University,
Linkoping, Sweden, 1987.
J.J.Granadi and A.C.Parker, '*The Effect
of Register-Transfer Design Tradeoffs on
Chip-Area and Performance',, Proc. DAC-20,
PP. 419-424, 1983.
R.Jain,M.J.Mlinar and A.C.Parker, "Area-
Time Model for Synthesis of Non-Pipelined
Designs", ICCAD-88,Nov.I.988.
M.C.McFarland, "Reevaluating the Design
Space for Register-Transfer Hardware
Synthesis',, ICCAD-87, 1987.
R.Jain, A-C-Parker and N-Park, "Module
Selection for Pipelined Synthesis,, Proc.,
DAC-25, 1988, pp.542-547.
M.Balakrishnan et al., "Allocation of
Multi-port Memories in Data Path Syn-
thesis,,, IEEE Trans. Computer-Aided Des-
ign, Vol. 7, No. 4, April 1988, pp.
536-547.
N.Park and A.C.Parker, "SEHWA: A Program
for Synthesis of Pipelines,,, Proc.
DAC-23, 1986, pp.454-460.
R.Johnk and P.Marwedel, MIMCLA Reference
Manual, Version 3.5,Institut fur Info-
rmatik, Univ. of Kiel, Kiel, W-Germany.

Paper 6.3

74

