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Abstract: In this paper we study possible improvements of high-level (architectural) synthesis processes. We allow the 
designer to indicate a set of bindings between behaviour and structure in order to add some of the designer's knowledge 
to the design process. These bindings can be used to exclude inefficient designs. The remaining design space may then 
be studied in more detail, using unified backtracking. Backtracking, together with preliminary floor-planning, is required 
for area-efficient designs. 

1 Introduction 
High-level synthesis is concerned with the mapping of behavioural 
descriptions into hardware structures. Behaviour frequently is 
described by imperative programs written in ISPS, subsets of 
PASCAL, VHDL, Occam or MIMOLA. The basic advantage of 
this approach is that it is potentially able to generate correct 
designs ("correctness by construction") in fast turnaround time. 
Due to this, high-level synthesis is becoming popular. 

High-level synthesis is called high-level silicon compilation if it 
is supporting the implementation as an integrated circuit. Only few 
integrated circuits have been fabricated using the original results of 
a (general) high-level synthesis systems. The reason is, that the 
results in general are still poor. In the following we will analyse 
problems with current synthesis techniques. Futhermore, we 
propose ways of solving these problems. Instead of proposing a 
specific new synthesis method, we describe guidelines for new 
synthesis techniques. 
1.1 Problems with Current Synthesis Systems 
Below, we study the case of high-level synthesis algorithms 
generating a structure at the RT-level. The constituents of this 
structure are RT-components (ALUs, registers, RAMS, etc.) and 
their interconnections. 

A number of problems exists with current synthesis algorithms, 
but two related important problems are generally present: the 
phase-coupling problem and the complexity problem. 
1.1.1 Phase Coupling 
Most synthesis systems partition the synthesis algorithm into a 
number of phases solving subproblems. Many of the subproblems 
can be considered as binding problems: 

9 Variable to storage (RAM or register) binding. This step 
includes: 

- Storage allocation for user variables. 

- Storage allocation for temporary variables. 
 

Control step binding. This step includes: 
 

- Decomposition of complex expressions. 
- Binding of assignments to control steps (instructions). 

This step is frequently called scheduling. 
 

• Binding of operations to hardware components. This 
 step includes: 

 
- Component selection (selection of library components or 

creation of new components), 
- Assignment of components and control code to every 

operation of the procedural specification. This includes: 
* The binding of arithmetic/logic operations to ALUs 

and similar networks, 
* The binding of READ- and WRITE 
 operations to RAM ports and 
* The binding of constants 'to hardwired constants, 

control word fields or decoders. 
 

In addition, silicon compilers have to handle problems like 
module generation, floor planning, routing and layout generation. 

There have been attempts to combine several of these 
subproblems and to solve them in a single step. However, no one 
has succeeded in and no one probably will ever succeed in solving 
all subproblems in a single step. Solving subproblem after 
subproblem does not guarantee an optimum or even an acceptable 
solution for the complete problem. Most people hope that this 
approach will work "on the average", but McFarland demonstrated 
in a key paper [McF87], that this does not hold for high-level 
silicon compilation. 
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1.1.2 Complexity 
Most of the subproblems just mentioned can be proved to be 
NP-complete. Scheduling is an important example for this. 
Actually, many design systems currently focus on scheduling. Even 
with special heuristics, pruning etc. an enormous amount of 
scheduling decisions are taken by a typical synthesis system. The 
number of decisions is at least proportional to the length of the 
behavioural specification. On the other hand, the number of 
possible hardware designs for a given set of constraints is fixed. 
Therefore, for large behavioural specifications, many of the 
scheduling decisions are superfluous. We call scheduling decisions 
decisions of secondary importance. The scheduling problem is not 
really a subproblem of the original problem, it is only generated by 
a specific decomposition of the original problem. Accordingly, no 
one has actually proven that highlevel synthesis is NP-complete. It 
has only been proven that the subproblems of a certain solution 
method are NPcomplete. 

It is worth mentioning that a considerable amount of computing 
time currently is spent in each phase predicting the effect of the 
current phase on the next phases. This time could be avoided by 
first enumerating all possible designs and then performing e.g. 
scheduling for a fixed hardware structure. 

 
2 Attempts to Solve Current Problems 
Below we describe techniques we are currently studying to 
overcome the above limitations. 
2.1 Area-oriented Design Decisions 
2.1.1 Floor-Planning 
Almost every design decision has a potential to result in an 
unacceptable layout. Therefore, all relevant design decisions 
should be based on an preliminary floor-planning. Peng [Pen87] 
was the first to propose such an approach. His algorithm, however, 
is not general enough to handle real design problems. For example, 
backtracking is restricted in order to avoid infinite loops. 

The floor-planner required for synthesis has to be tightly 
coupled to synthesis. It should be an incremental floorplanner, 
which is able to predict the effect of a small design change rapidly. 

 
2.1.2 Busses 
Many synthesis systems use multiplexers for selection of the 
appropriate data in a certain control step. It is well known that this 
is not area-efficient. There have been attempts to use busses 
[deM86]. However, current systems just minimize the number of 
busses. This number serves only as a very rough estimate of the 
required area. Floor-planning based design decisions are required 
for implementing areaefficient data selection. 

 
2.2 Partial Structures and Binding Information 
2.2.1 Motivation 
With a design space as big as the design space for high-level 
synthesis and with the problems of predicting the precise 

effects of early design decisions on the final design, it is extremely 
important to reduce the design space as much as possible. 
Unreasonable designs should be excluded by the reduction of the 
design space. Only then will we be able to generate several 
reasonable designs and to fully explore the remaining design space. 

Two means for the reduction of the design space can be 
identified: partial structures and binding information. 

Partial structures are normally available for most design 
problems. Users of our own MIMOLA hardware design system 
frequently have a pretty good knowledge of some parts of the 
hardware structure. They want to express this knowledge in a 
partial description of the hardware structure and to use the synthesis 
system to design some additional circuitry like decoders, clocks and 
control. The existence of a partial designs should speed up the 
design process and should not slow it down. Partial designs were 
accepted in our first synthesis system, the MSS1 [Zim80]. This 
system, and specifically this feature, is used at Honeywell to design 
integrated circuits. Unfortunally, this feature has not been 
implemented in our second version [Mar86] of the system. 
Recently, we have redirected our attention to it [Ba189] [Bro89]. 

High-level synthesis has to generate a lot of bindings. The task 
for the synthesis system is simplified, if some of the bindings are 
generated by the user. This is only possible, if the input language 
allows the description of such bindings. 

A third method for the reduction of the design space is the 
restriction to a special application area. This does not solve all the 
problems, though. For example, the CathedralII silicon compiler, 
which has been designed for signal processing applications 
[deM86], has to handle the same type of problems as any other 
architectural synthesis tool. 

Below we discuss the use of partial structures and binding 
information during architectural synthesis. We will explain, how 
the bindings mentioned in the introduction can be conveniently 
expressed in a design language. Our own language MIMOLA will 
be used as an example. 

 
2.2.2 Prebound Variables 
Procedural descriptions of the required behaviour contain a set of 
abstract variables. It is not obvious, how these should be bound to 
hardware registers and RAMS. Optimizing storage allocation 
techniques have been used in optimizing compilers. There, the 
problem is known to be far from trivial. The problem is much 
harder in the synthesis area: the final structure is not yet known at 
storage allocation time. 

In order to simplify the problem, several techniques have been 
used. Many synthesis systems identify each scalar variable with a 
register and each (one- or two-dimensional array with a RAM. The 
result is a behavioural description at a low level, i.e. recursive 
procedures cannot be used unless the stack is explicitly modified. 
Furthermore, a large number of registers causes testing problems, 
requires bus minimization techniques and makes context switching 
hard to implement. 

In order to simplify the storage allocation problem, MIMOLA 
allows the user to define variable to location bindings. We 
distinguish between user and temporary variables. 
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User variables can be bound in the variable declaration. 

Here, CounterReg is the name of a visible hardware component. 
In VHDL the same information could be provided by 
configurations. However, the information about types and bindings 
of variables would be scattered in the input text. 

Variables, which have not been bound by the user, will be bound 
to one of the locations set aside for user variables. In MIMOLA 
(version 4.0), these locations are defined by a construct similar to 
VHDL configurations. 

Temporary variables are bound to one of the locations defined to 
be exclusively available for such variables: 

This binding information cannot change the semantics and hence 
it is compatible with the "correctness by construction" principle. If 
an insufficient number of locations is available, an error message 
can be easily generated. The additional information has a potential 
to speed up synthesis algorithms. 
2.2.3 Manual Decomposition of Expressions 
Manual decomposition of complex expressions and allocation of 
storage for intermediate values does not require special design 
language features. However, it obscures the procedural design 
specification and it is a possible source of errors. Hence, it should 
be avoided. 

Note that all variables, by definition, are user variables if the user 
is responsible for expression decomposition. 
2.2.4 Fixed Control Sequence 
The scheduling phase of high-level synthesis can be omitted, if the 
mapping to control steps is already done by the user. This is 
actually required by some CAD-systems (e.g. [Anc87]). Some 
mechanism is required to express this mapping. The mechanism has 
to represent a program as as set of control steps, each of which 
potentially contains several parallel assignments. An elegant 
solution is a special block structure of the form 

Each parallel block represents a control step and optionally 
contains ORIGIN-commands. SEQBEGIN ... SEQEND means that 
the sequence cannot be changed by any tool. In contrast BEGIN ... 
END means that any semantically equivalent partitioning into 
control steps is accepted. Alternatively, the distinction between the 
two types of blocks could be expressed by block attributes. 

This step is error-prone and it should only be left to the user, 
when other solutions are too complex, too timeconsuming or 
inefficient. 
2.2.5 Preselection of Key Components 
Frequently, the user has a pretty good knowledge about the type 
and number of required key hardware components. Key 
components can be defined to be those modules which perform 
some operation that is explicitly listed in the required system 
behaviour. Hence, key components include RAMS, registers, ALUs 
etc. Decoders, multiplexers and tristate-drivers do not belong to this 
category. 

The following example presents a partial description of key 
components using MIMOLA: 

It is relatively easy to use this information during scheduling, 
because now all the essential resources are known. Scheduling now 
reduces to the type of scheduling implemented in microcode 
generators. 

Without this knowledge, the scheduling algorithm has to predict 
the result of each scheduling decision on module selection. This 
makes already complex algorithms, heuristically solving an 
NP-complete problem, even more timeconsuming. Paulin [Pau87] 
has described a scheduling algorithm which tries to influence 
module selection by a proper look-ahead to that phase. The 
complexity of this algorithm demonstrates the advantages of 
knowing the key components in advance. 
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The use of this information does not violate the "correctness by 
construction" principle. An error message can easily be generated 
by the synthesis tool, if required hardware modules are missing. 
This information reduces the design space and can be easily used to 
speed up synthesis algorithms. 
2.2.6 Prebound Operations 
As a result of previous design iterations, users sometimes realize, 
that better designs would be generated, if the operation to hardware 
component binding would be changed. 

This is only possible, if the input language allows the user to 
define such a binding. Most design languages are unable to express 
such a binding. Sometimes, limited ad hoc solutions like pragmas 
are used [deM86]. Normally, pragmas cannot be attached to the 
operations which are to be bound and therefore violate the principle 
of locality (that means, closely related information should not be 
scattered all over the input text). 

All versions of MIMOLA provided constructs for this binding. 
For the sake of standardization, we are currently moving towards a 
straight-forward extension of attributes in VHDL. 

Attributes attached to operations indicate a binding of that 
operation to a hardware component. Inclusion of this feature in 
VHDL is subject to discussion [Har89]. 

This binding information cannot change the semantics and hence 
it is compatible with the "correctness by construction" principle. If 
a component does not provide the required function, an error 
message can be easily generated. The additional information has a 
potential to speed up synthesis algorithms. 
2.2.7 Prebound Control Codes 
ALUs normally provide a number of functions like addition, 
subtraction and all logical operations. Frequently it is desirable to 
make all these functions accessable from the controlling instruction 
word. The coding of the operations in the instruction could be 
completely different from that in the ALUs. However, a decoder (or 
separate control steps) can be saved, if the codes are the same. 

Explicit references to hardware components are possible with 
almost all hardware design languages, including MIMOLA. This 
notation, however, is dangerous: the input to the synthesis tool is 
hard to understand and possibly incorrect. The step from the left 
hand side to the right hand side of the example requires verification 
and analysis of side effects. Our users, however, kept asking for this 
feature and an automatic transformation between the two 
descriptions is not trivial. Hence, explicit component activations are 
included in the MIMOLA language. 

Example: 

2.2.8 Partial Description of the Interconnection 
 Structure 
Until now we have discussed information concerning components 
and the binding of operations to components. The next step is to 
include at least a partial description of the interconnection structure 
in the synthesis input. This information shall be used to evaluate 
the effects of design decisions. 

A simple way of using this information is easy to implement: 
Many of the synthesis tools are not globally optimizing. They 
consider hardware requirements control step by control step. For 
each of the control steps the hardware is augmented, taking into 
consideration the hardware requirements by previous control steps. 
With this approach, it is relatively easy to take advantage of 
information about the interconnection structure. This information is 
presented to the synthesis tool as a partial structure generated by a 
virtual 0th control step. This is the concept employed in a new 
synthesis algorithm for the MIMOLA design system [Ba189]. 

There are problems, however, if this concept is combined with 
the usual simple way of matching system and component 
behaviour. In order to get a flavour of the problems, consider 
module sadd, which was described above. Assume that sadd 
consists of two local modules (c.f. fig. 1). 

This component contains its own structure, even if modelled at 
the RT-level. These components will be called composite 
components. In contrast, components without a local RT-structure 
will be called primitive components. Problems with this type of 
components result from a common restriction in the algorithm 
which matches system and 
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component behaviour. 
In order to explain the problem, we shall describe the technique 

used in MSSH [Mar86]. The components described above are 
internally represented as a set of implications: 

Components, which are called in the form of a procedure or a 
function call, are said to be activated by this call. Each argument 
position denotes a signal. In the final structure, these signals have to 
be implemented as interconnections. In the example above, the alu 
has been described like a function. Hence, the output signal is 
implicit. Component sadd has been described in the form of a 
procedure. In this case, the output signal f is included in the 
parameter list itself. 

The behaviour at the right hand sides can be implemented by the 
component activations at the left hand sides. A separate analysis in 
MSSH guarantees that selected module activations do not have 
undesirable side effects (e.g. do not destroy register contents). 

Left and right hand sides of these implications can be represented 
as trees. The leaves at the right hand side of these trees can be 
considered as free variables. In MSSH, trees of both sides have 
been restricted to a depth of two. 

The specification of the system behaviour again is represented as 
a set of trees. The pattern matching process starts at the leaves of 
this specification. Each node of the system specification has to be 
bound to one hardware component (to be replaced by a module 
activation). 

Example: Assume that the procedural behaviour contains an 
expression, specifying that the result of an addition is to be shifted 
to the right. 
 
system specification: 

The matching process starts at the leaves (either "2" or 
"READ,ac") and binds hardware resources to the leaf operations. 
The process continues at the "+"-operation and tries to allocate a 
hardware component. Finally, the algorithm tries to allocated 
hardware to the shift operation. An error message is generated in 
case no component can be assigned to an operation. 

This match is performed for each operation separately. In the 
particular example, the behaviour of the composite component 
shft_add is too complex to be matched with the system behaviour 
that way. 

The expansion of composite components to their leaf cells would 
be one method of using these components with MSSH. However, 
MSSH would not be able to use the shifter as a via for the adder and 
vice versa. It would consider direct connections to the output of the 
adder and to the input of the shifter to be very costly but it would 
probably directly connect to and from both submodules. Hence, 
expansion it no solution to this problem. 
2.2.9 Composite Components 
The example demonstrates that it is necessary to drop the 
restriction that the component trees have a depth of two. 

Larger trees at the left hand side are required whenever a set 
(i.e. a sequence) of components activations is required for 
implementing a certain operation. 

Trees of arbitrary depth at the right hand side will allow us 
using components like functional registers (registers with clear, 
preset, shift or counting capabilities) and complex components like 
adders with built-in latches, AMD-type bitslices or even complete 
microprocessors. The behaviour of shft_add can be represented 
with a depth of three at the right hand side: 

The matching process for complex components needs to be 
different: The matching process now starts at the root of the 
behaviour expressions and continues at the system nodes matching 
free variables of the component specification. 

The mechanism for complex components relies on their 
representation by single trees on both sides of the implications. 
Very complex trees can be generated by transformation rules, e.g. 
by MIMOLA "REPLACEMENT"-rules. 

A matching algorithm of this type has been implemented in 
MSSN. MSSN has been developed as part of a forthcoming 
master's thesis [Bro89]. MSSN uses floor-planning based design 
decisions as described above. 
 
2.2.10 Full Structure Completely Fixed 
As an extreme, the specification may contain a single block with a 
fixed structure. This is a limiting case of incremental synthesis: 
only the control code can be changed during synthesis. This special 
case occurs due to the following reasons: 

The results of automatic synthesis systems normally are analysed 
by human designers. Frequently they discover possible 
optimizations, changes required to improve testability and changes 
required to meet some company standards. After such changes, 
guaranteed correctness normally 
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is lost. Tools, checking whether or not a manually modified 
hardware still meets the requirements, are needed in order to avoid 
this situation. In the case of an procedural specification this means: 
it has to be checked, that the specification can be compiled onto the 
changed structure. Our retargetable code generator MSSC handles 
this special case of incremental synthesis [Now891. A typical 
design process including synthesis and generation of control code 
for a fixed structure is shown in fig. 3. 

Figure 3: Control flow during a design project with MSS 

2.3 Language Issues 
The preceding sections clearly indicate a set of requirements for a 
design language supporting synthesis in general and the description 
of binding information in particular. Clearly, these requirements are 
not meet by typical languages designed for simulations. The lack of 
appropriate constructs in ISPS has been a handicap for synthesis 
applications for quite some time. To overcome this limitation, 
different languages were used to describe behaviour and (partial) 
structures. VHDL is an improvement in this respect. However, the 
inclusion of constructs equivalent to the ones mentioned above 
would help in synthesis applications. 

2.4 Knowledge-Based Problem Representation 
After having reduced the design space as much as possible, we 
should be able to explore the remaining design space in detail. 
Alternative solutions should be easy to generate. This is simplified, 
if backtracking is easy to implement. 

Synthesis, code generation and test generation 
algorithrrts,"contain a large amount of unification. For example, the 
matching process between operations in the system specification 
and the operations in the component descriptions can be modeled as 
unification. 

Heavy use of unification and backtracking are two reasons for 
knowledge-based approaches. A third reason is the need to avoid a 
fixed control flow during synthesis. If there is a large behavioural 
specification and only a small design space, possible hardware 
designs should be enumerated and scheduling should be done after 
it has been shown that the design fits onto the available silicon 
area. If the behavioural specification is small and the design space 
is large, scheduling should be done first. 

An arbitrary sequence of synthesis steps is possible with a 
knowledge-based representation of the design problem. In such a 
context, design desions can be taken in an arbitrary sequence and 
an enumeration of possible designs is simple with PROLOG-like 
languages. Also, additional constraints, can be represented as facts. 
They reduce the search space and hence potentially reduce 
computing time. 

Kowalski [Kow85] used knowledge-based techniques. He 
modeled the computer-aided synthesis process after the human 
design process. We believe that this is an unnecessary restriction. 

 
3 Results 
We do not yet have results from a synthesis system including all 
the proposed features. But we do have results for the features of 
sections 2.2.1 to 2.2.10, using MSSH as an example. 

The following table contains results for the synthesis of a PDP-8. 
We use the number of wires and the size of the microprogram as 
rough estimates of the design complexity. Every new set of 
bindings was added to the previous set of bindings. 

Manual binding wires microcode micro- 
instructions 

none 952 5886 bits 109 
 =100% =100% =100% 
expr. decomp. 100% 100% 100% 
variables 93% 96% 102% 
control steps 97% 82% 82% 
key components 86% 81% 83% 
operations 78% 72% 83% 

 

This table indicates that the first five sets of bindings reduce the 
number of wires by 22% and the number of microcode-bits by 28%. 
The largest effect was caused by the manual binding of operations 
to components. The retargetable compiler was used to reduce the 
number of wires for two large design projects: 
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• The savings were 50% for our SAMP machine. 
• Users, who have designed a reduction machine, reported 

savings of 24%. 
We expect, that the results from the first algorithm [Bro89] 

combining all features, will be even better. The results may be 
different for other examples or synthesis tools. But we believe, that 
the effect of manual bindings would never vanish completely. 
 
4 Conclusion 
We have sketched the high-level synthesis process as the generation 
of a set of bindings. The ability to use the designers knowledge 
about efficient designs requires mechanism allowing the user to 
express such bindings. We propose that such mechanisms should be 
present in design languages supporting synthesis. Synthesis systems 
using such an enhanced language should have an improved 
performance in the sense of reduced computation time and better 
results. 
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