
A High Speed Prolog Implementation on a VLIW Processor�

W. Schenky

Institut f�ur Informatik und Praktische Mathematik der Universit�at Kiel

Olshausenstr. 40-60, D-2300 Kiel, W. Germany

Abstract: Amicroprogrammable target computer allows implementinga virtual ma-
chine e�ciently. When implementing a compiler based high level language, the seman-
tic level of the machine language has to be �xed. If the machine realizes a suitable
virtual machine, the compiler writers task is simpli�ed. This may be payed by the
expense of implementing the virtual machine. The new retargetable compiler of the
Mimola Software System (MSS) simpli�es and speeds up the implementation process of
a desirable machine language on a microprogrammable target computer. The e�ciency
of this approach is shown by an implementation of the logic programming language
Prolog on the VLIW processor SAMP. The Warren Abstract Machine instruction set
(W-Code) was choosen as the machine language of SAMP. The usage of the new
retargetable compiler of the MSS for the development of a microcoded W-Code inter-
preter is described in this paper. The implementation has been tested and evaluated
by feeding a simulator with the microcoded interpreter and the W-Code of the Warren
Benchmark Set. The results indicate the performance of 44.5 KLIPS.

1 Introduction

Todays high level language compilers are at least
conceptually divided in a language dependent
part and a machine dependent part. The lan-
guage dependent part handles syntactic analysis,
performs semantic actions, and generates an in-
termediate program representation. The knowl-
edge about the target machine language as used
for codegeneration is encapsulated in the machine
dependent part. The codegenerator processes the
intermediate program while emitting target ma-
chine code. If the intermediate program repre-
sentation is designed as a machine language of a
virtual machine then the implementation of that
machine replaces most of the compilers machine
dependent part. There are basically three ways
of implementing a virtual machine.

� The construction of the virtual machine.

�Microprocessing and Microprogramming Vol. 27,
Nos. 1-5 (1989) pp. 601-606

ynow at: University Dortmund, FB Informatik, LS
XII, Baroper Str. 301, GB IV, D-4600 Dortmund 50,
Tel.: (0231) 755 5101,E-mail: schenk@ls12.informatik.uni-
dortmund.de

� The compilation of the virtual machine lan-
guage into target machine code.

� The software emulation of the virtual ma-
chine.

In developing a microcoded interpreter for a vir-
tual machine language we followed the third ap-
proach.
The most widely spread implementation tech-

niques for Prolog involve compiling the Prolog
program into an intermediate form (W-Code)
referred to as the Warren Abstract Machine
(WAM) instruction set. Several authors have
investigated various special purpose hardware
structures (Prolog machines) that support the W-
Code as their machine language. The develop-
ment of a microcoded interpreter for W-Code ex-
ecution on the VLIW processor SAMP [Now87]
which was choosen as the implementation vehicle
for the WAM is the subject of this paper. The
Prolog compiler that generates the W-Code, and
the complete source code of the W-Code inter-
preter are described in detail elsewhere [Sch88].
The new retargetable compiler of the Mimola

Page 601

ing the resulting microcode, the W-Code of a
Prolog program, and a hardware description of
SAMP into the simulator of the MSS. A perfor-
mance of 44.5 KLIPS on the Warren Benchmark
Set is achieved. In what follows we describe archi-
tecture and tasks of the WAM, hardware struc-
ture and important features of SAMP, and the
process of generating microcode. Finally, simu-
lation results are presented which allows the per-
formance comparison of SAMP with other proces-
sors.

2 Warren Abstract Machine

The WAM was originally introduced by D.H.D.
Warren [War83]. The following brief explanation
covers some implementation issues.
The WAM is an environment{stacking archi-

tecture. The stack consists of two kinds of
variable{length frames (mixed stack). There are
environments and choice points. An environment
holds value cells for the permanent variables of
a clause together with bookkeeping information
comprising a continuation. A continuation con-
sists of a pointer to the W-Code of the actual
goal to be executed next and its associated en-
vironment. A choice point contains the state of
the computation, at which the WAM continues
on backtracking.
Since the type of a Prolog variable is not known

at compilation time, its value is represented by a
tagged item. A tagged item consists of a tag and
a value �eld. The tag indicates the type of the
value. Thus, checking an item's tag is the most
frequent operation of the WAM. In the present
implementation an unbound variable is represent-
ed by an item with an unbound tag and a self-
reference in the value �eld. The value �eld of a
bound variable either contains the value itself or a
reference tag together with a pointer to the value.
From this the need for dereferencing a variables
value arises and dereferencing becomes another
important task of the WAM. Figure 1 shows the
dereferencing loop.
In Prolog a variable receives a value only by

uni�cation and there is no way to change it. Only
variable bindings, which are established since the
creation of the actual choice point, are reset on
backtracking. The trail is a stack where the WAM
remembers those bindings. Whenever a variable
which will not be discarded by the next event of
backtracking is bound it is trailed, i.e. its address

test.

The value of a Prolog variable does not neces-
sarly �t into a single variable cell. In this case
a variable is represented by a pointer into the
heap of the WAM. The heap holds the compound
terms of the computation and is managed in a
last-in-�rst-out mode. A new instance of a term
is constructed at the top of the heap. While back-
tracking the heap shrinks to the size it had when
the actual choice point was created.

Procedure invocation is done by copying the
actual arguments into dedicated argument reg-
isters and passing a continuation to the callee.
If the call is nondeterminate { i.e. the indexing
instructions cannot narrow down the number of
possible matching clauses of the called procedure
to one { a choice point is created and loaded with
the argument registers and bookkeeping informa-
tion for backtracking. Specialized instructions for
the head of a clause attempt uni�cation against
the actual arguments. If uni�cation fails, back-
tracking takes place and the state of the WAM
is recovered from the most recent choice point on
the stack. The state of the WAM consists of the
following entries:

P Current Instruction Pointer
CP Continuation Pointer
H Heap Pointer
HB Heap Backtrack Pointer
E Environment Pointer
B Current Choice Point
TR Trail Pointer
cutp Cut Pointer
A[1], A[2], ... Argument Registers

In order to get an useful implementation, instruc-
tions for the cut and some build-in predicates are
added to the WAM. The extended instruction
set has 74 instructions, which are optimized with
respect to SAMP.

3 SAMP

SAMP (self-timed, asynchronous, micropro-
grammed, parallel) was designed by L. Nowak
[Now86] as a 16 bit general purpose computer.
SAMP is 3.4 times faster than a SIEMENS 7760
and 7.2 times faster than a VAX-11/750 in per-
forming various Pascal-like programs. From this
the question arises whether SAMP is well suited
only in performing programs derived from imper-
ative styled high level programming languages, or
it captures a wider range of applications.

Page 602

hardware in a powerful way. A microinstruction
has 141 bit and is directly interpreted by the
hardware. The writeable control store contains
up to 4096 microinstructions. The horizontal mi-
croinstruction format facilitates the implementa-
tion of
exible data paths. Four arithmetic logic
units (ALUs) allow the parallel evaluation of mul-
tiple expressions. There are two comparators and
a 1 bit ALU that form a logic network which gen-
erates a condition used by conditional jumps or
conditional load operations. Furthermore there
are two multiport memories that support multi-
ple assignments in one microinstruction. E. Tick
[Tic85] argues that memory bandwidth is the key
for high ended Prolog machines. The main mem-
ory of SAMP achieves a memory bandwidth of 41
MB/sec. It has two writeable and two read-only
ports that serve up to four independent accesses.
The other multiport memory, the register �le, has
two readable ports and two ports for read/write
access with a common address.

It is up to the microcode generator to detect
simultaneously executable operations and to em-
bed them into a microinstruction. The number of
those operations is extended by means of guarded
assignments. Guarded assignments are supported
by SAMPs conditional load operations. Whether
the load operation of a memory port is actually
carried out or inhibited depends on the truthvalue
of the condition. Since all storages of SAMP are
able to conditionally load a value there is much
source of parallelization per guarded assignments.
The new retargetable compiler [Now87a] of the
MSS takes this feature into account.

If timing could be ignored at the microprogram
level, the generation of microcode became less dif-
�cult. SAMP is in fact a self-timed system. Tim-
ing is a matter of hardware in that the data
ows
asynchronously through self-timed elements. A
signal is attached to each data connection, in-
dicating its validity. The memories, ALUs, and
multiplexers as well as the other function boxes
are designed as self-timed elements. They per-
form a particular operation, when its precondi-
tion becomes true. That is when all of the neces-
sary input values are available. The self-timed el-
ement signals the completion of the operation af-
ter its delay. There is no global clock signal need-
ed for synchronization issues. The sequencing of
the microinstructions is controlled by a global re-
set signal. It starts the next microinstruction as
soon as all the operations of the current microin-

done since the state of the computation is entire-
ly described by the contents of the storages. The
duration of a microcycle depends on both the mi-
croinstruction and the data values it manipulates.
As an example consider a microinstruction

which speci�es a conditional load operation. As-
sume that the generation of the guarding condi-
tion is fast and the evaluation of the address and
data is a complex task. If the condition yields
true the microcycle time is determined by the
time needed to compute the address and data
plus the delay of the load operation. On the other
hand the instruction is completed as soon as the
condition becomes false. In this case no address
or data is needed because the load operation is
inhibited.

4 Microcodegeneration

For the generation of the microcoded W-Code in-
terpreter the hardware description of SAMP and
the algorithm for W-Code execution are speci�ed
in the Pascal-like language MIMOLA (machine
independent microprogramming language), the
input language of the MSS. The new retargetable
compiler of the MSS yields microcode of high
quality. The compiler does parallelization of the
program, allocation of operations, and microcode
compaction in di�erent phases.
The retargetability of the compiler is based on

a textual hardware description written in MIMO-
LA. The hardware structure is speci�ed as a set
of modules and a list of their interconnections.
For a module, the interface and the operations it
implements are described. The operation delays
are given for simulation purposes only.
The W-Code interpreter is easily encod-

ed as a MIMOLA program. An item is
stored in two consecutive memory locations
with the tag �eld at the lower address. This
is speci�ed by the type de�nition for items:
TYPE Item = RECORD tag,val : word END;

The storarge areas of the WAM are mapped in-
to SAMPs main memory SM by means of array
declarations:

Code : ARRAY [0..CMax] OF word;
Heap : ARRAY [0..HMax]OF Item;
...
Trail : ARRAY [0..TMax] OF word;

To increase e�ciency the address computation
facilities for arrays are inhibited and no range

Page 603

Heap[S] is located at addresses S and S+1 in the
main memory.
Figure 1 shows the code for the dereferencing

operation of the WAM. The loop follows a chain
of reference items until an non-reference value is
encountered. The result is left in the global vari-
able tmp. The value �eld of a reference item is

VAR tmp : Item AT SR[0];

INLINE PROCEDURE deref(tag,val:word);

BEGIN

tmp.tag:=tag; tmp.val:=val;

WHILE IsReference(tmp.tag) DO

BEGIN

tmp.tag:=Mem[tmp.val].tag;

tmp.val:=Mem[tmp.val].val

END

END;

Figure 1: Dereferencing an Item

a pointer into the stack or into the heap of the
WAM. In either case it is accessed via the array
Mem. The inline function IsReference tests by
selecting a single bit from the tag whether or not
an item is a reference.
Applying transformation rules the MIMOLA

source code is mapped into RT behaviour. The
rules replace variables with memory accesses and
they transform procedure calls into parameter
passing operations. A call statement for an inline
procedure is replaced with the procedures body,
where the formal parameters are textually substi-
tuted by their actual values (call by name). Com-
pound statements are expanded to assignments
and IF-statements.
According to the
ow of control the RT-

program is split into basic blocks. A paralleliza-
tion is done by dividing a basic block into a
sequence of parallel executable blocks. An IF-
statement may be implemented with the depen-
dent then- or else-part as the target of a condi-
tional jump or by a sequence of blocks consist-
ing of parallel executable guarded assignments.
The latter may extend the scope of a basic block
and thereby reduce the number of microinstruc-
tions required. The conditional load operations
of the dereferencing loop generated by the call
deref(Heap[S].tag,Heap[S].val) are shown in �g-
ure 2. They are part of the expanded body of the
inline procedure.

[] [] [[]];

IF SR[0] "SELECTBIT" 15 THEN SR[1]:=SM[SR[1]+1];

RP:=IF SR[0] "SELECTBIT" 15

THEN Line4711 deref

ELSE "INCR" RP;

PAREND;

Figure 2: conditional load operations for deref

The item tmp is located at addresses 0 and 1 in
the register �le SR.
An IF-statement cannot be transformed into

guarded assignments if a sequence is required by
the de�nitions and uses of a value belonging to
a dependent part of the statement. Whenever
an IF-statement may be compiled as conditional
jump or conditional load operation both alterna-
tives are feeded into the allocation phase. If the
compiler fails in allocating one of these it retains
the other.
A remarkable feature of the allocation phase

is the treatment of versions of the instruction
that implement a statement. The versions are
constructed from versions of the operations that
make up the statement. For the dereferencing
loop the compiler allocates an instruction for the
conditional jump and one instruction for the loop
body whereas the conditional load operations are
compiled into a single instruction. The compil-
er considers e.g. 76, 53 and 14 versions for the
�rst, second and third statement of �gure 2 re-
spectively, which merge to 214 versions of the
parallel block. All versions are considered by the
microcode compaction algorithm. It merges as
many assignments as possible into a single mi-
croinstruction. If there still remain di�erent ver-
sions, the fastest one is selected.
The W-Code interpreter has 443 parallel blocks

with 1,074 statements. The compiler considers
39,922 versions of the statements. The resulting
microprogram has 555 microinstructions.

5 Simulation and Performance
Measurement

The performance was measured using the Warren
Benchmark Set. This consists of Prolog programs
by which various performance aspects such as ac-
cess to logical variables, uni�cation of structures,
list handling, indexing of clauses, backtracking,
arithmetic, etc. are tested. A Prolog compil-
er generates optimized W-Code from the Prolog

Page 604

loaded into the main memory.

The event driven simulator of the MSS con-
siders the self-timed sequencing and the delay of
the modules operations. This gives the reason for
high con�dence in the resulting timing informa-
tions (see table 1). The simulator computes the
propagation of bit vectors along the connections
and the function boxes of the hardware.

Runtime �-instr.
Benchmark

[�s] executed
LIs

nrev30 7,631 21,258 496
qsort50 10,650 29,502 601
palin25 7,264 17,893 322
times10 658 1,789 19
divide10 784 2,148 19
log10 267 749 11
ops8 424 1,158 15
query 37,136 105,801 2107

Total 64,814 180,298 3590

Table 1: Simulator Results on the Warren Bench-
mark Set

The benchmarks are executed in 65 ms with
180,298 microinstructions simulated. Therefore
the cycle time is 0.36 �s. The performance is ex-
pressed in terms of KLIPS (kilo logical inferences
per second), with the cut not being counted as a
logical inference. On the Warren Benchmark Set
44.5 KLIPS were achieved on the average.

Performance [KLIPS]
Benchmark

SAMP DEC NCR VAX

nrev30 65.0 9.0 25 116
qsort50 56.4 11.2 35 98
palin25 44.3 10.5 21 67
times10 28.9 7.7 13 48
divide10 24.2 7.8 11 42
log10 41.2 7.8 15 56
ops8 35.4 11.2 21 65
query 56.7 31.9 89 20

Mean 44.5 12.1 28.7 64

Table 2: Performance Comparision

Table 2 shows the comparison of our results
with some other WAM based Prolog implementa-
tions, i.e. the implementation by D.H.D. Warren
[War77] on a DEC-2060 computer, the use of the
NCR/32-000 by Fagin [Fag85] where the W-Code
is further compiled into 16 bit microinstructions,

puters are easily outperformed by SAMP whereas
the fastest implementation runs on the VAX us-
ing a microcoded W-Code interpreter and beeing
slower only in the query benchmark.

It is interesting to compare SAMP with an-
other VLIW processor. The QA-2 as described
by S. Tomita [Tom86] employs a 256-bit horizon-
tal microinstruction. There are two WAM based
Prolog implementations on the QA-2. In the �rst
implementation the W-Code is compiled into QA-
2's microcode. The nrev30 program achieves 45
KLIPS. The other implementation is a microcod-
ed W-Code interpreter where the performance is
less than 75% of the former. Thus SAMP is su-
perior in both cases.

6 Conclusion

A high speed Prolog implementation is brie
y de-
scribed. The Warren Abstract Machine is imple-
mented by a microcoded interpreter running on
the VLIW processor SAMP. The resulting mi-
croprogram has 555 microinstructions. It inter-
prets 74 di�erent instructions of an augmented
WAM. The simulator results shows the high per-
formance of 44.5 KLIPS for the Warren Bench-
mark Set. The new retargetable compiler of the
MSS generates the interpreter. The compiler con-
siders alternative execution paths in the hardware
structure when allocating di�erent versions for a
statement. The high-level MIMOLA description
and the retargetability of the compiler simpli�ed
the implementation of a virtual machine.

References

[Fag85] B.S. Fagin, Y.N. Patt, V. Srini, A.M.
Despain
Compiling Prolog Into Microcode: A
Case Study Using the NCR/32-000.
Proc. 18th Ann. Workshop on Micro-
programming, Paci�c Grove,
Dec. 1985, pp.79{88.

Page 605

8600 Microcode.
ACM SIGMICRO Newsletter, Vol.17,
No.4, Dec. 1986, pp.68{74.

[Now86] L. Nowak
SAMP: Entwurf und Realisierung eines
neuartigen Rechnerkonzeptes.
PhD thesis and Report 8615 of the
Institut f�ur Informatik, University of
Kiel, Germany, 1986.

[Now87] L. Nowak
SAMP: A General Purpose Processor
Based on a Self-Timed VLIW Struc-
ture.
ACM, Comp.Arch.News, Vol.15, No.4,
Sep. 1987, pp.32{39.

[Now87a] L. Nowak
Graph Based Retargetable Microcode
Compilation in the MIMOLA Design
System. Proc. 20th Ann. Workshop on
Microprogramming, Colorado Springs,
Dec. 1987, pp.126{132.

[Sch88] W. Schenk
Eine Prologimplementierung f�ur einen
Rechner sehr gro�er Befehlsbreite.
Diploma thesis, Institut f�ur Informatik,
University of Kiel, Germany, 1988.

[Tic85] E. Tick
Prolog Memory{Referencing Behavior.
Technical Report No. 85-281, Comput-
er Systems Laboratory, Departments of
Electrical Engineering and Computer
Science, Stanford University, Sep. 1985.

[Tom86] S. Tomita, et. al.
A Computer with Low{Level Paral-
lelism QA-2.
Comp. Arch. News, Vol.14, No.2, 1986,
pp.280-289.

[War77] D.H.D. Warren
Applied Logic | Its Use and Imple-
mentation as a Programming Tool.
Stanford Research Institute Interna-
tional, Technical Note 290, PhD The-
sis, University of Edinburgh, 1977.

[War83] D.H.D. Warren
An Abstract Prolog Instruction Set.
Stanford Research Institute Interna-
tional, Technical Note 309, Oct. 1983.

Page 606

