

North-Holland
Microprocessing and Microprogramming 27 (1989) 381-388 381

Improving the Performance of High-Level Synthesis

Peter Marwedel
Wolfgang Schenk
Universität Kiel

Institut fur Informatik and Prakt. Mathematik
Olshausenstr. 40-60

D-2300 Kiel, W. Germany

Abstract: In this paper we study possible improvements of high-level (architectural) synthesis processes. We allow the
designer to indicate a set of bindings between behaviour and structure in order to add some of the designer's knowledge
to the design process. These bindings can be used to exclude inefficient designs. The remaining design space may then
be studied in more detail, using unified backtracking. Backtracking, together with preliminary floor-planning, is required
for area-efficient designs.

1 Introduction
High-level synthesis is concerned with the mapping of behavioural
descriptions into hardware structures. Behaviour frequently is
described by imperative programs written in ISPS, subsets of
PASCAL, VHDL, Occam or MIMOLA. The basic advantage of
this approach is that it is potentially able to generate correct
designs ("correctness by construction") in fast turnaround time.
Due to this, high-level synthesis is becoming popular.

High-level synthesis is called high-level silicon compilation if it
is supporting the implementation as an integrated circuit. Only few
integrated circuits have been fabricated using the original results of
a (general) high-level synthesis systems. The reason is, that the
results in general are still poor. In the following we will analyse
problems with current synthesis techniques. Futhermore, we
propose ways of solving these problems. Instead of proposing a
specific new synthesis method, we describe guidelines for new
synthesis techniques.
1.1 Problems with Current Synthesis Systems
Below, we study the case of high-level synthesis algorithms
generating a structure at the RT-level. The constituents of this
structure are RT-components (ALUs, registers, RAMS, etc.) and
their interconnections.

A number of problems exists with current synthesis algorithms,
but two related important problems are generally present: the
phase-coupling problem and the complexity problem.
1.1.1 Phase Coupling
Most synthesis systems partition the synthesis algorithm into a
number of phases solving subproblems. Many of the subproblems
can be considered as binding problems:

9 Variable to storage (RAM or register) binding. This step
includes:

- Storage allocation for user variables.

- Storage allocation for temporary variables.

Control step binding. This step includes:

- Decomposition of complex expressions.
- Binding of assignments to control steps (instructions).

This step is frequently called scheduling.

• Binding of operations to hardware components. This
 step includes:

- Component selection (selection of library components or

creation of new components),
- Assignment of components and control code to every

operation of the procedural specification. This includes:
* The binding of arithmetic/logic operations to ALUs

and similar networks,
* The binding of READ- and WRITE
 operations to RAM ports and
* The binding of constants 'to hardwired constants,

control word fields or decoders.

In addition, silicon compilers have to handle problems like
module generation, floor planning, routing and layout generation.

There have been attempts to combine several of these
subproblems and to solve them in a single step. However, no one
has succeeded in and no one probably will ever succeed in solving
all subproblems in a single step. Solving subproblem after
subproblem does not guarantee an optimum or even an acceptable
solution for the complete problem. Most people hope that this
approach will work "on the average", but McFarland demonstrated
in a key paper [McF87], that this does not hold for high-level
silicon compilation.

 382 P. Marwedel, W. Schenk / Improving the Performance of High-Level Synthesis

1.1.2 Complexity
Most of the subproblems just mentioned can be proved to be
NP-complete. Scheduling is an important example for this.
Actually, many design systems currently focus on scheduling. Even
with special heuristics, pruning etc. an enormous amount of
scheduling decisions are taken by a typical synthesis system. The
number of decisions is at least proportional to the length of the
behavioural specification. On the other hand, the number of
possible hardware designs for a given set of constraints is fixed.
Therefore, for large behavioural specifications, many of the
scheduling decisions are superfluous. We call scheduling decisions
decisions of secondary importance. The scheduling problem is not
really a subproblem of the original problem, it is only generated by
a specific decomposition of the original problem. Accordingly, no
one has actually proven that highlevel synthesis is NP-complete. It
has only been proven that the subproblems of a certain solution
method are NPcomplete.

It is worth mentioning that a considerable amount of computing
time currently is spent in each phase predicting the effect of the
current phase on the next phases. This time could be avoided by
first enumerating all possible designs and then performing e.g.
scheduling for a fixed hardware structure.

2 Attempts to Solve Current Problems
Below we describe techniques we are currently studying to
overcome the above limitations.
2.1 Area-oriented Design Decisions
2.1.1 Floor-Planning
Almost every design decision has a potential to result in an
unacceptable layout. Therefore, all relevant design decisions
should be based on an preliminary floor-planning. Peng [Pen87]
was the first to propose such an approach. His algorithm, however,
is not general enough to handle real design problems. For example,
backtracking is restricted in order to avoid infinite loops.

The floor-planner required for synthesis has to be tightly
coupled to synthesis. It should be an incremental floorplanner,
which is able to predict the effect of a small design change rapidly.

2.1.2 Busses
Many synthesis systems use multiplexers for selection of the
appropriate data in a certain control step. It is well known that this
is not area-efficient. There have been attempts to use busses
[deM86]. However, current systems just minimize the number of
busses. This number serves only as a very rough estimate of the
required area. Floor-planning based design decisions are required
for implementing areaefficient data selection.

2.2 Partial Structures and Binding Information
2.2.1 Motivation
With a design space as big as the design space for high-level
synthesis and with the problems of predicting the precise

effects of early design decisions on the final design, it is extremely
important to reduce the design space as much as possible.
Unreasonable designs should be excluded by the reduction of the
design space. Only then will we be able to generate several
reasonable designs and to fully explore the remaining design space.

Two means for the reduction of the design space can be
identified: partial structures and binding information.

Partial structures are normally available for most design
problems. Users of our own MIMOLA hardware design system
frequently have a pretty good knowledge of some parts of the
hardware structure. They want to express this knowledge in a
partial description of the hardware structure and to use the synthesis
system to design some additional circuitry like decoders, clocks and
control. The existence of a partial designs should speed up the
design process and should not slow it down. Partial designs were
accepted in our first synthesis system, the MSS1 [Zim80]. This
system, and specifically this feature, is used at Honeywell to design
integrated circuits. Unfortunally, this feature has not been
implemented in our second version [Mar86] of the system.
Recently, we have redirected our attention to it [Ba189] [Bro89].

High-level synthesis has to generate a lot of bindings. The task
for the synthesis system is simplified, if some of the bindings are
generated by the user. This is only possible, if the input language
allows the description of such bindings.

A third method for the reduction of the design space is the
restriction to a special application area. This does not solve all the
problems, though. For example, the CathedralII silicon compiler,
which has been designed for signal processing applications
[deM86], has to handle the same type of problems as any other
architectural synthesis tool.

Below we discuss the use of partial structures and binding
information during architectural synthesis. We will explain, how
the bindings mentioned in the introduction can be conveniently
expressed in a design language. Our own language MIMOLA will
be used as an example.

2.2.2 Prebound Variables
Procedural descriptions of the required behaviour contain a set of
abstract variables. It is not obvious, how these should be bound to
hardware registers and RAMS. Optimizing storage allocation
techniques have been used in optimizing compilers. There, the
problem is known to be far from trivial. The problem is much
harder in the synthesis area: the final structure is not yet known at
storage allocation time.

In order to simplify the problem, several techniques have been
used. Many synthesis systems identify each scalar variable with a
register and each (one- or two-dimensional array with a RAM. The
result is a behavioural description at a low level, i.e. recursive
procedures cannot be used unless the stack is explicitly modified.
Furthermore, a large number of registers causes testing problems,
requires bus minimization techniques and makes context switching
hard to implement.

In order to simplify the storage allocation problem, MIMOLA
allows the user to define variable to location bindings. We
distinguish between user and temporary variables.

P. Marwedel, W. Schenk / Improving the Performance of High-Level Synthesis 383

User variables can be bound in the variable declaration.

Here, CounterReg is the name of a visible hardware component.
In VHDL the same information could be provided by
configurations. However, the information about types and bindings
of variables would be scattered in the input text.

Variables, which have not been bound by the user, will be bound
to one of the locations set aside for user variables. In MIMOLA
(version 4.0), these locations are defined by a construct similar to
VHDL configurations.

Temporary variables are bound to one of the locations defined to
be exclusively available for such variables:

This binding information cannot change the semantics and hence
it is compatible with the "correctness by construction" principle. If
an insufficient number of locations is available, an error message
can be easily generated. The additional information has a potential
to speed up synthesis algorithms.
2.2.3 Manual Decomposition of Expressions
Manual decomposition of complex expressions and allocation of
storage for intermediate values does not require special design
language features. However, it obscures the procedural design
specification and it is a possible source of errors. Hence, it should
be avoided.

Note that all variables, by definition, are user variables if the user
is responsible for expression decomposition.
2.2.4 Fixed Control Sequence
The scheduling phase of high-level synthesis can be omitted, if the
mapping to control steps is already done by the user. This is
actually required by some CAD-systems (e.g. [Anc87]). Some
mechanism is required to express this mapping. The mechanism has
to represent a program as as set of control steps, each of which
potentially contains several parallel assignments. An elegant
solution is a special block structure of the form

Each parallel block represents a control step and optionally
contains ORIGIN-commands. SEQBEGIN ... SEQEND means that
the sequence cannot be changed by any tool. In contrast BEGIN ...
END means that any semantically equivalent partitioning into
control steps is accepted. Alternatively, the distinction between the
two types of blocks could be expressed by block attributes.

This step is error-prone and it should only be left to the user,
when other solutions are too complex, too timeconsuming or
inefficient.
2.2.5 Preselection of Key Components
Frequently, the user has a pretty good knowledge about the type
and number of required key hardware components. Key
components can be defined to be those modules which perform
some operation that is explicitly listed in the required system
behaviour. Hence, key components include RAMS, registers, ALUs
etc. Decoders, multiplexers and tristate-drivers do not belong to this
category.

The following example presents a partial description of key
components using MIMOLA:

It is relatively easy to use this information during scheduling,
because now all the essential resources are known. Scheduling now
reduces to the type of scheduling implemented in microcode
generators.

Without this knowledge, the scheduling algorithm has to predict
the result of each scheduling decision on module selection. This
makes already complex algorithms, heuristically solving an
NP-complete problem, even more timeconsuming. Paulin [Pau87]
has described a scheduling algorithm which tries to influence
module selection by a proper look-ahead to that phase. The
complexity of this algorithm demonstrates the advantages of
knowing the key components in advance.

384 P. Marwedel, W. Schenk / Improving the Performance of High-Level Synthesis

The use of this information does not violate the "correctness by
construction" principle. An error message can easily be generated
by the synthesis tool, if required hardware modules are missing.
This information reduces the design space and can be easily used to
speed up synthesis algorithms.
2.2.6 Prebound Operations
As a result of previous design iterations, users sometimes realize,
that better designs would be generated, if the operation to hardware
component binding would be changed.

This is only possible, if the input language allows the user to
define such a binding. Most design languages are unable to express
such a binding. Sometimes, limited ad hoc solutions like pragmas
are used [deM86]. Normally, pragmas cannot be attached to the
operations which are to be bound and therefore violate the principle
of locality (that means, closely related information should not be
scattered all over the input text).

All versions of MIMOLA provided constructs for this binding.
For the sake of standardization, we are currently moving towards a
straight-forward extension of attributes in VHDL.

Attributes attached to operations indicate a binding of that
operation to a hardware component. Inclusion of this feature in
VHDL is subject to discussion [Har89].

This binding information cannot change the semantics and hence
it is compatible with the "correctness by construction" principle. If
a component does not provide the required function, an error
message can be easily generated. The additional information has a
potential to speed up synthesis algorithms.
2.2.7 Prebound Control Codes
ALUs normally provide a number of functions like addition,
subtraction and all logical operations. Frequently it is desirable to
make all these functions accessable from the controlling instruction
word. The coding of the operations in the instruction could be
completely different from that in the ALUs. However, a decoder (or
separate control steps) can be saved, if the codes are the same.

Explicit references to hardware components are possible with
almost all hardware design languages, including MIMOLA. This
notation, however, is dangerous: the input to the synthesis tool is
hard to understand and possibly incorrect. The step from the left
hand side to the right hand side of the example requires verification
and analysis of side effects. Our users, however, kept asking for this
feature and an automatic transformation between the two
descriptions is not trivial. Hence, explicit component activations are
included in the MIMOLA language.

Example:

2.2.8 Partial Description of the Interconnection
 Structure
Until now we have discussed information concerning components
and the binding of operations to components. The next step is to
include at least a partial description of the interconnection structure
in the synthesis input. This information shall be used to evaluate
the effects of design decisions.

A simple way of using this information is easy to implement:
Many of the synthesis tools are not globally optimizing. They
consider hardware requirements control step by control step. For
each of the control steps the hardware is augmented, taking into
consideration the hardware requirements by previous control steps.
With this approach, it is relatively easy to take advantage of
information about the interconnection structure. This information is
presented to the synthesis tool as a partial structure generated by a
virtual 0th control step. This is the concept employed in a new
synthesis algorithm for the MIMOLA design system [Ba189].

There are problems, however, if this concept is combined with
the usual simple way of matching system and component
behaviour. In order to get a flavour of the problems, consider
module sadd, which was described above. Assume that sadd
consists of two local modules (c.f. fig. 1).

This component contains its own structure, even if modelled at
the RT-level. These components will be called composite
components. In contrast, components without a local RT-structure
will be called primitive components. Problems with this type of
components result from a common restriction in the algorithm
which matches system and

P. Marwedel, W. Schenk / Improving the Performance of High-Level Synthesis 385

component behaviour.
In order to explain the problem, we shall describe the technique

used in MSSH [Mar86]. The components described above are
internally represented as a set of implications:

Components, which are called in the form of a procedure or a
function call, are said to be activated by this call. Each argument
position denotes a signal. In the final structure, these signals have to
be implemented as interconnections. In the example above, the alu
has been described like a function. Hence, the output signal is
implicit. Component sadd has been described in the form of a
procedure. In this case, the output signal f is included in the
parameter list itself.

The behaviour at the right hand sides can be implemented by the
component activations at the left hand sides. A separate analysis in
MSSH guarantees that selected module activations do not have
undesirable side effects (e.g. do not destroy register contents).

Left and right hand sides of these implications can be represented
as trees. The leaves at the right hand side of these trees can be
considered as free variables. In MSSH, trees of both sides have
been restricted to a depth of two.

The specification of the system behaviour again is represented as
a set of trees. The pattern matching process starts at the leaves of
this specification. Each node of the system specification has to be
bound to one hardware component (to be replaced by a module
activation).

Example: Assume that the procedural behaviour contains an
expression, specifying that the result of an addition is to be shifted
to the right.

system specification:

The matching process starts at the leaves (either "2" or
"READ,ac") and binds hardware resources to the leaf operations.
The process continues at the "+"-operation and tries to allocate a
hardware component. Finally, the algorithm tries to allocated
hardware to the shift operation. An error message is generated in
case no component can be assigned to an operation.

This match is performed for each operation separately. In the
particular example, the behaviour of the composite component
shft_add is too complex to be matched with the system behaviour
that way.

The expansion of composite components to their leaf cells would
be one method of using these components with MSSH. However,
MSSH would not be able to use the shifter as a via for the adder and
vice versa. It would consider direct connections to the output of the
adder and to the input of the shifter to be very costly but it would
probably directly connect to and from both submodules. Hence,
expansion it no solution to this problem.
2.2.9 Composite Components
The example demonstrates that it is necessary to drop the
restriction that the component trees have a depth of two.

Larger trees at the left hand side are required whenever a set
(i.e. a sequence) of components activations is required for
implementing a certain operation.

Trees of arbitrary depth at the right hand side will allow us
using components like functional registers (registers with clear,
preset, shift or counting capabilities) and complex components like
adders with built-in latches, AMD-type bitslices or even complete
microprocessors. The behaviour of shft_add can be represented
with a depth of three at the right hand side:

The matching process for complex components needs to be
different: The matching process now starts at the root of the
behaviour expressions and continues at the system nodes matching
free variables of the component specification.

The mechanism for complex components relies on their
representation by single trees on both sides of the implications.
Very complex trees can be generated by transformation rules, e.g.
by MIMOLA "REPLACEMENT"-rules.

A matching algorithm of this type has been implemented in
MSSN. MSSN has been developed as part of a forthcoming
master's thesis [Bro89]. MSSN uses floor-planning based design
decisions as described above.

2.2.10 Full Structure Completely Fixed
As an extreme, the specification may contain a single block with a
fixed structure. This is a limiting case of incremental synthesis:
only the control code can be changed during synthesis. This special
case occurs due to the following reasons:

The results of automatic synthesis systems normally are analysed
by human designers. Frequently they discover possible
optimizations, changes required to improve testability and changes
required to meet some company standards. After such changes,
guaranteed correctness normally

386 P. Marwedel, W. Schenk / Improving the Performance of High-Level Synthesis

is lost. Tools, checking whether or not a manually modified
hardware still meets the requirements, are needed in order to avoid
this situation. In the case of an procedural specification this means:
it has to be checked, that the specification can be compiled onto the
changed structure. Our retargetable code generator MSSC handles
this special case of incremental synthesis [Now891. A typical
design process including synthesis and generation of control code
for a fixed structure is shown in fig. 3.

Figure 3: Control flow during a design project with MSS

2.3 Language Issues
The preceding sections clearly indicate a set of requirements for a
design language supporting synthesis in general and the description
of binding information in particular. Clearly, these requirements are
not meet by typical languages designed for simulations. The lack of
appropriate constructs in ISPS has been a handicap for synthesis
applications for quite some time. To overcome this limitation,
different languages were used to describe behaviour and (partial)
structures. VHDL is an improvement in this respect. However, the
inclusion of constructs equivalent to the ones mentioned above
would help in synthesis applications.

2.4 Knowledge-Based Problem Representation
After having reduced the design space as much as possible, we
should be able to explore the remaining design space in detail.
Alternative solutions should be easy to generate. This is simplified,
if backtracking is easy to implement.

Synthesis, code generation and test generation
algorithrrts,"contain a large amount of unification. For example, the
matching process between operations in the system specification
and the operations in the component descriptions can be modeled as
unification.

Heavy use of unification and backtracking are two reasons for
knowledge-based approaches. A third reason is the need to avoid a
fixed control flow during synthesis. If there is a large behavioural
specification and only a small design space, possible hardware
designs should be enumerated and scheduling should be done after
it has been shown that the design fits onto the available silicon
area. If the behavioural specification is small and the design space
is large, scheduling should be done first.

An arbitrary sequence of synthesis steps is possible with a
knowledge-based representation of the design problem. In such a
context, design desions can be taken in an arbitrary sequence and
an enumeration of possible designs is simple with PROLOG-like
languages. Also, additional constraints, can be represented as facts.
They reduce the search space and hence potentially reduce
computing time.

Kowalski [Kow85] used knowledge-based techniques. He
modeled the computer-aided synthesis process after the human
design process. We believe that this is an unnecessary restriction.

3 Results
We do not yet have results from a synthesis system including all
the proposed features. But we do have results for the features of
sections 2.2.1 to 2.2.10, using MSSH as an example.

The following table contains results for the synthesis of a PDP-8.
We use the number of wires and the size of the microprogram as
rough estimates of the design complexity. Every new set of
bindings was added to the previous set of bindings.

Manual binding wires microcode micro-
instructions

none 952 5886 bits 109
 =100% =100% =100%
expr. decomp. 100% 100% 100%
variables 93% 96% 102%
control steps 97% 82% 82%
key components 86% 81% 83%
operations 78% 72% 83%

This table indicates that the first five sets of bindings reduce the
number of wires by 22% and the number of microcode-bits by 28%.
The largest effect was caused by the manual binding of operations
to components. The retargetable compiler was used to reduce the
number of wires for two large design projects:

P. Marwedel, W. Schenk l Improving the Performance of High-Level Synthesis 387

• The savings were 50% for our SAMP machine.
• Users, who have designed a reduction machine, reported

savings of 24%.
We expect, that the results from the first algorithm [Bro89]

combining all features, will be even better. The results may be
different for other examples or synthesis tools. But we believe, that
the effect of manual bindings would never vanish completely.

4 Conclusion
We have sketched the high-level synthesis process as the generation
of a set of bindings. The ability to use the designers knowledge
about efficient designs requires mechanism allowing the user to
express such bindings. We propose that such mechanisms should be
present in design languages supporting synthesis. Synthesis systems
using such an enhanced language should have an improved
performance in the sense of reduced computation time and better
results.

References
[Anc87] F. Anceau: FORCE: A Formal Chcker for Executability,

in: D. Borrione (ed.): From HDL Descriptions to
Guaranteed Correct Circuit Designs, Proc. of IFIP WG
10.2 Working Conf., North Holland, 1987

[Ba189] M. Balakrishnan, P. Marwedel: Integrated Scheduling
and Binding: A Synthesis Aproach for Design Space
Exploration, 26th Design Automation Conference, 1989

[Bro89J O. Bross: Hardwaresynthese mittels Strukturfaltung,
master's thesis, Institut fur Informatik, University of
Kiel, to be published

[deM86J H. De Man, J. Rabaey, P. Six : CATHEDRAL II: A
Synthesis and Module Generation System for
Multiprocessor Systems on a Chip, in: G. De Micheli,
A. Sangiovanni-Vincentelli, P. Antognetti (ed.): Design
Systems for VLSI Circuits, Logic Synthesis and Silicon
Compilation, Martinus Nijhoff Publishers, 1987

[Har89J P. Harper, S. Krolikoski, O. Levia: Using VHDL as a
Synthesis Language in the Honeywell VSYNTH
System, 9th Int. Symposium on Computer Hardware
Description Languages, 1989

[Kow85] T.J. Kowalski: An Artificial Intelligence Approach to
VLSI Design, Kluwer Academic Publishers, 1985

[Mar86] P. Marwedel: An Algorithm for the Synthesis of
Processor Structures from Behavioural Specifications,
Microprocessing and Microprogramming, Vol. 18,
1986, pp. 251-262

(McF87J M.C. McFarland: Reevaluating the Design Space for
Register-Transfer Synthesis, Proc. ICCAD, 1987

[Now89J L. Nowak, P. Marwedel: Verification of Hardware
Descriptions by Retargetable Code Generation, 26th
Design Automation Conference, 1989

[Pen87] Z. Peng: A Formal Methodology for Automated Synthesis
of VLSI Systems, Ph.D. thesis, Department of
Computer and Information Science, .'Linkoping
University, 1987

[Zim80] G. Zimmermann: MDS-The MIMOLA Design
Method, Journal of Digital Systems, Vo1.4, 1980, pp.
337-369

