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Abstract

In microarchitecure synthesis, early algorithms considered only a single implementation
technique for IF -statements. Focus was on scheduling and on maximum hardware sharing.
In this paper, we present available options in more detail. They are described by using
explicit program transformations. Some of these techniques have the potential to consider
optimizations beyond the classical basic block boundary while maintaining the simplicity

of basic-block oriented approaches.
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INTRODUCTION1

Microarchitecture synthesis is concerned with the generation of microarchitectures from
behavioral specifications. Microarchitectures consist of building blocks such as registers,
memories, arithmetic/logic units (ALUs) and multiplexers. Behavioral specifications nor-
mally use most of the language elements of traditional programming languages. One
such element is the IF-statement. When implementing IF-statements with microarchi-
tectures, we have to find proper ways of executing its operations. These consist of the
controlling condition and the two branches. There are several implementation methods
for IF-statements, each with different cost/performance tradeoffs. In this paper, we will

demonstrate, how implementations can be selected automatically.
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RELATED WORK2

Traditional compilers usually compile IF -statements into code blocks containing condi-
tional jump 1 instructions. If every IF -statement is implernented by a conditional jump,

the resulting design may be quite slow. This becomes especially obvious, if delayed jumps
are used. If n delay slots are used (n = 0 for undelayed jumps), n + 2 control steps are
at least required for a single IF-statement.

In microarchitecture synthesis, many of the early algorithms took advantage of the fact,
that THEN- and ELSE-branches are mutually exclusive and hence can share the same
hardware resources (see e.g. [12, 10]). Sharing of hardware resources, however, requires
the condition to be evaluated before the computation of the branches starts. This has
to be guaranteed by scheduling algorithms. In [11], Paulin describes how this fits into
the context of force-directed scheduling. This form of handling IF-statements is called
C-select [5].

A second way of handling IF-statements during scheduling is D-select [5]. With D-select,
the condition is not evaluated first. THEN- and ELSE-branches are computed concur-
rently without sharing hardware resources. Correct values are selected after both the
branches and the condition have been evaluated. This approach leaves more freedorn for
scheduling the condition but requires more hardware. Branches generating anything else
but fiere values cannot be implernented this way.

A third way of handling IF-statements during scheduling is path-based scheduling [3].
Path-based scheduling generates schedules for each path through the data fiow graph
representation of the required behavior separately. This results in very fast schedules
but potentially requires multiple control words for single unconditional operations. It is
therefore targetted towards the synthesis of fast architectures frorn fiow graphs with a
small number of paths.

Early synthesis systems did not automatically select the "best" method for implernenting
IF-statements. For example, Fuhrmann [4] mentions missing support for D-select as a key
problem in using a well-known high-level synthesis tool. An improvernent in this respect
was the work by Wakabayashi [14]. Wakabayashi's method allows automatic tradeoffs
between C-select and D-select during scheduling. However, as Rirn and Jain pointed out
recently [13], it can produce incorrect results.

In their paper, Rirn and Jain propose a new method for scheduling conditions and branch-
es. This method allows arbitrary reordering of nested IF-statements. This method can be
applied only if a) the specification language follows the single assignment principle, and
b) no (and absolutely no) computation causes side-effects or exceptions like overflows,
illegal memory accesses etc.). We believe that requirernent b) is inadequate. Moving
to system-level synthesis, languages like C will become candidates for specification lan-
guages. Compiler writers for these languages are aware of the fact that "optimizations"
changing the order of computation may result in incorrect code.

lWe avoid the term "conditional branch" because "branch" has a different meaning in this and other
papers on the subject.
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Another problem of exjstjng approaches js the fact that they are puttjng emphasjs just on
scheduljng. Certajn schedules may have undesjrable effects upon the requjred controller .
For example, strajghtforward jmplementatjons of the D-select method requjre two separate
control fields for all resources that are used djfferently in the two branches.

MOTIVATION OF OUR APPROACH3

Our TODOS2 synthesis algorithm uses a different approach. The order of computing con-
ditions is never changed. Emphasis is not just on scheduling. Resulting implementations
are studied in more detail. Moreover, we prefer to represent implementation techniques
by program transformations for the following reasons:

.According to Rim and Jain [13], "there is still no consensus on the representation
of conditional branches" in data flow graphs,

.Some conditional actions for D-select cannot be represented [13],

.Users of microarchitecture synthesis systems frequently ask for more control over
the synthesis process. They want to analyse partial results rather that using a
"turnkey system". In this respect, the use of text for specifications and of graphics
for intermediate results is not ideal. The designer has to learn at least two clesign

representation languages.

Therefore, all our tools try to display partial results using the language in which
the specification was written, namely MIMOLA. As long as possible, synthesis is
modelled as the application of program transformationj3 .Required dependency
relations, when needed, are computed on the fly.

IMPLEMENTATlüN METHüDS FüR IF-STATEMENTS4

In order to demonstrate our technique for program transformations we will use the fol-

lowing running example:

Lx: IF MAIN[5] > O THEN

BEGIN

MAIN[5] := MAIN[5] -MAIN[6];

Lx-a: PC := L x

END;

Ly

2TODOS stands for "TOp DOwn Synthesis" .TODOS is an extension of the work described in [7] and
in [6]. The name TODOS was chosen partially because the Spanish sentence 'Todos quieren TODOS'
means 'Everybody loves (or desires) TODOS'.

3In practice, program transformations are applied to our internal representation of MIMOLA, called
TREEMOLA. The mapping from TREEMOLA to MIMOLA is much easier than the one from f\ow graphs
to textual programming languages.
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In this example, MAIN is assumed to be the name of a large storage unit. 5 and 6 are
addresses.

Generally speaking, implementation methods for IF -statements can be classified according
to the affected component inputs. There are six categories, two for condition-controlled
inputs of the controller's state register, three for condition-controlled inputs at other
storage units, and one for condition-controlled combinational units:

1. Conditional jump

In this case, the data input of the state register PC is a.ffected. For exa.mple, the
condition ma.y control a. multiplexer a.t this input (see fig. 1). As a. result, the va.lue
loa.ded into the sta.te register depends upon the condition, effectively implementing
conditional jumps.

?
c Lx-1

Ly

( MAIN[5]>O)

Figure I: Hardware für cünditiünal jumps

This technique leads to a fork in the corresponding state chart. Using the technique,
the above statement can be transformed into the following sequence:

Lx: PC := (IF MAIN[5J>O THEN Lx-t ELSE Ly) ;
Lx-t: PAR13EGIN

MAIN [5J : = MAIN [5J -MAIN [6J ;

PC := Lx;

PAREND;

Ly:

Statements included in PARBEGIN. .PAREND are assumed to be executed in the
same control step4.

This technique corresponds to C-select with the restriction that the computation
of the condition and the computation of the branches are separated by at least one
state transition. This restriction avoids long combinational delays and having to
generate multiple control fields per hardware resource.

2. Conditional continuation

In this case, the control input of the state register is disabled, as long as the condition
evaluates to false. This technique requires a circuit like that of fig. 2.

Depending upon the value of the condition, either the control code for loading the
register or the control code for disabling the register is applied to its control input. In

4Generation of PARBEGIN. .PAREND is usually done during scheduling but is shown here to demon-
strate the resulting number of control steps.
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PC: MODULE Reg(IN e:word; IN s:bit;

IN c: bit; OUT ...);

AT c DO (*c : clock input *)
~ 0 CASE s OF (*5 : control input*)

0: Reg:=e; (*LOAD*)
1 1: ; (*DISABLE*)

END;
rf\

(MAIN[5]<=O)

Figure 2: Hardware for conditional continuation

TODOS, the codes are assumed to be included in the description of the component
behavior. For the control codes of fig. 2, the multiplexer may be replaced by a
condition inverter.

This technique is very efficient for loops consisting of a single coIitrol step, i.e. for im-
plementing multiplication in a microprogram. Using the technique, the assignment
to PC can be transformed into a guarded assignment like in the following example::

Lx: PARBEGIN
/MAIN[5J ::; 0/ PC:=Ly;
/MAIN [5J >0 / MAIN [5J : = MAIN [5J -MAIN [6J ;

PAREND;
Ly:

In this example, / < condition > / denotes a guard. The left-hand variable in the
following assignment will only be modified if condition evaluates to true.

In this and in the previous implementation techniques, the state stored in the con-
troller is affected by conditions. We assurne, that the controller is a Moore-type
controller. This is not a restriction because the data-path is assumed to be a Mealy-
type machine and hence repartitioning can always be applied to turn the controller
into a Moore-type controller. As a result, the output of the controller cannot depend
upon the value of conditions computed during the same control step.

Hence, all other implementation techniques assurne that inputs of data-path com-
ponents are affected by conditions.

3. Conditional expression

In the first case, data inputs of memories within the data path are affected by con-
ditions. For example, there may be multiplexers at the data input of the storage

unit(s) (see fig. 3).

This technique does not allow the sharing of hardware among the branches (except
for common subexpressions) and corresponds to D-select.

Using this method, we could transform the assignment to MAIN into the form shown
in the following example:
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Figure 3: Hardware for conditional expression:

Lx: PARBEGIN

PC:=(IF MAIN[5] >0 THEN Lx ELSE Ly);
MAIN[5] := (IF MAIN[5]>0 THEN MAIN[5]-MAIN[6] ELSE MAIN[5]);

PAREND;

A problem with this approach is that the conditional expression is always evaluated
completely. Undesirable side--effects are therefore possible.

4. Conditional assignment

For the next method, condition(s) affect the control input of memories within the
data path. In general, a multiplexer is required in order to disable or enable writing
into the memory. The circuit at this input is similar to the one in fig. 2 (see fig. 4).

MAIN: MODULE S4k(IN e: word; IN s.c: bit; ...);

"0 ATcDO (.c:clock.)
CASEs OF

0: S4k[a]:= e; (. LOAD .)
1 1: ; (. DISABLE .)

END;

( MAIN[5]>0)

MAIN
tfu'

l~
,

data

Figure 4: Hardware for conditional assignment

Using this method, we can transform the assignment to MAIN into the form that can
be seen in the following example:

Lx: PARBEGIN
PC := (IF MAIN[5] >0 THEN Lx ELSE Ly);
/MAIN[5]>0/ MAIN[5] := MAIN[5]-MAIN[6];

PAREND;
Ly:

As in the last case, a problem with this approach is that the statement is always
evaluated corripletely.

5. Conditional address

A multiplexer at the address input of memories within the data path may be used
to write values into condition-dependent storage locations (see fig. 5).
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Figure 5: Hardware for conditional address

In this example, MAIN [0] is assumed to be some unused memory location.

This technique can be used to effectively suppress writing into MEM [5] if the condi.

tion is false.

Example:

Lx: PARBEGIN
PC := (IF MAIN[5] >0 THEN Lx ELSE Ly);
MAIN[(IF MAIN[5] >0 THEN 5 ELSE 0)] := MAIN[5] -MAIN[6] ;

PAREND;

Ly:
As in the last two cases, a problem with this approach is that the statement is

always evaluated completely.

6. Conditional operation of some combinational unit

Finally, inputs of combinational units within the data path may be affected by condi-
tions. For example, an ALU may either add or subtract two values (this is required
e.g. by Booth's multiplication algorithm) or there may be condition-controlled mul-

tiplexers at data inputs of combinational components.

This technique allows sharing of resources among branches, but potentially requiresmultiple coRtrol fields per combinational unit. -

Example:
For our running example, we could use the hardware structure of fig. 6.

MAIN[5]

1-- MAIN[6]

~---o

MAIN[5]>O

Figure 6: Combinational components affected by condition(s)
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This hardware structure could be used by assignments of the following forms:

Lx: PARBEGIN

PC := (IF MAIN[5] >0 THEN Lx ELSE Ly);

MAIN[5J := MAIN[5] -(IF MAIN[5] >0 THEN MAIN[6] ELSE 0);

PAREND;

Ly:

5 IMPLEMENTATION IN TODOS

5.1 Supported implementation methods

TODOShas been designed to support implementatjon methods 1, 3 and 4 automatjcally.
Methods 2, 5 and 6 can be appljed only jn very specjal cases. Usjng these methods
jn TODOS js possjble, but requjres manual program transformatjons. The MIMOLA
language [1] js powerful enough to descrjbe these jmplementatjon methods.

The precedjng djscussjon does not mentjon nested IF-statements. Nested IF-statements
could be handled by generatjng logjcal expressjons contajnjng all relevant condjtjons (see
e.g. [9]). Thjs approach was used jn early versjons of TODOS. It turned out that thjs
resultedjn very complex logical cjrcuits, containjng AND-gates, OR-gates, multiplexers
and control sjgnals ( especjally for long behavjoral descrjptjons wjth a large set of djfferent
condjtjons). Thjs approach was therefore rejected and replaced by the followjng: the
methods mentjoned above are appljed to the jnnermost IF -statement level. All other
levels use condjtjonal jumps. By manually reducjng the nestjng level, complex logjcal
expressjons can stjll be generated.

Definitions:

1. A section is a portion of the behavioral description which, after the transformation
of the innerniost IF-statements into conditional assignments and conditional ex-
pressions satifies the conditions of basic blocks (control flow join at the beginning,
control flow fork at the end).

2. The corresponding transformed portion of the behavioral description is called a
generalized basic block.

In the following example, a section is printed in holdface:

i:=O; j:=O; k:=O;
REPEAT (*join*)
IF a[i]<bü]
THEN BEGIN c[k]:=a[i]; i:=i+l END
ELSE BEGIN c[k]:=bÜ]; j:=j+l END;
k : = k+l;

UNTIL (i > imax) OR (j > jmax);
IF (i > imax) THEN ...
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The innermost IF -statement can be replaced by a conditional expression for c [kJ and
conditional assignments to i and j. UNTIL-tests denote control flow and cannot be re-
placed by the above techniques. Hence, they represent the final fork of the control flow

in the generalized basic block.

Like in the example above, generalized basic blocks are usually larger than standard basic
blocks. Most of the flow analysis algorithms for basic blocks also apply to generalized
basic blocks. Therefore, we are able to generate faster designs, we have a larger scope for

optimizations and still maintain the simplicity of 'basic block'-oriented algorithms.

Generation of alternatives5.2

Using the above definitions, TODOS partitions thebehavioral description into sections. In
general, a behavioral description consists of several such sections, because IF-statements
may be nested and there may be jumps which cann{)t be transformed into conditional

assignments (e.g. UNTIL-tests).
For each section, TODOS5 generates up to three alternatives of implementations:

.One alternative is created with both the transformations to conditional assignments
and to conditional expressions enabled. This alternative contains just a single gen-

eralized basic block.

.The second alternative is created with on I y the transformation to conditional ex-
pressions enabled. This transformation will remove the innermost IF -statements
on I y if THEN- and ELSE-branch always contain assignments to the same variable.
Otherwise, conditional jumps have to be added. Therefore, this alternative may

contain several generalized basic blocks.

This alternative exists on I y if there is at least one variable to which an assignment
is made in both the THEN-branch and the ELSE-branch of an IF-st~tement.

.The third alternative uses on I y conditional jumps and therefore may contain more

than one basic block.

In total, this means that the specification is partitioned into sections. Fo, each section,
there are up to three alternatives. Each alternative contains a set of generalizedbasic
blocks, which, in turn, contain statements. The entire i~formation is represented using

our TREEMOLA intermediate format [2].

Sections and alternatives are generated before the kernel of the synthesis algorithm is

started (see fig. 7).
Each of the sections is then processed by our synthesis system until a decision to use one

of their alternatives is possible. Current!y, the decision is taken after scheduling.

sThe same alternative-generating mechanism is also used for other MIMOLA tools, such aB the retar-

getable code generator .
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MSSI: generation ot
alternatives (including
optimizations)

-1--1-

scheduling scheduling
tor 2nd tor 3rd
alternative alternative

scheduling
tor 1 st
alternative

selection of best
alternative

hardware allocation and binding

t

Figure 7: Handling of alternatives in TODOS

5.3 Scheduling

The scheduling algorithm works on one generalized basic block at a time. Note that such
a generalized basic block contains at most one conditional jump-statement. The same
scheduling algorithm can be used for all alternatives as long as some care is taken about
special cases:

.Conditional jumps

For conditional jumps, we just have to make sure that jumping is implemented in
the last control step of an generalized basic block. We do this by simply defining a
dependency relation such that:

\fs E S: CS(s) ~ CS(jump- statement)

where: Is : statements in current generalized basic block

CS(s) : control step ofstatement s

::; : order among control steps

.Conditional expresssions
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No special care is required for this alternative, apart from the fact that jump-

statements have to be handled like in the previous case.

.Conditional assignment
A straight-forward, unoptimized scheduling for conditional assignments would also
assign jumping to the last control step and would implement assignments within
the THEN- and ELSE-branches as conditional assignments. It would therefore

frequently create schedules like the following:

Example:
In the following example, assume that assignment-1 is not part of the IF -statement
and assignment-2 to assignment-m are assignments included in the THEN-branch
of the IF -statement. Straight-forward scheduling would create the following sched-

ule:

CSl

CSp

assignment-l;

PARBEGIN

Iconditionl assignment-2;

Iconditionl assignment-3;

PAREND;

C Sn PARBEGIN

/condition/ assignment-m;
PC := (IF condition THEN destin-!

ELSE destin-2);

PAREND;

The disadvantage of this schedule is that the condition is evaluated several times
and that the execution time for the case when the condition is false is rather long.
Furthermore, condition evaluations may result in different values unless the single

assignment rule applies. We prefer to generate the following schedule:

CS1: assignment-l;

CSp: PARBEGIN
PC := (IF condition THEN CSp+l

ELSE destin-2);

/condition/ assignment-2;

PAREND;

CSp+l:PARBEGIN
/condition/ assignment-3;

PAREND;
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C Sn PARBEGIN

/condition/ assignment-m
PC := destin-l;

PAREND;

Note that the guards in CSp+l. .C Sn are redundant. They are thererore eliminated
by TODOS, resulting in reduced hardware requirements and/or a raster schedule.
Note that the guard is required in control step CSp.

In oder to generate this schedule, we define the dependency relation such that:

s : normal assignment I\ t

s : normal assignment I\ t

s : conditional jump I\ t

s : tagged assignment I\ t

tagged assignment
conditional jump

tagged assignment
final unconditional jump

CS(s) .s: CS(t) <=>

In this context, the term 'tagged assignment' denotes all conditional assignments
with the same condition as in the conditional jump (there is at most olle such
jump per generalized basic block). All other statements (including other conditional
assignments) are called 'normal assignments'.

5.4 Selection of an alternative

Selection of an alternative currently is based upon analysing the number of generated con-
trol steps and the number of dynamically executed control steps. This latter information
is available since profile information can be added to MIMOLA behavioral descriptions.
If one alternative is best with respect to both numbers, it is selected. Otherwise, the
user is prompted to select between minimization of generated control steps and executed
control steps. In future releases, other factors may be taken into account.

The essentials of the remaining synthesis steps have been described earlier. There is a
strong focus on handling predefined library elements (see [8]).

6 RESULTS

We have analysed the effect of enabling conditional assignment and conditional expressions
as implementation techniques. This was done using a MIMOLA version of the mergesort
program from Wirth [15] as an example. As an indicator of the parallelism in the data
path we used the number of storage unit ports. All other resources were unconstrained.
Fig. 8 contains the results6.

The effect of these additional implementation techniques increases with the parallelism
in the data path (as expected). This effect would be even larger, if delayed jumps were
used. These additional implementation techniques obviously have a potential to lead to

6These results were obtained with the last mainframe version (version 3.40) of TODOS.
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faster designs. It should be mentioned, however, that long behavioral descriptions with
many conditions and storage units frequent I y reBult in the generation of several complex

condition multiplexerg.

The current attempt to consider conditional assignments and conditional expressions is a
compromige between ignoring these implementation techniques completely and having to
handle alternatives in the very kernel of the synthesis system. The concept of alternatives
has proved to be valuable. Future releases of our synthesis tools should explore this
concept further and uge them in a more general manner (i.e. could uge alternatives in a

more general way).
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