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Abstract 

Synthesis of digital systems, involves a 
number of tasks ranging from scheduling to 
generating interconnections. The interrel- 
ationship between these tasks implies that 
good designs can only be generated by con- 
sidering the overall impact of a design deci- 
sion. The approach presented in this paper 
provides a framework for integrating sched- 
uling decisions with binding decisions. The 
methodology supports allocation of a wider mix 
of operator modules and covers the design 
space more effectively. The process itse1.f can 
be described as incremental synthesis and is 
thus well-suited for applications involving 
partial pre-synthesized structures. 

1. INTRODUCTION 

Synthesis, in the context of design auto- 
mation of digital systems, usually refers to 
the process of transforming a behavioral des- 
ign description into a structural design. This 
design process is equivalent to one to many 
mapping and thus the notion of a design space. 
Though a number of constraints on different 
parameters are to be satisfied for realizing 
the synthesized design, maximum emphasis is 
placed on the delay time (execution time of 
the behavioral description by the synthesized 
design) and the cost (considered proportional 
to the design area). 

Both the delay time and the cost are 
closely related to scheduling, resource allo- 
cation and binding. Initial synthesis am- 
roaches involved performing these tasks in a 
sequence: now referred to as vertical syn- 
thesis by some authors. Tseng's [I] approach 
is typical where the synthesis is mapped to 
three steps, each modelled as a clique par- 
titioning problem. The steps are : 

a) Storage allocation and binding, 
b) Operator allocation and binding and 
c) Interconnection allocation and binding 
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Another example is MIMOLA [2,33 
which starts by generating a maximum parallel 
schedule (as late as possible) by analyzing 
the data dependency among the operations. The 
global module allocation problem is modelled 
as an integer programming problem. The system 
is capable of handling complex multi-function 
modules and the clock time is determined by 
the maximum propagation delay path. Synthesis 
in many other systems follow a similar app- 
roach with some variations. 

A major limitation of the above 
approaches is their inability to explore the 
design space. The only way a new design can be 
generated is by modifying the input program or 
the schedule. Further, by performing the opti- 
mization in a strict sequence, interaction 
between these steps is ignored resulting in 
poor designs. 

This led to various new approaches to 
synthesis which either perform the tasks 
together (global optimization), iteratively 
or as an expert system. The intent is the 
better exploration of the dresign space. 
HAL[4,5] has a force-directed scheduling al- 
gorithm which performs scheduling within a 
time-constraint along with the minimization of 
required number of operators. Pfahler[6] 
describes a model based on a two-dimensional 
arrangement of operations for scheduling, 
processor mapping and register assignment. 
MAHA[7] performs scheduling of operations and 
allocation and binding of resources itera- 
tively by first considering the operations in 
the critical path and then the other opera- 
tions. The cost model is essentially that of 
operators with storage locations and intercon- 
nections ignored. SPLICER[8] presents a heu- 
ristic method for binding operations to oper- 
ators and intermediate values to registers 
with a view to keep interconnections low. The 
results indicate that a look-ahead of a large 
number of subsequent control steps do not 
significantly affect the result. Pew (91 
presents .an iterative synthesis methodology 
(he calls it horizontal synthesis) based on a 
Petri-net model for design representation. The 
synthesis is carried out by a sequence of 
semantic preserving transformations on this 
representation. A key difference is the inte- 
gration of a simple floor-planner within the 
design iteration. 

Some results have been reported for pred- 
icting the design-space or more specifically 
to explore the area-time tradeoff [lo-121. 
Jain et al.[Ll] describe a model for 

Paper 6.3 

68 

26th ACM/IEEE Design Automation Conference@ 

0 1989 ACM O-89791 -3lO-8/8!YOOO6/0068 $1.50 



predicting the area-time curves based on oper- 
ator utilization. The approach presently makes 
a number of simplifying assumptions on module 
types and considers the cost as the sum of 
individual operator costs. On the other hand, 
McFarland [12] makes startling observations 
about area-time curves. His results point to 
two significant conclusions: 

i) The area-time curve shape changes drama- 
tically when one considers lower level 
details (like multiplexers, interconnect- 
ions and layout). 

ii) The design points do not lie on a smooth 
curve. 

The synthesis approach presented in this 
paper is intended to overcome some of the 
limitations of the approaches discussed in 
[4-91. We describe the key features below. 

a) All synthesis systems are capable of hand- 
ling designs with multiple operator modules, 
though only some of them can handle multi- 
function operators. On the other hand, nobody 
tackles the designs with a mix of different 
speed operators for the same operation. Jain 
et a1.[13] present a scheme for module selec- 
tion for pipelined designs but do not consider 
the possibility that a mix (like one high 
speed multiplier and one slow speed multi- 
plier) could constitute a good design point. 
In that sense, present synthesis systems do 
not explore the potential design space spanned 
by the module library. 

b) In many real-l!.fe design projects a partial 
pre-synthesized structure may need to be inte- 
grated efficiently i.e. to use the existing 
resources as much as possible for realizing 
the behavioral description while synthesizing 
only the extra structures needed. We refer to 
this as incremental synthesis and our methodo- 
logy can handle such situations very natu- 
rally. 

c) Area-time tradeoff seems to be a key to 
exploring the design space but none of the 
current synthesis systems seen capable of 
handling design decisions based on such a 
tradeoff. That is to say, A decision X is 
acceptable as it results in an expected extra 
area of only y whereas not(X) would result in 
an expected extra delay time of z. It is 
claimed that our approach provides a preli- 
minary framework which can be extended for 
handling such tradeoffs. At present, design 
decisions are evaluated to minimize interconn- 
ections but it is intended to integrate a 
f loorplanner to handle more accurate area 
projections (see Section 5). This would enable 
the design decisions to be based on a single 
parameter representing interconnection cost, 
multiplexer cost and operator cost. 

2. SYSTEM OVERVIEW 

The input to the synthesis program is a 
data flow graph with nodes representing the 
operations and arcs representing the values 
i.e. inputs, intermediate values and outputs. 
The operator modules which implement the op- 
erations and storage elements which store the 
values are the resources. Designers can spe- 
cify the resources or let them be instantiated 
at an associated cost. This option is nec- 
essary for treating all operators uniformly as 
low cost operators (like gates) are more like- 
ly to be allocated instead of being shared. 
This is especially true if sharing involves 

creating additional paths and multiplexers. A 
mix of operator modules implementing the same 
operation at different speeds is allowed e.g. 
different speed multipliers with the same int- 
erface can be allocated together. The present 
implementation restricts all operations imple- 
mented by a multifunction operator to have the 
same associated propagation delay. Overall 
design constraints on lrea and time can be 
specified but this information is used only to 
reject design points. 

Figure 1 shows the overview of the 
design process. A set of operations called 
candidate operations are prepared based on the 
data dependency and operator availability. 
These operations are bound to the available 
operators optimally i.e. to minimize extra 
interconnections. The values generated by the 
scheduled operations are bound to the avail- 
able registers, again with a view to minimize 
interconnections. This is followed by updating 
the structure based on the current bindings. 
As the updated structure is used in the subse- 
quent iterations, the process of incremental 
synthesis is obvious. Thus it is possible to 
start with a partially synthesized structure 
and use it effectively to complete the syn- 
thesis. 

3. SCHEDULING AND BINDING 

The data flow graph is analyzed and 
the -longest pathlength for each operation is 
computed. In case of operations being imple- 
mented by operators with different delay 
times, the allocated operator with the least 
delay time is chosen as the associated delay 
of the operation node. The scheduiing can be 
performed in three different modes: 

i) Forward scheduling (based on as soon as 
possible) 

ii) Backward scheduling (based on as late as 
possible) 

iii)Double headed scheduling (based on al- 
ternating between the two) 

3.1 Selection of Candidate Overations 

The set of candidate operations are cho- 
sen based on data available operations and 
available operators. For forward scheduling, 
data available operations are those all of 
whose predecessors have been scheduled whereas 
for backward scheduling, it means those all of 
whose successors have been scheduled. The 
available operators are those which have been 
free at least for the duration of their delay 
time. Contention among operations is resolved 
by choosing the one with the longer unschedu- 
led path-length. The marking of an operator as 
available only after its delay-tine prevents 
an operation with a long path-length getting 
scheduled on a slow operator. 

3.2 Zero-one Inteser Prosrammins Model 

For binding both operations to operators 
and values to storage locations, a very simi- 
lar zero-one integer programming model is 
used. Binding is equivalent to generating a 
specific mapping from a set of candidates 
(ai),i=l,.., n to a set of resources 
(bj),j=l,.-,m. 

BINDING: ( ai ) ---a-> ( bj } 
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SCHEDULE A SET OF OPERATIONS 
(CANDIDATE OPERATIONS) 

OPTIMALLY BIND OPERATIONS 

OPTIMALLY BIND VALUES 
TO STORAGE LOCATIONS 

UPDATE INTERCONNECTIONS 

OPERATIONS 
SCHEDULED ? 

FIGURE 1. 0VERVIE;W OF THE SYNTHESIS PROCESS 
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FIGURE 2 : Example Data Flow Graph[4] 
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We define : For computing the weight Wij 

ALL CASES:corresponds to examining all ports 
(tk) of module Xllje 

CONDl: tk is not connected at all E it is 
not connected to the storage to 
which the value (associated with pi) 
is bound. 

Xij: 

: 

fij: 

Wij: 

: 

equal to 1 if ai is bound to bj else 
equal to 0. 
zero-one integer variable which defines 
the mapping 

defines feasibility of mapping ai to b. 
equal to 1 if the mapping is feast le 2 
else 0. 

cost of binding ai to bj 
computed only if the mapping is feasible. 

In the current implementation, cost of a 
binding is decided by the number of extra 
interconnections required due to the binding. 
A simple procedure to compute this cost is as 
follows : 

wij <- 0; 

for (ALL CASES dir,ectly related to bind- 
ing ai to bj) do 

begin 
condl : w.' 
(a defini$e<- wij + %erconnection extra 
for this case) 
cond2 Z Wi’ 

(a probable <- wij + Zterconnection extra 
for this case) 
cond3 : Wij <- Wi-$ + 0; 
(definitely no ex ra interconnection 
for this case) 

end: 

Thus the function to be minimized is 

The constraints originate from two types of 
restrictions on Xij’S 

i) Not more than one candidate can be mapped 
to a resource during the time under considera- 
tion. 

2 Xij < 1 

i=l 
j=l , -. ,m 

ii) All (or some) of the candidates have to 
be bound to at least one of the resources. 

2 fij Xij = 1 i=l,..,n 
j=l 

3.3 Operation-Operator Bindinq 

Operation-operator binding involves map- 
ping the set of candidate operations (pi) to 
available operator modules (mj). 

P-M BINDING: ( pi ) ------> { m 
j ) 

We define the related terms to use the 
model described in Section 3.2 

xij feasible: m. performs the operation spec- 
1 ied by pi AND pi has been 4. 
available from data dependency 
considerations for at least the 
delay time of mj. 

CONDZ: The value (associated with pi) is 
not bound. m tk is connected to at 
least one free location. 

COND3: The value (associated with pi) is 
bound AND tk iS connected to the 
location to which it is bound. 

The computation of weight takes care Of 
commutative operations. The solution to the 
above optimization results in a low cost bind- 
ing of operations to operators. 

3.4 Value-Storacre Location Bindinq 

Value-storage binding involves mapping 
the set of values (Vi) generated by the cand- 
idate operations to the free storage locations 
tsjl- 

V-S BINDING: ( Vi ) --m-m--> ( s 
j ) 

We define the related terms to use the 
model described in Section 3.2 

Xij feasible: If Sj is a free location when 
Vi is generated. A location is 
free when the previous value 
stored in it is dead. Though 

this is rather simple to com- 
pute for forward scheduling, it 
is more complicated in case of 
backward and double headed 
scheduling. 

For computing the weight Wij 

ALL CASES:corresponds to examining all oper- 
ations (pk) which use Vi 

CONDl: Sj(appropriate port) is not con- 
nected at all a it is not connected 
to the module to which pk is bound. 

CONDZ: pk is not bound m sk (appropriate 
port) is connected to at least one 
operator to which pk can be bound. 

COND3: bound AND (appropriate 
Fgrt;sis connected tSokthe module to 
which it is bound. 

Again, the computation of weight takes 
care of commutative operations. A solution to 
the above optimization results in a low cost 
binding of values to storage locations while 
instantiating more storage units if required. 

4. EXPERIMENTAL RESULTS 

All the results in this section are based 
on data flow graphs available in the litera- 
ture. The first example is from Paulin et 
al-[41 which they have used to illustrate 
their force-directed scheduling. Figure 2 
shows the data flow araph taken from their 
paper. Table 1 presents-the results of our 
scheduling along with HAL's. The module set 
for this example was : 
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MF : Fast Multiplier <time = 2, area = 40:* 
MS : Slow Multiplier <time = 4, area = lo:* 
AF : Fast AccumulatorCtime = 1, area = 4> 
AS : Slow Accumulator<time = 2, area = l> 

Table 1 illustrates an important advan- 
tage of our design procedure. More effective 
coverage of the design space is realized due 
to inclusion of operators with different sp- 
eeds. This is seen in not only covering up of 
the time gaps but also in reaching the mini.mal 
possible schedule time of 6 with an operator 
set with smaller cost (considering only the 
operator area). The cpu time for scheduling 
this small example was less than 0.6 seconds 
on an APOLLO workstation (DN 4000 with 4 MB 
memory) for all cases. 

The second example we present is the 
digital filter discussed in SEHWA[lS]. The 
module set is same as the one for Example 1 
except that the accumulators can be replaced 
by adders. The results from our synthesis are 
presented in Table 2. Interconnections (co1 
4), number of multiplexer inputs (co1 5) and 
storage locations required (co1 6) along with 
the operator set(co1 1) collectively represent 
the design area. The storage for multipli- 
cation constants and paths for routing it to 
multipliers were assumed to be available. The 
cpu time on the APOLLO workstation ranged bet- 
ween 1 and 5 seconds for all cases. 

It is interesting to note that the sched- 
ule time was independent of the scheduling 
option used. In fact, experiments on a number 
of other large flow graphs indicated only 
small differences (if at all) in sched.ule 
time. Double headed scheduling (DHS) matched 
the faster schedule except for few exceptions. 
On the other hand, the effect of scheduling 
option on area parameters was large and var- 
ied. First two sets indicate Forward sched- 
uling to be superior whereas the next three 
indicate Backward scheduling to be superior. 
DHS was always poor in terms of storage loca- 
tions as short paths in the data flow graph 
scheduled from both sides locked up a number 
of locations as unavailable. Surprisingly, 
small routing area for backward scheduling in 
the 4th and 5th set seem to confirm the obser- 
vation in [12] that design points do not lie 
on a smooth curve. 

The last example we present is the fifth- 
order digital elliptic filter discussed in [5] 
and adopted as a benchmark example by the 
synthesis workshop group. The flow-graph is 
relatively large with 34 operations (additions 
and multiplications). The module set was the 
same as used in the last example. Table 3 
presents the best result(s) for each of the 
eight operator sets. In two cases more than 
one choice is presented as the one with the 
lower schedule time appeared to have higher 
path cost. The cpu time on the APOLLO work- 
station for all cases presented below ranged 
from 2 to 8 seconds. 

The results of scheduling are easily 
comparable to those reported in [5]. Our best 
case schedule time always matched that pro- 
duced by force-directed scheduling and at 
least for one case (set 3 Backward option) it 
was better. Further, some results produced by 
a mix of operators seem to be very attractive 
design points, e.g. set 4. 

5. LIMITATIONS AND FUTDRE WORK 

As mentioned in the introduction, the 
present system provides a framework for a 
synthesis based on area-time trade,off. The key 
to this is the adjustment of optimization 
weights which govern the binding decisions 
based on both area and time. In the absence of 
a floor-planner, the set of candidate oper- 
ations are so chosen that all of them can be 
scheduled on the available operators. But once 
an area estimate for binding an operation is 
obtainable from a floor-planner, the schedule- 
bind decision would be based on weighing the 
expected extra area against the expected extra 
time. The extra time of not binding an oper- 
ation can be estimated from the unscheduled 
portion of the longest data flow path asso- 
ciated with the operation. In thi.s case, the 
candidate operations would be a superset of 
the operations to be scheduled. Similarly, the 
weights for value-binding would more closely 
represent actual area. The designs generated 
are expected to reflect area-time tradeoff. 

Synthesis of multi-port memories[l5] has 
been incorporated as a post-processor for 
further area optimization. The number of in- 
terconnections are further reduced as the 
selection of registers to be merged in the 
memory as well as port allocation for loca- 
tions is based on optimally sharing intercon- 
nections. 

Presently, the system accepts only a 
subset of MIMOLA[16] for program xnput speci- 
fication. Work is going on for extending it to 
accept the full MIMOLA syntax including hard- 
ware module declarations. 

6. CONCLUSION 

This paper presents a synthesis tool 
based on integrating scheduling with binding 
decisions. The two binding -decisions consi- 
dered are: operations to operators and values 
to storage locations. The approach supports a 
more flexible mix of operator modules which 
results in a more extensive cover of the des- 
ign space than previously reported techniques. 
The methodology is naturally suited to proj- 
ects involving partial pre-synthesized struc- 
tures. Further, it is indicated how the system 
could be extended for taking schedule-bind 
decisions based on area-time t.radeoff.The 
apprc ach is illustrated with examples. The 
reported cpu time for synthesis is small eno- 
ugh to permit design space explorat.ion by all- 
ocating different operator sets. 
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I 

OPERATOR SET SCHEDULE 

(1 'MF, 1 AF} 13 13 13 
{l MF,l MS, 1 AF} 10 10 11 
(1 MF,2 MS, 1 AF} 9 9 9 

{ 2 MF, 1 AF} a a a 
{ 2 MF, 2 AF} 7 7 7 
{ 3 MF, 1 AF} 7 7 7 

{3 MF,l AF, 1 AS} 6 6 6 
{ 3 MF, 2 AF} 6 6 6 
{ 4 MF, 1 AF} 6 6 6 

DHS FORWARD 

TIME 

BACKWARD HAL 

13 

a-12 
7 
7 

6 
6 

TABLE 1 : Schedule Time as a Function of Operator Allocation 
(Example Figure 2) 

OPERATOR SET SCHED. SCHED. INTER- MUX STORAGE 
OPT. TIME CONNECTS INPUTS LOCATIONS 

DHS 18 ia 15 6 
{l MF,l AF} FORW. 18 11 4 5 

BACK. 18 19 11 8 

DHS 15 15 5 6 
{2 MF,l AF} FORW. 15 11 6 4 

BACK. 15 ia a a 

DHS 12 30 23 a 
{lMF,2MS,3AF) FORW. 12 24 14 8 

BACK. 12 21 15 6 

DHS 11 23 15 7 
12 MF,2 AF} FORW. 11 19 11 7 

BACK. 11 12 6 4 

DHS 10 24 15 6 
(3 MF,2 AF) FORW. 10 21 12 6 

BACK. 10 13 6 4 

TABLE 2 : Results from Scheduling and Binding 
Data Flow Graph [15]. 

the Digital Filter 
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_- 
OPEmTOR SET SCHED. SCHED. INTER.- MUX STORAGE 

OPT. TIME CONNECTS INPUTS LOCATIONS 
- 

(3 MF,3 AF} FORW. 17 38 :32 8 

(2 MF,3 AF} FORW. 18 35 13 0 7 

(2 MF,2 AF} FORW. 19 33 :30 8 
BACK. 18 37 27 11 

{lMF,lMS,2AF} FORW. 20 30 28 6 

(1 MF,l MS, DHS 22 35 26 10 
1 AF,l AS} 

(1 MF,2 AF} FORW. 22 28 26 6 

{lMF,lAF,lAS) FORW. 23 33 30 8 

(1 MF,l AF) DHS 28 30 23 10 
BACK. 29 25 17 9 

TABLE 3 : Results from Scheduling and Binding the Elliptic Filter 
Data Flow Graph [5]. 
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