
Matching System and Component Behaviour

in MIMOLA Synthesis Tools �

Peter Marwedel

University of Dortmund, Informatik XII

D-44221 Dortmund, Germany

e-mai`: marwede`@`s12.informatik.uni-dortmund.de

Abstract

This paper discusses the selection of available components during high-level synthesis. We stress
the importance of describing the behaviour of available components in some language which is read-
able for the designer. This behaviour is internally represented by implications. This concept is the
key for formal reasoning about the component's capabilities. Alternative functions and sequential
and concurrent cooperation of components can be easily described.

1 Introduction

Synthesis can be de�ned as the process of automatically selecting and interconnecting components

such that the resulting system performs as speci�ed. This de�nition is applicable to the synthesis of
electronic circuits as well as to the synthesis of chemical compounds and other areas, where the term
'synthesis' is used. In this context the term system has its general meaning: `group of things or parts
working together in a regular relation' [Hor74].

For high-level (or architectural) synthesis, the speci�cation is given in a behavioural descrip-
tion language such as ISPS, VHDL, VERILOG, MIMOLA or PASCAL. RT-level modules (ALUs,
registers, multiplexers, etc.) are typically used as components.

This de�nition implies that components have to be selected and interconnected according to
the required behaviour. Hence, some matching between the required behaviour and the properties
of available components is an essential feature of any synthesis tool. In fact, this feature is more
essential than scheduling, but it has not yet received the same attention.

There are di�erent approaches to component selection. In a number of systems, the synthesis
tool starts by generating a system being composed out of a number of virtual components. These
virtual components are created during the synthesis process itself and they are described by their
performed function. This function corresponds to the functions required by the the speci�ed high-level
algorithm. Later, virtual components are bound to or created from available library components.

�Reprint from latex-source. A�liation updated. Copyright of original publication: IEEE Computer Society

146

The advantage of this approach is that the virtual components correspond to the 'ideal' com-
ponents required for implementing the system behaviour. The disadvantage is that this two-level
mapping is a possible source of ine�ciency. Currently, most researchers have already realized, that
synthesis of area-e�cient circuits cannot be done in a multi-level approach, not considering area-
e�ciency right from the beginning. For all design decisions, including scheduling decisions, the e�ect
on the required area should be considered. This is impossible in a strict top-down, multi-level ap-
proach. It must be feasible to compute the cost of an implementation at all states of the synthesis
procedure. This is only possible, if the cost of components is known to the synthesis algorithm.

Therefore, synthesis algorithms in the MIMOLA hardware design system MSS (or, more precisely,
in the MSS2 to distinguish it from the system used by Honeywell [Har89]) assume that a library of
available components with known costs exists. This may be either a library of real, predesigned
components or just an interface to a set of module generators, informing synthesis tools about the
availability of module generators and predicted costs. Hence, synthesis algorithms in the MSS have
to describe designs in terms of available components. New modules can only be created if they are
described in such terms.

2 Behavioural Descriptions in MIMOLA

2.1 System Behaviour

With respect to the description of the system behaviour, MIMOLA [J�oh89] is an extension of PAS-
CAL. In addition to PASCAL, MIMOLA contains concurrent and parallel blocks, signal assignments
(denoted by a left arrow), bit level addressing, and a rich set of operators.

2.2 Component Behaviour

2.2.1 External Representation

It has been one idea of the MSS right from its �rst implementation [Mar79], to describe the behaviour
of the system and of available components in the same language. This contrasts with the approaches
taken e.g. by Dutt [Dut89] and Leive [Lei81]. They describe the behaviour of available components
in a special language.

Using the same language for the system and the components has a number of advantages. For
example, the set of standard operators and their semantics is the same. Furthermore, a single
simulator can be used to simulate the behaviour at the system level and at the RT-structure level.

In early versions of MIMOLA [Mar79], the description capabilities for component behaviour were
extremely restricted. Many restrictions have been dropped in the meantime. However, certain
restrictions still apply, especially to older synthesis tools. Below we will present the most general
behavioural descriptions applicable to synthesis (there are no limitations for simulations). Speci�c
tools may accept only a subset of these. We are working towards generalizing the current approach
for all tools (see below).

Currently (version 4.0), behavioural views of components are restricted to a single concurrent
block of signal assignments and assignments to the local state. For each signal or state variable,
there is at most one CASE-statement, describing the operation being performed for a certain control
code. Assignments to signals and state variables are assumed to be executed concurrently. Hence,

multiple CASE-statements have to be enclosed within CONBEGIN ... CONEND. A single CASE-
statement may be enclosed within BEGIN ... END. Clocking conditions may be speci�ed in an AT
... DO-pre�x.

Examples:

MODULE alu (IN a, b: word; IN c: twobits; OUT f: word);
BEHAVIOUR AtRtLevel IS
BEGIN
f <- CASE c OF
0 : a + b;
1 : a - b;
2 : a OR b;
3 : a NAND b

END;
END;

MODULE sadd (IN a, b: word; IN c: twobits; OUT f: word)
BEHAVIOUR AtRtLevel IS
BEGIN
f <- CASE c OF
0 : SHIFTLL(a); - -shift left logical
1 : a + b
2 : a - b
3 : SHIFTLL(a + b); - -composite function

END;
END;

MODULE comp (IN a: word; OUT f: bit)
BEHAVIOUR AtRtLevel IS
BEGIN
f <- (a = 0);

END;
MODULE cc (IN a: bit; IN c: bit; OUT f: bit)

VAR state: bit;
BEHAVIOUR AtRtLevel IS
CONBEGIN
CASE c OF
0 : state := a ;
1 : NOLOAD;

END;
f<- state;

CONEND;

2.2.2 Internal Representation

The external MIMOLA format is �rst translated into an internal tree format, called TREEMOLA.
Synthesis tools then implicitly or explicitly represent component behaviour as a set of implications:

alu (a,b,0,f)) f=(a + b)
alu (a,b,1,f)) f=(a - b)
alu (a,b,2,f)) f=(a OR b)
alu (a,b,3,f)) f=(a AND b)
sadd (a,b,0,f)) f=SHIFTLL(a)
sadd (a,b,1,f)) f=(a + b)
sadd (a,b,2,f)) f=(a - b)
sadd (a,b,3,f)) f=SHIFTLL(a + b)

Arguments at the right hand side are free variables in the sense of transformational reasoning.
At the left hand side of the implication, components are called in the form of a procedure. This call
is denoted as component activation. Each argument position denotes a signal. In the �nal structure,
these signals have to be implemented as interconnections. Component activations describe relations
between input and output signals (for the present, we ignore delay times).

The behaviour at the right hand side can be implemented by the component activations at the left
hand sides. A separate analysis performed by all synthesis tools guarantees that selected component
activations do not have undesirable side e�ects (e.g. do not destroy register contents).

Each entry in the above list of implications is called a function list entry (FLE). For the sake of
simplicity, we have omitted the bitwidth information, which in practice is part of every FLE.

3 Matching System and Component Behaviour

In this section we describe the matching procedures of the MIMOLA synthesis tools, and how they �t
into the FLE-framework. In what follows the tools are regarded as examples for the the matching of
simple operations and complex operations. Currently, three synthesis algorithms have been designed
for the MSS2.

The matching process of the �rst tool [Mar86, Mar86a] treats components with simple operations
only. The algorithm is based upon a decomposition of the synthesis problem into a number of now
classical subproblems (scheduling, module selection, module allocation, register allocation, etc.). For
each subproblem, smart optimization algorithms have been designed. But there is a strict sequence of
design decisions. Top-level problems (e.g. module selection) are solved �rst, low-level problems (e.g.
the generation of control) are solved last. Hence this algorithm is now called the vertical synthesis
algorithm.
The matching with complex operations is implemented in two synthesis tools:

� The second algorithm [Bal89] integrates scheduling and module binding. It makes intensive use
of 0/1 integer programming to establish the required bindings between behaviour and structure.
Due to the integration of scheduling and module binding, module selection is not a separate
step. Rather, it is part of the scheduling phase and uses 0/1 integer programming to select a
set of modules that is able to perform the required functions. Furthermore, this algorithm is
able to consider tradeo�s between speed and cost of di�erent modules.

� The third synthesis algorithm [Bro89] integrates all subproblems. It is based upon successive
transformations of an initial hardware structure. Each transformation tries to improve the
current solution. It is therefore called 'successive approximation synthesis system' (SuccASS).

3.1 Preprocessing

In order to simplify the pattern matching procedure, some preprocessing is recommended. This
applies to all FLE-applications. The following is a set of useful transformations:

� operator canonisation: � and � are called converse operations i� 8 a,b : a � b = b � a. For
non-commuting (� 6= �) converse operations, one of the two is replaced by the other. This is
done in all behavioural descriptions. Additional transformations could be implemented, but
this has not been done at the time of writing this paper.

� commutativity: for commuting operations, constant arguments are always used as right argu-
ments.

� additional FLEs: the matching process can be extend by storing a set of valid algebraic prop-
erties in a rule base library. These rules can be used to created new valid FLEs.

For example, assume that a FLE alu(a,b,0,f)) f=(a+b) and a library rule f=(a+a)) f=(a�2)
exist. From these two implications, it can be deduced that alu(a,a,0,f)) f=(a�2). This
implication can be stored as an additional FLE. The same mechanism can be used to allow an
implementation of multiplications by arithmetic shifts.

Another example is the implementation of VIAs. A VIA is an identity operation which prop-
agates its input-value to the output of the component. A multiplexer has a VIA operation for
each input by default. In order to avoid unnecessary interconnections, it might be desirable to
feed a value through e.g. an adder. This can be expressed by a library rule f=v+0) f=v for
the neutral element of the addition, which yields the FLEs alu(v,0,0,f)) f=v, and alu(0,v,0,f)
) f=v. Additional FLEs are an easy way of describing choices. Their e�ect on the complexity
of the matching algorithm can be neglected.

Strength reduction, which sometimes is cited as a possible preprocessing step, has its problems. Even
if applied to both the system and the component behaviour, it cannot be guaranteed that all possible
implementations will be found. For example, consider multiplication by two. Using additional FLEs,
we will create entries at components, which are able to multiply, add, or shift. A unique reduction
to one of the three operations is not possible.

In the following, we are going to use an abstract data type expression. Expressions are described
by trees. Each node in the tree represents some operation, constant, or a free variable. Functions
IsOper, IsConst, IsFree, Oper, V alue, and Width are de�ned on these nodes and return the type
of a node, the operation or the value it represents and its bitwidth, respectively.

3.2 Matching Simple Operations

Within this section we treat the matching process with simple operations, and how it is used in the
vertical synthesis algorithm. The behavioural description of components is restricted to simple opera-

tions: Each statement in the component declaration may contain only a single operation. Arguments
may be input/output signals, constants or the internal state.

Module alu of the previous section performs simple operations only. But module sadd don't,
because 'SHIFTLL (a + b)' is a composite operation. Therefore, it is required to implement complex
system behaviour by a set of component activations.
Example:
The assignment cc := (SHIFTLL (a+b))=0 has to be covered by matching right hand side of FLEs.

The order in which this cover is computed, does not matter. The following is a sequence of replace-
ments of expressions by component activations (f, g and h denote signals):

cc := (SHIFTLL (a+b))=0
�! PARBEGIN alu� (a,b,0,f); cc:=(SHIFTLL(f))=0; PAREND
�! PARBEGIN alu(a,b,0,f); sadd(f,0,0,g); cc:=g=0; PAREND
�! PARBEGIN alu(a,b,0,f); sadd(f,0,0,g); comp(g,h); cc:=h; PAREND
�! PARBEGIN alu(a,b,0,f); sadd(f,0,0,g); comp(g,h); cc(h,0,X); PAREND

The matching of system and component behaviour is de�ned by the following three functions:

1. Range: expression ! boolean.

Range(o) :=

8>>><
>>>:

true : if it is semantically legal and desirable to use only a
subrange of input arguments if the output is also
correspondingly restricted

false : otherwise

The purpose of this function is to allow e.g. 8-bit additions to be implemented by an 16-bit
adder but to inhibit the use of subranges, if this would require implementing sign-extensions.
Hence, Range is true for additions, but false for signed magnitude comparisons.

2. Arg: expression � expression � operation ! boolean.

Arg(Sys;
e; op) :=

8>>><
>>>:

true : if IsConst(fle) ^ IsConst(Sys)^ V alue(fle) = V alue(Sys)
true : if IsFree(fle) ^ (Width(fle) �Width(Sys)) ^Range(op)
true : if IsFree(fle) ^ (Width(fle) =Width(Sys)) ^ :Range(op)
false : otherwise

The purpose of this function is to check if the argument Sys of an operation op in the system
speci�cation matches an argument fle in the FLE. If fle denotes a free variable, it is su�cient
to check the bitwidth. If the argument denotes a constant, the constant's value must be checked.

3. Match: expression � expression ! boolean.

Match(Sys;
e) :=

8>>>>><
>>>>>:

true : if Oper(fle) = Oper(Sys)
^ Width(fle) � Width(Sys)
^ Arg(s; f;Oper(fle)) is true for all pairs (s; f)
of the operation's arguments

false : otherwise

This function checks, whether or not two operations and their arguments match.

Let us now turn to the problem of selecting a su�cient number of instances of component types.
In some synthesis tools, the number of components is minimized by using NP-hard clique partitioning
[Sie83]. Pfahler [Pfa88] pointed out, that this is the wrong solution method, because the minimum
number of components can be computed in linear time using the left edge algorithm. In fact, the
problem itself is oversimpli�ed. One should at least try to minimize component costs.

Let M be the set of component types and let m 2 M be any component type. Let cm be
the cost and let xm be the number of instances of type m. The objective then is to minimize
c =
P

m2M (xm � cm).
We now have to compute the set of constraints for xm. Let o be an operation. De�ne a relation

matches such that o matches m () there exists a FLE e of m such that Match(o; e) = true. Let
fi;j be the number of operations of type j used in control step i. Let Fi = fj j fi;j > 0g be the set of
operations used in control step i. Let F �

i be the powerset of Fi, that is, the set of all subsets of Fi.
Let ag;m be 1 () 9 o 2 g o matches m and 0 otherwise. Then, a condition for a su�cient number
of copies is that

8i;8g 2 F �
i :
X
m2M

(ag;m � xm) �
X
j2g

fi;j (1)

This means: for all control steps and for each subset of operations, the number of instances of
components which are able to perform any of the operations in the subset, must at least be equal to
the operation frequency in the control step.

These conditions are also necessary unless some components are able to perform several functions
in one control step. The vertical synthesis tool does not try to allocate several operations to a single
component (apart from common subexpressions and storage-READs and -WRITEs).

Let bg =
max
i
(
P

j2g fi;j) and let F � =
S
i
F �
i be the union of the F 0

i s.
Then, from (1) it follows that:

8g 2 F � :
X
m

(ag;m � xm) � bg (2)

Module selection therefore reduces to minimizing c =
P

m2M (xm � cm) subject to the set (2) of
constraints. This is a classical integer programming problem.
Example:
Assume that the library components are able to perform the following functions (again, we omit
bitwidths):

m=1: f+g; m=2: f+,-g; m=3: f+,ORg; m=4: f-g
A control step containing one addition and one subtraction would generate the following three rela-
tions:

f+g : 1 � x1 + 1 � x2 + 1 � x3 + 0 � x4 � 1
f�g : 0 � x1 + 1 � x2 + 0 � x3 + 1 � x4 � 1
f+;�g : 1 � x1 + 1 � x2 + 1 � x3 + 1 � x4 � 2

A second control step containing two additions would update this to:

f+g : 1 � x1 + 1 � x2 + 1 � x3 + 0 � x4 � 2
f�g : 0 � x1 + 1 � x2 + 0 � x3 + 1 � x4 � 1
f+;�g : 1 � x1 + 1 � x2 + 1 � x3 + 1 � x4 � 2

The last relation is redundant now because it is covered by the �rst. A relation y is covered by
a relation z i� all coe�cients 6= 0 in y are also 6= 0 in z and the constant term of z is equal to or
greater than the constant term of y. In the vertical synthesis tool, covered relations are removed on
the
y, that is, while updating the relations for new control steps. This example demonstrates, that
the number of relations does not grow linearly with the number of control steps. In fact, it may even
decrease.

The number of relations usually is rather small, because control steps typically contain only a
small number of di�erent operation types. However, if many operators of di�erent bitwidths are
present in some control steps, jF �

i j can become quite large. Therefore, we have added a partitioning
step.

Let o and q be operations occuring in the system speci�cation. De�ne a relation � such that
o � q () there exists a component m with (o matches m) ^ (q matches m). Let �� be the
transitive closure of �. Then, let o and q be in the same partition pi () o �� q. Let Pi be the set
of component types matching with at least one operation of pi. Then, relations (2) can be generated
for each set pi of operations and each set Pi of components separately. Note, only those operations,
which actually occur in the system speci�cation are used for partitioning. Two components, which
are able to perform the same function, do not necessarily belong to the same partition (this function
could be unused).

Frequently, hardwired constants, arithmetic operations, operations with boolean results, multipli-
cations all belong to separate partitions pi. The following table gives an impression of the complexity
of the integer programming problem for two practical examples. The execution times for the Gomory-
I integer programming algorithm could be improved signi�cantly by setting up separate component
index spaces (m-spaces) for each partition.

cpu-time
Example partition pi operations variables relations

[3 MIPS]

pdp-8 1 mux 2 1 � 2 msec
2 0 1 1 � 1 msec
3 +,-,AND,OR,NOT,<,>,� 7 7 � 3 msec

mc68.000 1 +,-,AND,OR,*,DIV,XOR 7 11 � 121 msec
2 =,<,<>,<= 10 10 � 120 msec
3 SHIFTxx 2 2 � 90 msec
4 mux 2 1 � 86 msec

5-14 partitions with jPij=1 1 1 � 87 msec

Note that the number of variables is equal to the number of available component types. Libraries
of about 100 component types can be easily handled. Due to the low complexity, no special handling
is implemented for the trivial cases jpij = 1 or jPij = 1.

3.3 Matching Complex Operations

The concept of matching complex operations allows for the implementation of complex assignments
by a single component activation. The component description contains signal assignments to outputs
and assignments to the local state. In either case the right hand side is an expression e made up from
constants, signals, state-accesses, and operations among them:
e ::= const j signal j var j var[e] j �(e1; : : : ; en), where � is an n�ary operation, signal is an input
signal, and var is an internal state variable of the component.

The matching of complex operations is described using the SuccAss implementation as the exam-
ple. The SuccASS tool accepts arbitrarily complex FLEs. The expression 'SHIFTLL (a + b)' of
section 3.2 can be implemented by a single activation of a component of type alu e.g..

Matching system and component behaviour uses the function Match0, which is de�ned as follows:

Match0(Sys;
e; op) :=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

u : if IsOper(fle) with u de�ned as:
u = IsOper(Sys) ^ (Oper(Sys) = Oper(fle))^
Match0(s; f;Oper(Sys)) is true for all arguments (s; f)

v : if IsConst(fle) with v de�ned as:
v = IsConst(Sys) ^ V alue(Sys) = V alue(Comp)

w : if IsFree(fle) with w de�ned as:
w = (Width(fle) �Width(Sys)) ^Range(op)
_(Width(fle) =Width(Sys)) ^ :Range(op)

This function now recursively examines both expressions. Note, that free variables are never used
as arguments of the initial call. Therefore, the value op of the initial call is redundant.

Computation of covers of system behaviours now should start at the root of assignments and
continue at the subexpressions corresponding to the free variables of the FLEs. The following is a
sequence of replacements of expressions by component activations for the example of section 3.2:

cc := (SHIFTLL (a+b))=0
�! PARBEGIN cc(h,0,X); h <- (SHIFTLL (a+b))=0 PAREND
�! PARBEGIN cc(h,0,X); comp(g,h); g <- (SHIFTLL (a+b)) PAREND
�! PARBEGIN cc(h,0,X); comp(g,h); sadd(a,b,3,h) PAREND

In the case of several covers, the version with minimum costs is selected. Costs are calculated by
preliminary
oor-planning.

SuccASS generalizes component allocation in that several operations can be allocated to one
component unless this results in a con
ict at some of the component's inputs. This alleviates the
special handling of storage-READs and -WRITEs, which was necesaary in the vertical synthesis tool.
To this end, SuccASS de�nes a con
ict relation among FLEs. This con
ict relation is used during
component allocation.

Further details about SuccASS are beyond the scope of this paper and will be presented separately.

3.4 Codegeneration

The matching between system and component behaviour has also to be performed by our retargetable
codegenerator called MSSC [Now87]. The codegenerator does not actually synthesize hardware struc-
tures. Rather, it accepts a given hardware structure and generates the binary program such that this
hardware behaves as speci�ed in a high-level programy. In this paper, MSSC is just mentioned for
the sake of completeness because it also has to match di�erent behavioural descriptions: it performs
a match between the high-level program and the given RT-level structure. This match based upon a
graph representation of the complete system [Now87]. Matching nodes of this graph and the system
behaviour follows the principles described above.

4 Future Work

FLE-concepts make it easy to add extensions. Three extensions could be easily implemented:

ySome authors, however, refer to this process as microcode synthesis [Mue83]

1. Parallel blocks: the left hand side of the implications could consist of several activations in a
parallel block. This could be used if several components have to be activated in order to perform
the required function. For example, the activation of the alu and a comparator may be required
to perform a certain test. Another example is a set of alu-slices, which have to be activated in
the same control step.

2. Sequential blocks: the left hand side could contain a sequential block. This could be used e.g. to
load the input registers of some component before actually performing the required operation.

3. Generic components: the matching mechanism could be extended to generic components. This
would help in VHDL-environments.

5 Conclusion

We have presented the concept of functions list entries (FLEs), which allow formal reasoning about
functions performed by available components. This concept has been shown to be general enough to
model a large number of practical system implementation problems. These entries can be created
from a source level description of available components.

References

[Bal89] M. Balakrishnan, P. Marwedel: Integrated Scheduling and Binding: A Synthesis Aproach
for Design Space Exploration, 26th Design Automation Conference, 1989

[Bro89] O. Bro�: RT-Synthese mittels fortgesetzter Ann�aherung, master's thesis, Institut f�ur In-
formatik, University of Kiel, Aug. 1989

[Dut89] N. Dutt: A Framework for Behavioral Synthesis from Partial Design Structures, PhD-
thesis, University of Illinois at Urbana-Champaign, 1989

[Har89] P. Harper, S. Krolikoski, O. Levia: Using VHDL as a Synthesis Language in the Honeywell
VSYNTH System, 9th Int. Symposium on Computer Hardware Description Languages,
1989

[Hor74] A.S. Hornby: Oxford Advanced Learner's Dictionary of Current English, Oxford University
Press, 1974

[Lei81] G.W. Leive: The Design, Implementation and Analysis of an Automated Logic Synthesis
and Module Selection System, PhD thesis, Carnegie-Mellon University, Pittsburgh, 1981

[Mar86] P. Marwedel: A New Synthesis Algorithm for the MIMOLA Software System, Proc. 23rd
Design Automation Conference, 1986, pp. 271-277

[J�oh89] R. J�ohnk, P. Marwedel: MIMOLA Reference Manual, Version 3.45, Report 8902, University
of Kiel, Institut f�ur Informatik, 1989

[Mar79] P. Marwedel: The MIMOLA Design System: Detailed Description of the Software System,
Proc. 16th Design Automation Conference, 1979, pp. 59-63

[Mar86a] P. Marwedel: An Algorithm for the Synthesis of Processor Structures from Behavioural
Speci�cations, Microprocessing and Microprogramming, Vol. 18, 1986, pp. 251-262

[Mue83] R.A. Mueller, J. Varghese: Flow Graph Machine Models in Microcode Synthesis, 16th
Annual Microprogramming Workshop (MICRO-16), 1983, p. 159-167

[Now87] L.Nowak : Graph Based Retargetable Microcode Compilation in the MIMOLA Design
System, Proc. 20th Annual Workshop on Microprogramming (MICRO-20), Dec.1987, p.
126-132

[Pfa88] P. Pfahler: �Ubersetzermethoden zur automatischen Hardware-Synthese, PhD-thesis, Uni-
versity of Paderborn, 1988

[Sie83] D.P. Siewiorek, C.J. Tseng: Facet: A Procedure for the Automated Synthesis of Digital
Systems, 20th Design Automation Conf., 1983, p. 490-496

