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Abstract


This paper1 proposes a new method for hardware ver-
i�cation. The basic idea is the application of a retar-
getable compiler as veri�cation tool. A retargetable
compiler is able to compile programs into the ma-
chine code of a speci�ed hardware (target). If the
program is the complete behavioural speci�cation of
the target, the compiler can be used to verify that a
properly programmed structure implements the be-
haviour. Methods, algorithms and applications of an
existing retargetable compiler are described.


1 Introduction


The correctness of digital systems is relatively ne-
glected by current design systems. It will become
even more important, because the systems will be-
come more complex and there will be more critical
applications. Simulation, in general, cannot be used
for correctness proofs, since the complexity of most
systems makes exhaustive simulation impossible.
In the past, synthesis and veri�cation have been


proposed as means for the design of correct systems.
Synthesis has received considerable attention, since


it is capable of generating correct designs rather
quickly and does not require sophisticated training.
On the other hand, synthesis algorithms do not fully
exploit the capabilities of the implementation tech-
nology. Therefore, veri�cation of manual design steps
is important whenever there is a strong demand for
optimal utilization of resources.
Both synthesis and veri�cation have been used ex-


tensively at the geometric, transistor and gate lev-
els. In this paper we consider the process of ver-
ifying that a programmable register transfer
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(RT-) structure is able to implement a given
procedural behaviour. We do not consider gates
and ip-ops. At the RT-level, synthesis is becom-
ing popular, but veri�cation has not yet been used
extensively. Exceptions include the work of Uehara
et al. [Ueh81], Eveking [Eve81], Milne [Mil86], Tak-
agi [Tak84], Grass [Gra87] and Anceau [Anc87]. Ue-
hara and Eveking check the correctness of a hardware
description against a set of assertions. The asser-
tions must be derived manually, a process requiring a
skilled sta�. Takagi checks structural data path de-
scription against its behavioural DDL description (in
form of state transitions). The veri�er is rule based
and looks for validity of operations, data transfers
and for resource conicts. Because of the restriction
to the data path the veri�er's application is limited
and it does not generate binary code.


Binary code, however, is needed because many of
the current systems are programmable. That is, the
behaviour of the system depends upon the contents
of an instruction memory. A programmable system
is correct with respect to a high level speci�cation,
if and only if the speci�cation can be translated in-
to binary instructions. Equivalence of a programmed
hardware structure and a behavioural speci�cation
can only be established if the contents of the instruc-
tion store is known. Traditional proof systems would
use the contents of the instruction store as precondi-
tion. The manual derivation of binary instructions,
however, is an error-prone process. Therefore, code
generation and veri�cation of programmable systems
are closely related.


2 Veri�cation by Retargetable


Compilation


The compiler integrated in the veri�er has to generate
code for the target speci�ed by the structural descrip-
tion. Changing this description retargets the compil-
er and therefore it can be classi�ed as a retargetable
compiler. In fact, the veri�er described in this paper
consists of a retargetable compiler (c.f. �g.1), which
generates error messages in case it cannot generate


441







442 26th ACM/IEEE Design Automation Conference, 1989


code. If code can be generated for the behavioural
speci�cation, the structure is correct. This implica-
tion cannot be reversed: a fail in code generation
might result from insu�cient semantic knowledge of
the compiler.


behaviour at algorithmic
level ("program")


description of program-
mable RT-structure


error messages binary code


��/


SSw��/


SSw
retargetable
compiler


Figure 1: Inputs and results for a retargetable com-
piler


The compiler has to generate code (usually referred
to as microcode) that will be interpreted by the hard-
ware itself. Available retargetable microcode compil-
ers [Mue83], [Mue84], [Veg82], [Bab81], however, are
not suited for veri�cation in a DA environment be-
cause they do not accept structural target descrip-
tions. Instead, some manual preprocessing (like se-
lection of paths for register transfers) is required. In
a DA environment, there is usually no manpower to
perform this task. Also, manual preprocessing is a
source of secondary errors and some of the possible
solutions may be lost. For veri�ers it is absolutely
necessary to retain the full set of solutions. Other-
wise, there is the risk of rejecting correct designs. The
same remarks apply to the use of retargetable compil-
ers (c.f. [Gan82]) for classical machine instructions.
The veri�er that comes closest to our approach is


the "Formal Checker of Executability" (FORCE) by
Anceau [Anc87]. It is intended for veri�cation and it
does generate the binary code. It also works with a
similar graph representation of the target. FORCE,
in contrast to our tool, requires that the user parti-
tions the behaviour into register transfers and control
steps.
Our compiler MSSC is designed to work as one


of the tools in the MIMOLA hardware design sys-
tem MSS [Mar84]. In addition, the MSS contains a
hardware synthesis tool [Mar86], a self-test program
generator [Kr}u86, Kr}u88], a simulator and a schemat-
ics generator. All the tools are capable of processing
designs described in the language MIMOLA. MIMO-
LA allows the description of behaviour (programs) as
well as the description of hardware structures. The
program part of MIMOLA spans the range between
high level and register transfer level. The high level
part of MIMOLA is identical to PASCAL.
For a typical design application, MSSC is normally


used for design re�nements after synthesizing initial
designs (c.f. �g. 2).
Manual modi�cations of synthesized structures are


rather the rule than the exception and therefore the
veri�cation is required for reliable designs. Minor
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Figure 2: Control ow during a design project with
MSS


modi�cations are expected even for matured synthe-
sis systems. Without veri�cation, these modi�cations
could result in incorrect designs. The code gener-
ator compiles programs into the machine code of a
speci�ed target machine. The target speci�cation is
given by its MIMOLA structure description. This de-
scription contains a list of all register transfer mod-
ules, their operations and their interconnections. The
compiler uses various tools for preprocessing avail-
able in the MIMOLA Design System (e.g. memo-
ry allocation, transformation to RT-level, paralleliza-
tion, branch optimization). The input to the compiler
is a preprocessed RT-level program and the target's
netlist.
With respect to veri�cation, the semantic knowl-


edge of the compiler is important. Our compiler uses
di�erent mechanisms to get this knowledge. On the
highest level a set of hardware independent trans-
formation rules is applied (e.g. the replacement of
repeat-until). This set is accessible to the user and
can be extended. Lower level rules can be supplied
by the user too (e.g. the rules of De Morgan). On
the lowest level the compiler has a �xed knowledge
about invariant operation semantics, like commuta-
tivity, sign extension, converse operations, neutral el-
ements and constant generation.
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3 The Retargetable Microcode


Generator


The basic idea used in our compiler MSSC is the map-
ping of all resource conicts to instruction �eld con-
icts. This can be done since the selection of modules
and their operations is de�ned (directly or indirect-
ly) by the instruction word. Conicts for the use of
hardware resources are detected by a check for code
compatibility. Special treatment is given to resolving
programmable bus conicts.
Experience with an earlier version of the compiler


[Mar84a] indicated that an adequate data structure
for instruction �eld settings is the key to a comfort-
able compilation speed. Therefore the data structure
of the current version will be explained in some detail.


3.1 I-Trees: A Representation of In-


struction Field Settings


The handling of instruction �elds and their conicts
is mapped to the operations of a special Boolean al-
gebra. The elements of this algebra are represented
by I-Trees [Now87a]:
An I-Tree is a tree structure with the following


characteristics:


� each node is associated with a �eld of the in-
struction word. It contains a bitstring consisting
of '0','1' or 'X', which denotes the current �eld
setting.


� nodes on the same path are related by the AND-
operation: the �eld settings are simultaneously
valid. If two nodes correspond to the same �eld,
their bitstrings must be compatible.


� neighbouring subtrees indicate alternate instruc-
tion word settings (OR-operation, "versions").


� a complete path from the root to a leaf de�nes
one possible instruction word setting. Fields not
contained in this path are don't care by de�ni-
tion.


� the root node always contains don't cares and is
used only for tree consistency.


The operations de�ned on I-Trees are:
SET is a mapping Fields � Bitstring ! I-Tree.


SET sets �eld F of the instruction word according to
bitstring B:


rootX


F:B


MERGE is a mapping I-Tree � I-Tree ! I-Tree.
MERGE merges the I-Trees A,B into the I-Tree X
(the alternative A or B):
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CUT is a mapping I-Tree � I-Tree! fI-Tree,fgg.
CUT maps two I-Trees A,B into the I-Tree X (the
cut of A and B). The result can be empty.


CUT is implemented by two steps. Using the dis-
tributive law, B is �rst copied to all leaves of A. Then
all incompatible paths are deleted. A path is said
to be incompatible if it contains conicting �eld set-
tings.
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These operations can be used to preset instruc-
tion �elds (SET), test for resource conicts (CUT)
or generate di�erent versions (MERGE) in case of
some alternative choices. If for example an ALU-
operation is directly controlled by an instruction �eld
alu ct, the addition will be executed if the instruction
is set to SET(alu ct,add code). The result can be
stored in register REG with load-control �eld reg ct if
CUT(SET(reg ct,load code),SET(alu ct,add code))
is not void, even if the �elds reg ct and alu ct in-
tersect. The MERGE-operation has to be applied
if, e.g. the addition can be selected by two di�er-
ent control codes: the second I-Tree in the CUT-
operation above has to be replaced by MERGE(
SET(alu ct,add code1),SET(alu ct,add code2)).


These examples show how module activations and
combinations of them can be expressed by I-Trees.
Even the activation of complete microorders can be
represented by I-Trees. Resource compatibility can
be checked by the CUT-operation again.


3.2 Compilation Phases


The compilation process is devided into three phases:
preallocation, assignment allocation and microorder
scheduling.


3.2.1 Preallocation


The preallocation phase generates the Connection-
Operation-Graph (CO-Graph). This internal data
structure is derived from the MIMOLA hardware de-
scription of the target architecture. Such description
is shown in �g. 3 (using MIMOLA version 4.0). It
is the description of a processor containing an ALU,
two data registers, a multiplexer, a program counter
and a control store.
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MODULE Processor (OUT res:(15:0);


IN ClockIn:(0));


STRUCTURE AtRtLevel OF Processor IS


TYPE


word = (15:0); (*16 bits per word *)


Instr=FIELDS (*instruction format*)


(*absolute positions of control fields*)


Alu : (1:0); Mux : (2);


R0 : (3); R1 : (4);


R2 : (5); Imm : (21:6);


NextAddr : (37:22);


END;


PARTS (*components *)


Alu : MODULE AluT(IN i1,i2: word;


OUT outp: word;


FCT ct: (1:0));


BEHAVIOUR AtRtLevel OF AluT IS


BEGIN


CASE ct OF


%00 : outp <- i1 + i2 AFTER 10 ;


%01 : outp <- i2 - i1 AFTER 10 ;


%10 : outp <- i1 AFTER 5 ;


END; END;


Mux : MODULE M2x16(IN i1,i2: word;


OUT outp: word;


FCT ct: (0));


BEHAVIOUR AtRtLevel OF M2x16 IS


BEGIN CASE ct OF


%0 : outp <- i1 AFTER 5;


%1 : outp <- i2 AFTER 5;


END; END;


R0,R1,R2:


MODULE R16(IN i: word; OUT outp:word;


FCT ct:(0);CLK c:(0));


BEHAVIOUR AtRtLevel OF R16 IS


VAR cell : word;


CONBEGIN


AT c DO CASE ct OF


%0 : cell := i;


%1 : ;


END;


outp <- cell;


CONEND;


I: MODULE EPROM(ADR a:word; OUT f:Instr);


BEHAVIOUR AtRtLevel OF EPROM IS


VAR


cells : ARRAY [0..(2**16)-1] OF Instr;


BEGIN


f <- cells[a] AFTER 7;


END;


CONNECTIONS


Mux.i1 <- I.f.Imm; Mux.i2 <- R0;


Mux.ct <- I.f.Mux; Alu.ct <- I.f.Alu;


Alu.i1 <- Mux.outp; Alu.i2 <- R1.outp;


R0.ct <- I.f.R0; R0.i <- Alu.outp;


R1.ct <- I.f.R1; R1.i <- Alu.outp;


R0.c <- ClockIn; R1.c <- ClockIn;


R2.c <- ClockIn; R2.i <- I.f.NextAddr;


R2.ct <- I.f.R2; res <- R0.outp;


I.a <- R2.outp;


END_structure_of_processor;


RESERVED Space OF Processor IS


FOR ProgramCounter USE R2;


FOR Instructions USE I;


END_Reserved;


Figure 3: MIMOLA description of a simple processor


Descriptions of processor components are �rst
mapped into an M-graph. The root and the leaves
of M-graphs represent the output and the input of
the component, respectively. In between there is one
tree of depth 2 for every operation that is listed in
the MIMOLA description (c.f. �g. 4). "dat" is the
identity operation in MIMOLA.
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Figure 4: M-graph for component "Alu"


Next, the M-graphs are combined to form the CO-
graph, representing the complete hardware struc-
ture. Registers are divided into two M-graphs, repre-
senting all load and all read operations, respectively.
Fig. 5 shows the CO-graph for the example of �g.
3. In this �gure, the internals of all M-graphs cor-
responding to each node of the CO-graph have been
omitted.
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Figure 5: Hardware structure and corresponding CO-
graph


In the next step, local transformations are applied
to the CO-graph. For example, additional paths are
generated for commutative operations and for so-
called via-operations. A via-operation is an opera-
tion which can be used for propagating values from
an input to the output of a component. One possi-
bility is to create nodes for via-operations by using
operations with neutral elements at some other input.
Fig. 6 contains such an entry for 0 as the neutral el-
ement of +.


In the following, the requirement to supply a cer-
tain value at the input of a hardware component is
called a precondition. In the CO-graph, precondi-
tions are depicted by an exclamation mark. Precon-
ditions are constants, which have to be generated by
the hardware. The most common way of generating
such a constant is by appropriate values in the in-
struction register, that is, by an appropriate binary
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Figure 6: CO-graph with preconditions (% denotes binary numbers)


program. However, constants can also be generated
indirectly by other hardware components.


Most preconditions are met by appropriate instruc-
tion �eld settings. These settings are represented by
I-Trees that are linked to the nodes of the CO-graph.


3.2.2 Code generation


Code generation for MIMOLA programs is done by a
pattern matching process. During this process, pro-
gram ow trees are compared with the CO-graph.
The code generation allocation algorithm searches
through the CO-Graph for subtrees which are equiv-
alent to the dataow trees de�ned by the assignment.
Equivalence means a one to one correspondence be-
tween operations in the program and nodes in the M-
graph ignoring some redundant M-graph nodes like
multiplexers and input nodes (nodes labelled i, i1 and
i2). Further it is required that all the arguments are
present in the same order.


An example of two matching graphs is shown in �g.
7. The required procedural behaviour in this case is
"R0:=112+R1". The two graphs match and there-
fore veri�cation succeeds. The resulting I-Tree is the
cut of all I-Trees found in the CO-Graph subtree. If
alternative ways of matching the graphs exit, all al-
ternatives will be expressed as an OR-list. Hence, the
full generality of possible instruction bit settings is
retained. This breadth-�rst-search technique avoids
backtracking for single binary instructions.


If the allocation fails (void I-Tree), the algorithm
returns the reason and the probable error location.
This information is used by MSSC to choose a proper
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CUT(itree(load R0),itree(dat Mux),itree(+ Alu),


SET(I.f.Imm,112),itree(read R1))


Figure 7: Allocation of an assignment


location for a temporary variable. The assignment is
split and the allocation continues recursively. If R1
were available as a temporary register, MSSC would
split the statement


R0:=R0+5


into two statements which can be implemented on the
hardware:


R1:=R0 ;


R0:=R1+5;


Hence in this case veri�cation would succeed.
In contrast, veri�cation for "R0:=(R0-5)+R1"


would fail due to a lack of temporary registers.
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Insertion of temporary registers is possibly the
most complex task of MSSC. It depends on several
heuristics for de�ning proper temporary storage lo-
cations and temporary values. Backtracking is used
if the allocation fails for a certain location or value.
Therefore, a type of depth-�rst-search is used for the
binding of temporaries.
In practice, behavioural descriptions are larger


than the simple examples. Frequently, they consist of
a complete instruction set interpreter and they make
reference to i/o-ports.
The result of the allocation phase is a list of micro-


orders (assignments of values to single storage units)
represented by I-trees.


3.2.3 Scheduling


In the scheduling phase microorders have to be as-
signed to microinstructions (control store words). An
assignment of a set M (m1,..,mn) of microorders to a
microinstruction I is valid, if and only if:


1. the partial ordering de�ned by datadependencies
and data-antidependencies is preserved,


2. all microorders are compatible:
itree(M)=CUT(itree(m1),..,itree(mn)) is not
void,


3. all unused memories and registers (denoted by
noop(M)) are disabled:
itree(I)=CUT(itree(M),itree(noop(M)) is not
void.


The result of the scheduling phase is a list of all
packed instructions. Due to the I-Tree representa-
tion the algorithm handles versions of microorders at
once. Even the resulting instructions are represent-
ed by I-Trees, o�ering the chance to choose the best
version out of all possible ones.


4 Limitations and Results


MSSC is implemented by three separate Standard-
PASCAL programs containing a total of about 34,000
lines of code.
The current implementation has the following lim-


itations:


� Instructions must have a �xed wordlength.


� Delayed branches are not yet supported.


� Asynchronous hardware components (e.g. multi-
cycle read operations) are not yet supported.


The last restriction can be bypassed by adding vir-
tual memory bu�ers to the hardware description.
All three restrictions can be eliminated by extending
MSSC without violating the principles of this paper.
MSSC as well as the previous compiler MSSV


[Mar84a] have been applied to real design problems.
These include:


� One example is the SAMP processor, contain-
ing 4 ALUs, two 4-port memories and a hori-
zontal instruction format [Now87]. An old ver-
sion [Zim80] of the synthesis system was used
to generate an initial hardware structure. It
has been possible to reduce the number of inter-
connections between hardware components by
about 50% and to verify with MSSV, that the
speci�cation was still met. Recently, MSSC was
used to implement Warren's abstract PROLOG-
machine (WAM) on the SAMP [Sch88]. This
was done by writing an interpreter for the WAM
in MIMOLA and compiling this interpreter in-
to machine code for the SAMP. For a set of
8 benchmark programs the SAMP is 1.1 times
faster than a WAM implemented in VAX8600
microcode. This performance could only be
achieved because MSSC generates rather com-
pact code.


� The applicability of the hardware model was
demonstrated at a contest at the 20th Annu-
al Workshop on Microprogramming. MSSC was
the only tool that could handle the benchmark
hardware.


� A separate group of the university of Kiel is cur-
rently using the MSS to design a reduction ma-
chine. Automatic synthesis generated a machine
with 4346 wires at the RT-level. Using MSSC, it
has been possible to reduce the number of wires
to 3319 without a�ecting the performance. Typi-
cally, MSSC compiles the 1248 statements of this
example into 780 binary instructions with a total
of 12,237 versions, using about 1100 seconds of
Apollo DN-3500 CPU-Time. This indicates that
versions are an important concept. The compila-
tion speed is much lower than that of traditional
compilers but acceptable for the intended appli-
cations.


5 Conclusion


Equivalence of a programmed hardware structure and
a behavioural speci�cation can only be established if
the contents of the instruction store is known. Com-
pilers are capable of generating binary instructions
fast and reliably and it is therefore suggested to
use compilers for veri�cation. The application re-
quires that retargetable compilers accepting struc-
tural hardware descriptions are used. This paper
presents such a compiler.
In general, the implementation of behavioural op-


erations in a given hardware is not unique. Hence,
the support of implementation versions is essential.
The presented compiler uses a compact representa-
tion of versions. This compact representation allows
retaining the full generality of solutions during the
�rst phases of the compilation procedure by using
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breadth-�rst-search. Backtracking is employed for
the last phases of the procedure in order to avoid
rejection of correct designs.


The compiler has successfully generated code for
various complex processors and has been used for ver-
ifying design re�nements of synthesized structures.
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