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1. Introduction

1.1 Motivation
Usually the semantics of a hardware description language is either implicitly given by a simulator or
is in the mind of  the designer of the language. Therefore, a good documentation or a formal semantic
definition is of great importance for every user of the language. This report is intended to fill this gap
in the context of MIMOLA.

MIMOLA [BMSJ91] is a computer hardware description language (CHDL) which has been influen-
ced by other hardware description languages like VHDL [IEEE88] and DACAPO [DOS87]. TREE-
MOLA is the language that is used to exchange design data between different CAD-tools in the
MIMOLA hardware design system MSS,[Kel87], [Mar90].

Using first order predicate calculus [Scho89] a formal semantic definition is obtained for a subset of
the intermediate language TREEMOLA. This report is expected to be read along with theTREE-
MOLA Language Reference Manual Version 4.0[Bec91], since all structures defined there serve as a
basis for the semantic definition. Organization of this document is similar to the TREEMOLA Manual
and therefore some node definitions may be used before their formal  definition appear. The goal of
this report is to fix the semantic of module declarations of the type <UniTyp>. The reason for
restriction to this subset of all node types is to deal primarily with circuit descriptions, after a synthesis
is performed. For this reason not all tree alternatives, which are possible using the node types below,
are considered. An extension to deal with all TREEMOLA nodes is possible, but there are still some
difficulties that need to be resolved especially with constructs like loops, or treatment of all compound
statements. On the other hand, there are no problems in dealing with multiple instances of a module
because it is possible to generate unique variable identifiers by substitution of <instance_name>.<i-
dentifier> for <identifier>. The derivation of a logic program from a correct logic description can lead
to a simulator for  hardware description languages such as MIMOLA. A detailed description of the
techniques concerning derivation of logic programs is given in [Devi90]. The idea of formulating this
semantic was inspired by the bookVerifikation digitaler Systemewritten by Hans Eveking [Eve91].

1.2 Notation
The type of nodes is similar as in the TREEMOLA Manual. Some abbreviations used in the report are
shown in the following table.

Table 1: abbreviations

[Tmin,Tmax] time interval, Tmin, Tmax∈ N0 and Tmin ≤ Tmax

a address tree

e expression tree

t time, nonnegative integer

K set of nodes

N set of nonnegative integers

N0 set of positive integers

R set of edges

SQ table of Signals and States
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1.3 Basic Definitions

Definition 1.1:
A treebn (behavior node) out of a TREEMOLA unit module description is a structure of the type
<nodeentry>.BN is the set of all behavior  nodes bn.

The  semantic definition is  given for the following subset of node types:

<typ> ::=  <BhvTyp> | <CCtTyp> | <CatTyp> | <CdsTyp> | <DstTyp> | <FctTyp> | <HllTyp> |

 <IfcTyp> | <IniTyp> | <IntTyp> | <NumTyp> | <SigTyp> | <SrcTyp> | <UniTyp> |

 <VarTyp>

Definition 1.2:
A TREEMOLA unit module description is a treeT(K, R) , K ⊂ BN a set of nodes, and R⊂ K × K,
with the following characteristics:

1. There is exactly one root w∈ K of the type <UniTyp>:∀ f, s∈ K: ((f, s)∈ R ⇒ s≠ w)
2. ∀ s∈ K with s≠ w, exist exactly one sequence (f0, ...,fn), 1 ≤ n, 0 ≤ i ≤ n-1 , fi ∈ K: (fi, fi+1)

∈ R, w = f0, s = fn.

Given a tree T(K, R) and w, r∈ K;  The son s is a subtree defined as a tree Tr(Kr, Rr) with the root r
∈ Kr, Kr ⊂ K, Rr ⊂ R and (w, r)∈ R. If s denotes a son, then s is  an entire subtree and if T(K, R) is a
tree with the root w∈ K thenTr(Kr, Rr) denotes asubtree with the root r∈ K.

Definition 1.3:
Given a tree T(K, R) and f∈ K;  the setSONS(f) is defined as:

SONS(f) := {s | s is a son of f}

Definition 1.4:
Given a tree T(K, R), f∈ K and SONS(f) is the set of sons of f , and c = |SONS(f)| is the number of
sons of f; O(s) is a function, allocating all sons of f a unique ordinal number i ∈ N, with 1 ≤ i ≤ c, in
the following way:

∀ si, sj ∈ SONS(f), (si ≠ sj): O(si) ≠ O(sj)

To decide whether the behavior of a circuit is possible (TRUE) or not (FALSE), it must be possible to
store values of signals, memories and registers. Therefore it is assumed that there is a large 3-dimen-
sional table SQ (Signals and States), in which an arbitrary number of values of signals, registers and
memories can be stored asbitstrings. The function f2  is able to  access this table. f2 needs the  para-
meters <identifier>, <address>, <time> and SQ to return the value of an identifier with a given address
at a definite time. Additionally, function f2 requires a bit number i to select   bit i of the considered
bitstring. If no address is available (e.g.  for registers and signals), the default address is taken as 0.

Definition 1.5.1:
Given a 3-dimensional tableSQ, a string <identifier> of arbitrary length, an address <address> ∈ N0,
a time <time>∈ N0 and a bit number i∈ N0 the function f2  is defined as follows:

f2 SQ identifier〈 〉 address〈 〉 time〈 〉 i, , , ,( ) 0 1 X, , Z{ , }→
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Expressions are evaluated in a similar manner. If there is an expression tree T(K,R) with the root e∈
K (usually e is of the type <FctTyp>, i.e. built in function type) the two functions exp2 and exp10 are
able to return the value of an expression at time t. Function exp2 requires a bit number i to select   bit
i of the considered  expression whereas exp10 returns a decimal value. A conversion from decimal
values to binary values or vice versa may be sometimes needed. This is possible if there are no bits
set to X or Z and only for this case exp10 is defined.

Definition 1.5.2:
Given a 3-dimensional tableSQ, an expression e, a time <time>∈ N0 and a bit number i∈ N0 the
functions exp2  and exp10 are defined as follows:

Here the entire tree T(K, R) with the root e serves as an identifier. If all bits of an expression, given as
a bitstring b ∈ (0, 1)n+1 with n = high-low,  are defined  by exp2, then b can be converted into a deci-
mal value d∈ N0 as follows:

Here b[i] denotes the i.th bit of the bitstring b. Decimal values are usually required for addresses. In
most other cases the representation of signal values as bitstrings is prefered.

For a given tree or subtree  T(K,R) and its root s∈ K a predicate I has to be defined. This predicate
decides whether a sequence of states in a given time interval and for the circuit described by T(K,R)
is  a feasible sequence or not.

Later on delay values are deduced from the field <delay_key>. Delays are necessary when assignment
trees are considered, i.e. nodes of the type <DstTyp>. It is assumed that delay values are calculated
correctly with respect to signals going up or down.

In the following, a tree T(K, R) and its root r∈ K  are denoted as r(s1, ..., sn). Every si with 1 ≤ i ≤ n
is a subtree

with the root ri. Here SONS(r) = s1, ..., sn are the sons of r and for all si holds O(si) = i. It is possible
that the set of sons of a node is empty. In this case the node is a leaf. This leads to an interpretation
predicate I as follows.

Definition 1.6:
Given a tree  r(s1, ..., sn) and a time interval Tmin to Tmax (Tmin, Tmax∈ N0 and Tmin ≤ Tmax) and the
3-dimensional table SQ described above;  the interpretation predicateI  is defined as:

exp2 SQ e time〈 〉 i, , ,( ) 0 1 X, , Z{ , }→

exp10 SQ e time〈 〉, ,( ) N→
0

d 2
i

b i[ ]⋅
i 0=

n

∑=

Tri
Kri

Rri
,( )

I r s1 … sn, ,( ) Tmin Tmax,[ ] SQ, ,( ) TRUE FALSE{ , }→
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2. Primary Design Unit
According to [Bec91] the node structure as defined in chapter 1.4 of the TREEMOLA Manual is used.
Therefore, the type of a concurrent  node  is abbreviated as <CCtTyp> and identified by the quotation
marked character ‘u’ if the identifier is used separately. In association with a tree or another construct,
quotation marks are omitted.

Starting point of the interpretation is always a unit module description U(s1, ..., sn) with the root ‘U’
of the type <UniTyp>. In this report the subtrees of the sons of ‘U’ are restricted to an interface tree,
a behavior tree and an initialization tree.

Definition 2.1:
Given a TREEMOLA unit module description U(s1, ..., sn) with the root ‘U’ of the type <UniTyp> ;
{s1, ..., sn} ⊆ {‘i’, ‘o’, ‘e’} the set of sons of ‘U’; the tree ‘i’ of the type <IfcTyp> (interface type); the
tree ‘o’ of the type <BhvTyp> (behavior type); the tree ‘e’ of the type <IniTyp> (initialization type).
I(U(s1, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ i, 1 ≤ i ≤ n: I(si, [Tmin, Tmax], SQ)

Definition 2.2:
Given a TREEMOLA unit module description i(s1, ..., sn) with the root ‘i’ of the type <IfcTyp>;
I(i(s1, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ i, 1 ≤ i ≤ n: I(si, [Tmin, Tmax], SQ)

An interface tree consists of one or several ports described by nodes of the type <SigTyp>.

Definition 2.3:
Given a TREEMOLA unit module description ‘S’ with the root ’S’ of the type <SigTyp>, i.e. ‘S’ is a
leaf; the number <port_number> of the port ‘S’;  the range <bit_range> = (high, low);
I(S, [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ i ∈ N0, (low ≤ i ≤ high)Λ ∀ t, Tmin < t ≤ Tmax:

(f2(SQ, <port_number>, 0, t, i) = 1)∨
(f2(SQ, <port_number>, 0, t, i) = 0)∨
(f2(SQ, <port_number>, 0, t, i) = X) ∨
(f2(SQ, <port_number>, 0, t, i) = Z)∨

(f2(SQ, <port_number>, 0, t, i) = f2(SQ, <port_number>, 0, t-1, i))

The meaning of the last alternative is a storing property of signals. That means, if there is no explicit
assignment to a signal at time t, the value at the predecessor time t-1 is assumed to be holding. The
field PartId is not used as long as the behavior of just one module instance is considered. The <port_-
number>,  however, is significant. Logically the port mode (IN, OUT, INOUT, CLK) is unimportant.

3. Structure
In this report the structure tree is not considered.

It is possible to describe a complete finite state machine by one TREEMOLA unit module description
U(s1, ..., sn). The structure tree is not considered  because components of the part tree are just dupli-
cates of the modules defined in the module type tree and therefore the only demand is to create unique
identifiers. All connections of the netlist can be considered as equalization of variables. A signal con-
necting a source part with a destination part is represented  byone variable.  These signals are not
allowed to  have a delay key and therefore it is possible to use the same variable  at the source part as
well as at the destination  part for all times t.
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4. Behavior
A behavior tree o(s1, ..., sn) describes the complex behavior of a module and there is an optional decla-
ration subtree and at least one compound statement si. Semantics of a variable declaration is given in
chapter 8.

Definition 4.1:
Given a TREEMOLA unit module description  o(s1, ..., sn) with the root ‘o’ of the type <BhvTyp>;
I(o(s1, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ i, 1 ≤ i ≤ n: I(si, [Tmin, Tmax], SQ)

Only trees of the type <VarTyp> or <CCtTyp> are possible as sons of ‘o’. Moreover, at the level con-
sidered here, concurrent statements are the only possible compound statements. Trees of the type
<SeqTyp>, <SSqTyp> and <ParTyp> are not considered.

Definition 4.2:
Given a TREEMOLA unit module description u(s1, ..., sn) with the root ‘u’ of the type <CCtTyp>;
I(u(s1, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ i, 1 ≤ i ≤ n: I(si, [Tmin, Tmax], SQ)

Sons of the concurrent statement could be a simple, a  structured or another compound statement.

Definition 4.3.1:
Given a TREEMOLA unit module description :(e) with the root ‘:’ of the type <DstTyp>  and OpId
= LOAD, PartId = <part_identifier>, Range = <bit_range> = (high, low), Keys = <delay_keys>; the
son ‘e’, i.e. |SONS(‘:’)| = 1 (register assignment),  is an expression;  appropriate delay values ∈ N0
are deduced from <delay_keys>;I(:(e), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax Λ ∀ i ∈ N0, (low ≤ i ≤ high):

f2(SQ, <part_identifier>, 0, i, t+delay) = exp2(SQ, e, t, i)

If the register is not loaded at a time t, it is assumed that, with respect to definition 8.2, the predecessor
value at time t-1 is valid.

Definition 4.3.2:
Given a TREEMOLA unit module description :(e, c) with the root ‘:’ of the type <DstTyp>  and OpId
= CONDLOAD, PartId = <part_identifier>, Range = <bit_range> = (high, low), Keys = <delay_-
keys>; the sons ‘e’, ‘c’ of the node ‘:’, with O(e) = 1 and O(c) = 2, i.e. |SONS(‘:’)| = 2 (register assi-
gnment), are an expression and a condition;  appropriate delay values ∈ N0 are deduced from
<delay_keys>; I(:(e, c), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax(exp2(SQ, c, t, 0) = 1Λ ∀ i ∈ N0, (low ≤ i ≤ high):

f2(SQ, <part_identifier>, 0, i, t+delay) = exp2(SQ, e, t, i))
∨ (exp2(SQ, c, t, 0) = 0)

The range of the condition ‘c’ is always low = high = 0 and therefore exp2(SQ, c, t, 0) is evaluated.

Definition 4.4.1:
Given a TREEMOLA unit module description :(e, a) with the root ‘:’ of the type <DstTyp>, OpId =
LOAD, PartId = <part_identifier>, Range = <bit_range> = (high, low), Keys = <delay_keys>; the
sons ‘e’, ‘a’ of the node ‘:’, with O(e) = 1 and O(a) = 2, i.e. |SONS(‘:’)| = 2 (memory assignment),  are
an expression and an address;  appropriate delay values ∈ N0 are deduced from <delay_keys>;
I(:(e, a), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax Λ ∀ i ∈ N0, (low ≤ i ≤ high):
 f2(SQ, <part_identifier>, exp10(SQ, a, t), i, t+delay) = exp2(SQ, e, t, i)



8

Definition 4.4.2:
Given a TREEMOLA unit module description :(e,a,c) with the root ‘:’ of the type <DstTyp>, OpId =
CONDLOAD, PartId = <part_identifier>, Range = <bit_range> = (high, low), Keys = <delay_keys>;
the sons ‘e’, ‘a’, ‘c’ of the node ‘:’,  with O(e) = 1, O(a) = 2 and O(c) = 3, i.e. |SONS(‘:’)| =3 (memory
assignment), are an expression, an address and a condition;  appropriate delay values ∈ N0 are dedu-
ced from <delay_keys>;I(:(e, a, c), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax(exp2(SQ, c, t, 0) = 1 Λ ∀ i ∈ N0, (low ≤ i ≤ high):

f2(SQ, <part_identifier>, exp10(SQ, a, t), i, t+delay) = exp2(SQ, e, t, i))
∨ (exp2(SQ, c, t, 0) = 0)

Definition 4.5:
Given a TREEMOLA unit module description :(e) with the root ‘:’ of the type <DstTyp>, OpId =
OUTPUT, Port = <port_number>, Range = <bit_range> = (high, low), Keys = <delay_keys>; the son
‘e’ of the node ‘:’, i.e. |SONS(‘:’)| = 1,  is an expression;  appropriate delay values ∈ N0 are deduced
from <delay_keys>;  It follows thatI(:(e), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax Λ ∀ i ∈ N0, (low ≤ i ≤ high):

f2(SQ, <port_number>, 0, i, t+delay) = exp2(SQ, e, t, i)

The signal assignment tree which denotes an assignment to a (local) signal is not considered here,
because it is assumed that there remain no local signals after the synthesis  is performed. Therefore an
interpretation predicate for nodes of the type <DstTyp> with OpId = SIGASSIGN is not defined.

Definition 4.6:
Given a TREEMOLA unit module description ‘:’ with the root ‘:’ of the type <DstTyp>,  OpId =
NOLOAD and PartId = <part_identifier>;I(:, [T min,Tmax], SQ) is always a true interpretation.

Later in definition 8.2 it is guaranteed that, without using the NOLOAD statement, the values of the
predecessor time t-1 are  held for all registers and memories if there is no explicit assignment at time
t. A NOLOAD statement does not lead  to an activity but indirectly it is assumed that the values of a
register or memory are not changed.

Up to this point, the complete time interval [Tmin, Tmax] has been passed through the interpretation
predicates. The next definitions concerning the structured statements AT, IF and  CASE are slightly
different because they invoke their sons only at a determined time t.

Definition 4.7.1:
Given a TREEMOLA unit module description !(e, s2, ...,sn) with the root ‘!’ of the type <HllTyp>,
OpId = AT,  PartId = UP;  the son ‘e’ of the node ‘!’ with O(e) = 1  being an expression;
I(!(e, s2, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax:

(exp10(SQ, e, t) = 1Λ exp10(SQ, e, t-1) = 0Λ ( ∀ i, 2 ≤ i ≤ n: I(si, t, SQ)))

∨ (exp10(SQ, e, t) = 0)∨ (exp10(SQ, e, t-1) = 1)

Definition 4.7.2:
Given  a TREEMOLA unit module description !(e, s2, ...,sn) with the root ‘!’ of the type <HllTyp>,
OpId = AT,  PartId = DOWN;  the son ‘e’ of the node ‘!’ with O(e) = 1 being an expression;
I(!(e, s2, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax:

(exp10(SQ, e, t) = 0Λ exp10(SQ, e, t-1) = 1Λ (∀ i, 2 ≤ i ≤ n: I(si, t, SQ)))

∨ (exp10(SQ, e, t) = 1)∨ (exp10(SQ, e, t-1) = 0)
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Definition 4.7.3:
Given  a TREEMOLA unit module description  !(e, s2, ...,sn) with the root ‘!’ of the type <HllTyp>,
OpId = AT,  PartId = HIGH;  the son ‘e’ of the node ‘!’ with O(e) = 1 being an expression;
I(!(e, s2, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax:

(exp10(SQ, e, t) = 1Λ (∀ i, 2 ≤ i ≤ n: I(si, t, SQ)))

∨ (exp10(SQ, e, t) = 0)

Definition 4.7.4:
Given  a TREEMOLA unit module description !(e, s2, ...,sn) with the root ‘!’ of the type <HllTyp>,
OpId = AT,  PartId = LOW;   the son ‘e’ of the node ‘!’ with O(e) = 1 being an expression;
I(!(e, s2, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax:

(exp10(SQ, e, t) = 0Λ (∀ i, 2 ≤ i ≤ n: I(si, t, SQ)))

∨ (exp10(SQ, e, t) = 1)

Definition 4.8:
Given  a TREEMOLA unit module description ?(c, s1, s2) with the root ‘?’ of the type <CdsTyp>,
OpId = IF;   the sons ‘c’, ‘s1’, ‘s2’ of the node ‘?’, with O(c) = 1, O(s1) = 2 and O(s2) = 3, i.e.
|SONS(‘?’)| =3  are a condition and two statements (then and else);I(?(c, s1, s2), [Tmin,Tmax], SQ)
is a true interpretation :⇔

∀ t, Tmin < t ≤ Tmax:

(exp2(SQ, c, t, 0) = 1Λ I(s1,  t, SQ))∨ (exp2(SQ, c, t, 0) = 0Λ I(s2,  t, SQ))

The meaning of an IF statement is that the first statement is executed if the value of the condition ‘c’
is 1, otherwise the second statement is executed. The range of the condition ‘c’ is always low = high
= 0 and therefore exp2(SQ, c, t, 0) is evaluated, i.e. the selected bit number is 0.

Definition 4.9:
Given  a TREEMOLA unit module description !(e, s2, ...,sn) with the root ‘!’ of the type <HllTyp>,
OpId = CASE; the son ‘e’ of the node ‘!’ with O(e) = 1, being an expression;  all trees ‘si’ are of the
type <HllTyp> with OpId = OF or ELSE;
I(!(e, s2, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ t ∃  i, 2 ≤ i ≤ n Λ (
(OpId = OF Λ |SONS(si)| = nΛ n > 1Λ ∃ c ∈ SONS(si) Λ O(c) < nΛ

exp10(SQ,e, t) = exp10(SQ, c, t)Λ st∈ SONS(si) Λ O(st) = nΛ I(st, t, SQ) ) ∨
(OpId = ELSEΛ |SONS(si)| = 1Λ st∈ SONS(si) Λ I(st, t, SQ)))

The only possibility to fix the semantics of a tree of the type <HllTyp> with OpId = OF or OpId =
ELSE is to look at these nodes in association with the CASE structure. In contrast  to a CASE-expres-
sion  (given in definition 9.7) a CASE-statement returns no value. In the TREEMOLA language the
OF and ELSE sons are always of the type <HllTyp> (high level language type) and therefore these
two cases are only distinguishable by the CASE node. A CASE-expression is of the type <FctTyp>
and a CASE-statement of the type <HllTyp> and thereby the conflict is resolved.
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5. Reservations
The reservation tree is not considered at this level of circuit representation.

6. Initializations
Definition 6.1

Given  a TREEMOLA unit module description e(s1, ...,sn) with the root ‘e’ of the type <IniTyp>; the
address range of an ‘si’  is (mini, maxi) with mini, maxi ∈ N0; <identifier>i is the OpId  of an ‘si’;
Range = <bit_range> = (highi, lowi) is the bit range of ‘ci’ ∈ SONS(si) (constant expression);
I(e(s1, ..., sn), [Tmin,Tmax], SQ) is a true interpretation:⇔

∀ i, 1 ≤ i ≤ n Λ ∀ address∈ N0, mini ≤ address ≤ maxi Λ ∀ j ∈ N0, (lowi ≤ j ≤ highi):

f2(SQ, <identifier>i, address, 0, j) = exp2(SQ, ci, 0, j))
The meaning of this definition is, that at time 0 a register or a memory is initialized by a constant
expression. In case of addressable memory, all cells  within the address range are initialized by the
same constant.

7. Macros
Macro trees are not considered at this level of circuit representation.
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8. Declarations
Only signal declaration trees and variable declaration trees are considered.

Definition 8.1:
Given  a TREEMOLA unit module description S(s1, ...,sn) with the root ‘S’ of the type <SigTyp>; the
OpId = <identifier> of a ‘sj’;  the Range <bit_range> = (high, low) of a ‘sj’;
I(S(s1, ..., sn), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ j, 1 ≤ j ≤ n Λ ∀ i ∈ N0, (low ≤ i ≤ high)Λ ∀ t, Tmin < t ≤ Tmax:

(f2(SQ, <identifier>, 0, t, i) = 1)∨
(f2(SQ, <identifier>, 0, t, i) = 0)∨
(f2(SQ, <identifier>, 0, t, i) = X) ∨
(f2(SQ, <identifier>, 0, t, i) = Z)∨

(f2(SQ, <identifier>, 0, t, i) = f2(SQ, <identifier>, 0, t-1, i))

Again the meaning of the last alternative is a storing property of signals. That means, if there is no
explicit assignment to a signal at time t, the value of the predecessor time t-1 is assumed to be holding.
It is possible that there are several sons ‘sj’ of the root ‘S’. Every tree ‘sj’ has got its own unique iden-
tifier and range.

Definition 8.2:
Given  a TREEMOLA unit module description V(_1(s1, s2, s3, s4, s5), ...,_n(s1, s2, s3, s4, s5)) with the
root ‘V’ of the type <VarTyp>, ‘_k’ and ‘s1’ of the type <SrcTyp>; ‘s2’, ‘s3’, ‘s4’, ‘s5’ of the type
<NumTyp>; OpId = <identifier> of a ‘_k’; the range <bit_range> = (high, low)  of a ‘_k’; the constant
expression exp10(SQ, s3, t) = <size_number> ∈ N is the number of cells required for the variable;
I(V(_1(s1, s2, s3, s4, s5), ...,_n(s1, s2, s3, s4, s5)), [Tmin,Tmax], SQ) is a true interpretation :⇔

∀ k, 1 ≤ k ≤ n Λ ∀ i, j ∈ N0, (1 ≤ j ≤ <size_number>, low≤ i ≤ high)Λ ∀ t, Tmin < t ≤ Tmax:

(f2(SQ, <identifier>, j, t, i) = 1)∨
(f2(SQ, <identifier>, j, t, i) = 0)∨
(f2(SQ, <identifier>, j, t, i) = X) ∨
(f2(SQ, <identifier>, j, t, i) = Z)∨

(f2(SQ, <identifier>, j, t, i) = f2(SQ, <identifier>, j, t-1, i))

Again the meaning of the last alternative is a storing property of variables, i.e. memories or registers.
Every tree ‘_k’ has got its own unique identifier and range.

The other type declaration trees (e.g. referenced type, range type, bit type, field type, array type,
record type, subprogram type) are not considered here.
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9. Expressions
The treatment of expressions is done in the same order  as in the TREEMOLA Manual. From amongst
several  standard operators  available in MIMOLA [BMSJ91] we shall demonstrate the   definition for
the following operators to illustrate the basic methodology of defining semantics. The operators are
TOGGLE, ABS, NOT, =, AND and OR. In case of standard operators the node is of the type <FctTyp>
and OpId = <operation_identifier>.

Expressions return the result of a computation. The roots of the expression trees considered here are
of the type <CatTyp>, <FctTyp>, <IntTyp> or <NumTyp>. In chapter 1.3 the two functions exp2 and
exp10 for  evaluating expressions have been introduced. The result of an expression is always valid in
the  closed time interval [Tmin, Tmax], because the arguments are used by the operator at every time t.

TREEMOLA stores the 4 logic values 0, 1, X and Z  using two strings V and X . To decode the TREE-
MOLA field <bitstring> = (V, X), it is necessary to define a function decode((V, X), i) as follows:

Definition 9.0:
Given  the two words V, X ∈ (0,1)n (i.e. <bitstring> = (V, X)) and the bit position i with 1 ≤ i ≤ n;
decode((V, X), i) -> {0, 1, Z, X} is defined as follows:

decode((V, X), i) = 1 :<=> V[i] = 1Λ X[i] = 0

decode((V, X), i) = 0 :<=> V[i] = 0Λ X[i] = 0

decode((V, X), i) = X:<=> V[i] = 0Λ X[i] = 1

decode((V, X), i) = Z :<=> V[i] = 1Λ X[i] = 1

This function is needed to calculate the value returned by an expression of the type <IntTyp>. An
expression is defined either by exp2 or exp10. Both can be converted into each other as discussed ear-
lier.

Definition 9.1.1:
Given  a TREEMOLA unit module description ‘=’ with the root ‘=’ of the type <IntTyp>; Integ =
<bitstring> = (V, X);  Range <bit_range> = (high, low). The value returned by exp2(SQ, ‘=’, t, i) is
determined as follows:

∀ i ∈ N0, (low ≤ i ≤ high) :

exp2(SQ, ’=’, t, i) = decode((V, X), i)

This means, that the value returned by a node of the type <IntTyp> is a constant for all time t.

Definition 9.1.2:
Given  a TREEMOLA unit module description ‘%’ with the root ‘%’ of the type <NumTyp>  and
NumValue = <integer>∈ N0;  the value returned by exp10(SQ, ‘%’, t) is determined as follows:

exp10(SQ, ‘%’, t) = <integer>

This is exactly the same meaning, that the returned value is a constant for all time t.

Definition 9.2.1:
Given  a TREEMOLA unit module description :(.) with the root ‘:’ of the type <DstTyp>; Keys =
<delay_keys>; the son ‘.’ of the type <FctTyp> with OpId = TOGGLE;  appropriate delay values ∈
N0 (updelay, downdelay) and a value <init_delay> are deduced from <delay_keys>. The value retur-
ned by exp10(SQ, :(.), t) is determined as follows:

(t = <init_delay>Λ exp10(SQ, :(.), t) = 0) ∨
(t ≠ <init_delay>Λ (exp10(SQ, :(.), t) = 1Λ exp10(SQ, :(.), t+<downdelay>) = 0)∨

(exp10(SQ, :(.), t) = 0 Λ exp10(SQ, :(.), t+<updelay>) = 1))
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In this definition it is required, that a TOGGLE operator is preceded by a node of the type <DstTyp>.
An initialization of a  TOGGLE is always done by 0. According to the TREEMOLA Manual the delay
values are supposed to be part of the node ‘:’ of the type <DstTyp>.

Definition 9.2.2:
Given  a TREEMOLA unit module description .1(.2) with the root ‘.1’ of the type <FctTyp>; OpId =
ABS;  the son ‘.2’ of ‘. 1’  is an expression, i.e.  |SONS(‘.1’)| = 1.
The value returned by exp10(SQ, .1(.2), t) is determined as follows:

(exp10(SQ, .2, t) ≥ 0 Λ exp10(SQ, .1(.2), t) = exp10(SQ, .2, t)) ∨
(exp10(SQ, .2, t) < 0Λ exp10(SQ, .1(.2), t) = -exp10(SQ, .2, t))

Definition 9.2.3:
Given  a TREEMOLA unit module description .1(.2) with the root ‘.1’ of the type <FctTyp>; OpId =
NOT; Range <bit_range> = (high, low);   the son ‘.2’ of ‘. 1’  is an expression, i.e.  |SONS(‘.1’)| = 1.
The value returned by exp2(SQ, .1(.2), t, i) is determined as follows:

∀ i ∈ N0, (low ≤ i ≤ high):

(exp2(SQ, .2, t, i) = 0Λ exp2(SQ,  .1(.2), t, i) = 1) ∨
(exp2(SQ, .2, t, i) = 1Λ exp2(SQ,  .1(.2), t, i) = 0)

Definition 9.2.4:
Given  a TREEMOLA unit module description .=(.1, .2) with the root ‘.=’ of the type <FctTyp>; OpId
= ‘=’;   Range <bit_range> = (high, low); the sons ‘.1’ and ‘.2’  are expressions, i.e.  |SONS(‘.=’)| = 2.
The value returned by exp2(SQ, .=(.1, .2), t, 0) is determined as follows:

(∀ i ∈ N0, (low ≤ i ≤ high): exp2(SQ, .1, t, i) = exp2(SQ, .2, t, i) Λ exp2(SQ, .=(.1, .2), t, 0) = 1) ∨
(∃ i ∈ N0, (low ≤ i ≤ high): exp2(SQ, .1, t, i) ≠ exp2(SQ, .2, t, i) ≠ X Λ exp2(SQ, .=(.1, .2), t, 0) = 0) ∨

(∃ i ∈ N0, (low ≤ i ≤ high): exp2(SQ, .1, t, i) = X Λ exp2(SQ, .=(.1, .2), t, 0) = X) ∨
(∃ i ∈ N0, (low ≤ i ≤ high): exp2(SQ, .2, t, i) = X Λ exp2(SQ, .=(.1, .2), t, 0) = X)

A test on equality yields the value 1 if the expressions of both sons are equal. The value X is returned
if at least one bit of an expression is X and the remaining bits are equal. Unequal bits which are not X
yields the value 0.

Definition 9.2.5:
Given  a TREEMOLA unit module description .(e1, ..., en) with the root ‘.’ of the type <FctTyp>;
Range <bit_range> = (high, low); OpId = AND;  the sons ‘e1’, ..., ‘en’  are expressions, i.e.
|SONS(‘.’)| > 2. The value returned by exp2(SQ, .(e1, ..., en), t, j) is determined as follows:

(∀ i, (1 ≤ i ≤ n): exp2(SQ, ei, t, j) = 1Λ exp2(SQ, .(e1, ..., en), t, j) = 1) ∨
(∃  i (1 ≤ i ≤ n): exp2(SQ, ei, t, j) = 0Λ exp2(SQ, .(e1, ..., en), t, j) = 0 )

Definition 9.2.6:
Given  a TREEMOLA unit module description .(e1, ..., en) with the root ‘.’ of the type <FctTyp>;
Range <bit_range> = (high, low); OpId = OR;  the sons ‘e1‘, ..., ‘en’  are expressions, i.e.  |SONS(‘.’)|
> 2. The value returned by exp2(SQ, .(e1, ..., en), t, j) is determined as follows:

( ∀ i, (1 ≤ i ≤ n): exp2(SQ, ei, t, j) = 0Λ exp2(SQ, .(e1, ..., en), t, j) = 0) ∨
(∃  i (1 ≤ i ≤ n): exp2(SQ, ei, t, j) = 1Λ exp2(SQ, .(e1, ..., en), t, j) = 1)

All available MIMOLA standard operators could be defined in the same way. The allowed number of
arguments of an operator is identical to the number of sons of this operator. Sons of an expression are
evaluated and used by the operator until the trees are leaves.
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Definition 9.3:
Given  a TREEMOLA unit module description *(e1, ..., en) with the root ‘*’ of the type <CatTyp>;
Range <bit_range> = (high*, low*); the Range (highi, lowi) for every expression ‘ei‘, 1 ≤ i ≤ n and li
= (highi - lowi + 1). The value returned by exp2(SQ, *(e1, ..., en), t, j) with high* ≤ j ≤ low* is deter-
mined as follows:

(exp2(SQ, *(e1, ..., en), t, j) = exp2(SQ, ei, t, k)) Λ
(k = lowi + relA) with

The highest bits of the catenated value are given by the first son of a catenation tree. The lowest bits
are given by the last son. The returned value of the catenation tree is a part (high, low) of the complete
catenated value. Definition 9.3  is illustrated by the following example:

Table 2 shows an example with three expressions e1 with the range (8, 4), e2 with the range (4, 0) and
e3 with the range (3, 1).

⇒ l1 = 5, l2 = 5, l3 = 3, n =3

To calculate exp2(SQ, *(e1, e2, e3), t, j) with j = 11 it is necessary to know i and k in exp2(SQ, ei, t, k).

⇒

⇒ the maximum  i is i = 1

That means that the considered bit is part of ‘e1’. To calculate the relevant k in ‘e1’ the relative address
relA is determined as follows:

lowi = low1 = 4, k = 4 + relA, relA = 11 - 8 = 3⇒ k = 7

⇒ exp2(SQ, *(e1, ..., en), t, 11) = exp2(SQ, e1, t, 7)

Table 2: catenation example

j 12 11 10 9 8 7 6 5 4 3 2 1 0

k 8 7 6 5 4 4 3 2 1 0 3 2 1

i 1 1 1 1 1 2 2 2 2 2 3 3 3

i max i lι
ι i=

n

∑ j>
 
 
 

=

relA j l ι
ι i 1+=

n

∑–=

i max i lι
ι i=

n

∑ 11>
 
 
 

=
 
 
 

l ι
ι 1=

3

∑, 13=
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Definition 9.4.1:
Given  a TREEMOLA unit module description ‘.’ with the root ‘.’ of the type <FctTyp>; OpId =
READ; PartId = <part_identifier>; Range = <bit_range> = (high, low);  the set SONS(‘.’) is empty,
i.e |SONS(‘.’)| = 0 (register access). The value returned by exp2(SQ, ‘.’, t, i) is determined as follows:

∀ i ∈ N0, (low ≤ i ≤ high): exp2(SQ, ‘.’, t, i,) = f2(SQ, <part_identifier>, 0, t, i)

Definition 9.4.2:
Given  a TREEMOLA unit module description .(a) with the root ‘.’ of the type <FctTyp>; OpId =
READ; PartId = <part_identifier>; Range = <bit_range> = (high, low); the son ‘a’ is an expression,
i.e. the address, and |SONS(‘.’)| = 1(memory access). The value returned by exp2(SQ, .(a), t, i) is
determined as follows:

 ∀ i ∈ N0, (low ≤ i ≤ high):

exp2(SQ, .(a), t, i) = f2(SQ, <part_identifier>, exp10(SQ, a, t), t, i)

The READ operator returns the value of a register or memory by looking into the table SQ with the
help of the function f2. If the address is not given it is by default set to 0. The address is evaluated by
the expression exp10(SQ, a, t).

Definition 9.5:
Given  a TREEMOLA unit module description ‘.’ with the root ‘.’ of the type <FctTyp>; OpId =
INPUT; Port = <port_number>; Range = <bit_range> = (high, low) and the set SONS(‘.’) is empty,
i.e ‘.’ is a leaf. The value returned by exp2(SQ, ‘.’, t, i) is determined as follows:

∀ i ∈ N0, (low ≤ i ≤ high): exp2(SQ, ‘.’, t, i) = f2(SQ, <port_number>, 0, t, i)

In this case <port_number> serves as an identifier.

The signal access tree which denotes an access to a (local) signal is not considered here, because it is
assumed that there remain no local signals after the synthesis tool is performed. Therefore an inter-
pretation predicate for nodes of the type <FctTyp> with OpId = SIGASSIGN is not defined (see also
chapter 4).

Definition 9.6:
Given  a TREEMOLA unit module description .(c, e1, e2) with the root ‘.’ of the type <FctTyp>; OpId
= SELECT2;  Range = <bit_range> = (high, low); the sons ‘c’, ‘e1’, ‘e2‘ with O(c) = 1, O(e1) = 2 and
O(e2) = 3, i.e. |SONS(‘.’)| =3 ,  are a condition and two expressions.
The value returned by exp2(SQ, .(c, e1, e2), t, i), with low≤ i ≤ high, is determined as follows:

(exp2(SQ, c, t, 0) = 1Λ exp2(SQ, .(c, e1, e2), t, i) =  exp2(SQ, e1, t, i)) ∨
(exp2(SQ, c, t, 0) = 0Λ exp2(SQ, .(c, e1, e2), t, i) =  exp2(SQ, e2, t, i)) ∨

(exp2(SQ, c, t, 0) = XΛ exp2(SQ, e2, t, i)  =  exp2(SQ, e1, t, i) = exp2(SQ, .(c, e1, e2), t, i)) ∨
(exp2(SQ, c, t, 0) = XΛ exp2(SQ, e2, t, i) ≠ exp2(SQ, e1, t, i) Λ exp2(SQ, .(c, e1, e2), t, i) = X)

Definition 9.7:
Given  a TREEMOLA unit module description .(e, e2, ...,en) with the root ‘.’ of the type <FctTyp>;
OpId = CASE; Range = <bit_range> = (high, low); the son ‘e’ of the node ‘.’ with O(e) = 1 is an
expression; all trees ‘ei‘ are of the type <HllTyp> with OpId = OF or ELSE. The value returned by
exp2(SQ, .(e, e2, ...,en), t, j), with low≤ j ≤ high, is determined as follows:

∃  i, 2 ≤ i ≤ n Λ
(OpId = OF Λ |SONS(si)| = nΛ n > 1Λ ∃ c ∈ SONS(si) Λ O(c) < nΛ

 exp10(SQ,e, t) = exp10(SQ, c, t)Λ st∈ SONS(si) Λ O(st) = nΛ
exp2(SQ, .(e, e2, ...,en), t, j) = exp2(SQ, st, t, j)) ∨

(OpId = ELSEΛ |SONS(si)| = 1Λ st∈ SONS(si) Λ exp2(SQ, .(e, e2, ...,en), t, j) = exp2(SQ, st, t, j))
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10. Examples
In what follows we discuss two examples to  illustrate the semantics.  The first one refers to an
example module which is basically  a clock.

UINTCLOCK
iINTCLOCK

SOUT,INTERNALCL@1(0)
oRTLEVEL,INTCLOCK

uL0018
:OUTPUT,INTERNALCL@1(0)"u,I=2,2""d,I=1,1""i,I=0,0"

.TOGGLE(0)

The complete tree in a short form is: U(i(S), o(u(:(.))))

Therefore the starting point for the interpretation of this tree is I(U(i, o), [Tmin, Tmax], SQ). Using defi-
nition 2.1 it is  noted that  I(U(i, o), [Tmin, Tmax], SQ) is true, if I(i(S), [Tmin, Tmax], SQ) and I(o(u),
[Tmin, Tmax], SQ) is true. The interpretation of the interface tree i is true if the interpretation of all
sons becomes true. In this case there is only one port S described. If there is no initialization of the
signal INTERNALCL the only thing which could be said at this moment is, that the signal has the
value 1, 0, X or Z or holds the value if there is no explicit assignment at time t.

The interpretation of the behavior tree o as well as of the concurrent tree u is true, if the interpretation
of all sons is true. This leads directly to the interpretation I(:(.), [Tmin, Tmax], SQ). In definition 9.2.1
it is said that the value of the signal INTERNALCL is 0 at time t+downdelay = t+1 if the value of
INTERNALCL has been 1 at time t. The value of INTERNALCL is 1 at time t+updelay = t+2 if the
value has been 0 at time t. The clock signal is initialized by 0 at time 0. After this interpretation e.g.
exp2(SQ, ‘.TOGGLE’, 0, 0) returns 0.
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The second example module shown below is a 4-bit register. The interface tree contains one output
STATE with the range (3, 0). Two control inputs LADE and RESET are of the range (0, 0) and the
input SUM contains a 4-bit data. An additional clock input has got the port number 5. Looking at the
behavior node o the interpretation I(o(V, u), [Tmin, Tmax], SQ) has to be executed. In the declaration
part a variable REGSTATE of the type halfbyte with the range (3, 0) is declared. The third grandson
of V is %1 and that means, that there is just one duplicate of the variable. Every bit of the variable
REGSTATE has the value 1, 0, X or Z or holds the value if there is no explicit assignment at time t.
Using I(u(:, !),  [Tmin, Tmax], SQ) the concurrent tree u is interpreted. This leads to two interpretation
calls: I(:(.),  [Tmin, Tmax], SQ) and I(!(., ?),  [Tmin, Tmax], SQ) . Using definition 4.5 the node ‘:’ of
the type <DstTyp> is interpreted. An assignment of the register value REGSTATE to the output signal
STATE with a default delay of 1 is performed. The high level statement AT needs the conditional node
‘.’ with OpId = INPUT and PartId = CLOCK to decide whether the first son u(:(=)) or the second son
u(?(., u(:(.)), u(:))) has to be interpreted at time t.

UREGISTER
iREGISTER

SOUT,STATE@1(3:0)
SIN,LADE@2(0)
SIN,RESET@3(0)
SIN,SUM@4(3:0)
SCLK,CLOCK@5(0)

oRTLEVEL,REGISTER
V

_REGSTATE,HALFBYTE(3:0)
_Mlocation
%0
%1
%1
%0

uL0046
:OUTPUT,STATE@1(3:0)

.READ,REGSTATE(3:0)
!AT,UP

.INPUT,CLOCK@5(0)
?IF

.INPUT,RESET@3(0)
uL0048

:LOAD,REGSTATE(3:0)
=%0000(3:0)

uL0049
?IF

.INPUT,LADE@2(0)
uL0049

:LOAD,REGSTATE(3:0)
.INPUT(3:0)

uL0050
:NOLOAD.REGSTATE
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11. Conclusions
It is necessary to formalize what is meant by a HDL description and provide a calculus for working
with such descriptions. Such a calculus makes the task of test generation, logic simulation and fault
simulation easier. It also can  have significant impact on verification.

A functional semantics for a subset of the TREEMOLA language has been defined. This semantics
can serve as a basis for verification as well as for simulation and supports designers of other tools in
the MIMOLA hardware design system. Translation to and from other intermediate languages as well
as other hardware description languages, e.g.  VHDL or DACAPO, becomes easier  with this seman-
tics. Converters from TREEMOLA to VHDL and vice versa are currently under developement.
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loops 3
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