
MSSV: Tree-Based Mapping of Algorithms to Prede�ned
Structures (Extended Version)

Peter Marwedel

Lehrstuhl Informatik XII

University of Dortmund

Report No. 431

January 1993

Abstract

Due to the need for fast design cycles and low production cost, programmable circuits like
FPGAs and DSP processors (henceforth called target structures) are becoming increasingly
popular. Design planning, detailed design as well as updating such designs requires mapping
existing algorithms onto these circuits. Instead of writing target-speci�c mappers, we pro-
pose using retargetable mappers. The technique reported is this paper is based on pattern
matching. Binary code is generated as a result of this matching process. This paper describes
the essential techniques of our mapper MSSV and identi�es areas for improvements. As a
result, it shows that e�cient handling of alternative mappings is crucial for an acceptable
performance. This report is also intended as a reference for new developments.

i

Contents

1 Introduction 1

2 Representation of Structures 2

3 Representation of the Algorithm 5

4 Matching of Structures and Algorithms 7
4.1 Assignments and Expressions . 7
4.2 Matching of Operations . 8
4.3 Matching of Constants . 9
4.4 Matching of Paths . 11
4.5 Insertion of Temporaries . 11
4.6 Bundling . 12
4.7 Extraction of binary code . 15

5 Additional Tasks 15
5.1 Disabling bu�ers and storage devices . 15
5.2 Scheduling . 16

6 Limitations 16

7 Conclusion 16

References 18

ii

1 Introduction

For many years, research on high-level design tools was focused on high-level synthesis. High-
level synthesis starts with a behavioral description and generates a structure with the same
behavior. In most of the cases, the generated structure implements just the given behavior.
The disadvantage of that approach is its lack of exibility. Even minor variations of the
behavior require a complete redesign and even complete remanufacturing. This disadvantage
can be eliminated by using programmable microprocessors, of-the-shelf DSP processors (e.g.
[TI91]) or �eld programmable gate arrays (FPGAs) (see e.g. [XIL91]). With these targets,
manufacturing cost is signi�cantly reduced at the expense of lower speed. This reduction in
speed can be reduced by mapping some parts of the behavior onto special, �xed structures
and others onto programmable targets (hardware/software codesign) [IFI93]. This approach
is used, for example, in CATHEDRAL-2nd [LCG+90, GCLM92].

Programmable targets result in the need for tools which map existing applications (al-
gorithms) onto these. Simple assembler-like tools are hard to use for evaluating di�erent
targets, because the application must be rewritten for each target. Compilers are only avail-
able for frequently used targets. Writing compilers for every target is too costly, especially
because di�erent languages for the description of algorithms are in use. The lack of such
compilers is a severe bottleneck during design style selection and early cost/performance
estimation1.

The solution is a retargetable compiler. Such a tool can be used to map algorithms to
structures, generating the required binary code by doing a pattern-matching between the
two descriptions.

There has been some research on retargetable compilers for standard machine languages (see
e.g. [GFH82]). They require a rather complicated partially manual preprocessing and hence
cannot be used in a design automation environment.

More adequate for the current problem is previous work on retargetable microcode compilers
[EGO79, BH81, Veg82, MV83, War89, Mav92]. Of these, the compilers by Mueller and
Vegdahl can only be used for infrequent remapping to new targets because they require
labour-intensive complicated preprocessing. Baba's work does not have this limitation, but
it is mainly oriented towards mainframe microprogramming and the associated complicated
next-address logik. The grammar-based approaches by Evangelisti and Mavaddat have to
cope with an inherent ambiguity and complexity and consequently no results are available
up to now for complex designs.

The approach taken in the MSS [Mar84, Now87], however, applies to the new situation imme-
diately. It does not require complex manual preprocessing and is based on a true structural
hardware description which is normally available in any design automation environment. If
only functional models are available, structures with an equivalent behavior can be used
instead. Such structures can be automatically generated from the functional model by using
high-level synthesis. Using structural models solves many of the problems that compiler
writers have with new pipelined superscalar machines. Explanation or description of the
behavior of those machines is only possible, if structural components are identi�ed. Prob-
lems, which we have been unable to solve previously (such as handling variable instruction
wordlengths and visible multi-phase clocking elegantly), have disappeared with the new RISC
machines.

Other attributes of targets within the microprogramming area became attributes of current

1The Architect's Workbench project [Fly90] is addressing this problem in a slightly di�erent context.

1

processors (explicit parallelism, explicit modelling of the underlying structure, etc.) [Fis91].

Two compilers have been designed for the MSS:

� MSSV, based on tree matching and

� MSSQ [Now87, MN89], using graph matching. An extension of this is MAPS2.

The purpose of this paper is to present the basic ideas of MSSV in detail, because many of
the design decisions for MSSQ are based on the observations made for MSSV.

2 Representation of Structures

The target structure has to be represented in our intermediate language TREEMOLA (see
[BPSJ91] for the latest version). TREEMOLA describes trees of nodes. The structural
subset of TREEMOLA can be generated from MIMOLA or VHDL. The structure basically
is described as a at netlist. The behavioral description of the components (or cells) has
to identify performed operations as well as the control codes which are required to select a
speci�c operation.

Example:

Assume that the want to map to the structure shown in �g. 1.

SH.P1

SH.P2
ALU

a b

s
I.(4:3)

addr1

data1

data2
addr2

I.(5)cntrl2 I.(2) cntrl
c clock c AC

e

I PC

....

+1

DEC I.(7:6)

BMUX
210I.(1:0)

f

I.(23:8)

I.(23:8)

I.(39:24)

Figure 1: Target structure (PC not shown)

The structure contains two-port3 memory SH, ALU ALU, accumulator register ACCU, multi-
plexer BMUX, decoder DEC and instruction memory I. The program counter is irrelevant for

2The (mapping algorithms to prede�ned structures)-compiler, which is currently being developed by W. Schenk.
3In order to solve the conict between the use of the term 'port' in VHDL and its meaning in the context of

multi-port memories, we will henceforth refer to the latter as port-groups. Thus, P1 is a port-group, consisting of
ports (in the sense of VHDL) addr1 and data1.

2

the description in this paper.

The input to MSSV describes the nets of �g. 1 as well as the behavior of the components.
Using MIMOLA V3.45 syntax, the full example will look like this:

TARGET simplecpu;

STRUCTURE IS

PARTS

SH: MODULE S64k

PORT P1 (OUT data1:(15:0);ADR addr1:(15:0));

PORT P2 (IN data2:(15:0);ADR addr2:(15:0);FCT cntrl2:(0);CLK c:(0));

CONBEGIN

WITH P1 DO

data1 <- S64k[addr1]; (* <- = signal assignment *)

WITH P2 DO

CASE cntrl2 OF

#1 : "NOLOAD" after 0; (* # = hex *)

#0 : AT c UP DO S64k[addr2] := data2

END;

CONEND;

I:MODULE SRAM

(OUT data:(47:0);ADR addr:(15:0));

BEGIN

data <- SRAM[addr];

END;

ALU: MODULE Balu (OUT f:(15:0);IN a,b:(15:0);FCT s:(1:0));

BEGIN

f <- CASE s OF

#3 : a "-" b;

#2 : a "+" b;

#1 : b;

#0 : a

END;

END;

PC: MODULE Rw(OUT a:(15:0);IN e:(15:0);CLK c:(0));

BEGIN

a <- Rw;

AT c UP DO Rw := e;

END;

ACCU: MODULE REG(OUT a:(15:0);IN e:(15:0);FCT cntrl:(0);CLK c:(0));

CONBEGIN

a <- REG;

CASE cntrl OF

#1 : "NOLOAD" after 0;

#0 : AT c UP DO REG := e

END;

CONEND;

DEC: MODULE ADEC(OUT a:(15:0);FCT s:(1:0));

BEGIN

a <-CASE s OF

#3: 8; #2: 4; #1: 2; #0: 0

3

END;

END;

INC: MODULE Ai(OUT a:(15:0);IN e:(15:0));

BEGIN

a <- "INCR" e;

END;

Clock: MODULE Ck (OUT a:(0));

BEGIN

a <- "TOGGLE" up after 100 down after 100;

END;

BMUX: MODULE NMUX (OUT f:(15:0);IN a,b,c:(15:0);FCT s:(1:0));

BEGIN

f <- CASE s OF

#3 : UNDEFINED; #2 : c; #1 : b; #0 : a

END;

END;

CONNECTIONS

Clock -> SH.P2 .c; ALU -> ACCU .e;

Clock -> ACCU .c; I.data .(2) -> ACCU .cntrl;

Clock -> PC .c; I.data .(31:16)-> BMUX .a;

I.data .(47:32)-> SH.P1 .addr1; DEC -> BMUX .b;

ALU -> SH.P2 .data2; ACCU -> BMUX .c;

I.data .(31:16)-> SH.P2 .addr2; I.data .(1:0) -> BMUX .s;

I.data .(5) -> SH.P2 .cntrl2; I.data .(7:6) -> DEC .s;

SH.P1 -> ALU .a; INC -> PC .e;

BMUX -> ALU .b; PC -> INC .e;

I.data .(4:3) -> ALU .s; PC -> I .addr;

END;

In MIMOLA, the default datatype is the bit vector. Its index range is denoted as (high-
bit:low-bit). The body of component descriptions is restricted to the forms shown in the
example. Note that for each case label we de�ne an available component operation mode and
the required control codes (the case labels). With its control input s set to 1, component ALU
is in a transparent mode. For sequential components, the operation identi�ers LOAD, NOLOAD

and READ are generated automatically. In MSSV, operation modes are also represented as
TREEMOLA trees, very much like the trees used to represent the algorithm (see below).

Usually, temporary locations are required in order to map an algorithm onto a certain hard-
ware. A group of locations has to be correspondingly tagged. Tagging is also required for
the locations which are available for the algorithm's variables, the binary instructions and
the program counter (controller state register). The following is an example in MIMOLA
V3.45:

LOCATIONS_For_Temporaries ACCU;

LOCATIONS_For_Variables SH[0..1000];

LOCATIONS_For_Instructions I;{entire ROM}

LOCATIONS_For_ProgramCounter PC;

MIMOLA allows the reservation of lists of components and locations for temporaries and
for variables. Equivalent language elements are missing in VHDL'87. In VHDL'92, groups

4

[IEE92] can be used to represent lists of components. There is still no way to make reserva-
tions for locations within a component.

Def.: Subranges of bits of the output of the instruction memory are called instruction
�elds.

In total, the structure is described by the netlist, the behavior of the components, the
instruction �elds, target-speci�c transformation rules (see below) and location lists.

In order to speed up the mapping algorithm, some preprocessing of the hardware structure
is performed. Computing the reachability-relation is the most important part of this.

Def.: Port i can be directly reached from port j, or j ; i i�

1. i is an input and j is an output and both belong to the same net.

2. j is a (data) input and i is an output of the same component and the component
can be used as a temporary or as a via (mux, ALU with an transparent mode,
ALU with an operation mode having a neutral element).

Def.: Relation ;� is the transitive closure of relation ;.

This relation is stored for every structure and reused if the structure is not changed.

3 Representation of the Algorithm

Our compilers also expect the algorithm to be described in TREEMOLA. Behavioral TREE-
MOLA can be generated from MIMOLA or other source languages4. MIMOLA [BMSJ91] is
essentially PASCAL, extended by bit-level addressing and language elements for describing
hardware structures. The following language features are included:

� FOR, WHILE, REPEAT

� ARRAYS (any dimension)

� Procedures (any static level), formal parameters

� Inline functions (restricted form)

� Explicit bit-level addressing, FIELD-declaration

� Explicit parallelism (PARBEGIN)

� Operator set roughly equivalent to VHDL'92

� 2 logic values (4 for hardware description)

� References to hardware components allowed

Examples:

+'ALU or + ALU

ALU(b,8,1)

� Variables may be bound to components

Example:

VAR sp AT SH[0];

4A compiler for VHDL is currently being developed.

5

� Partial implementation of dynamic data structures

As a (very simple) running example, we will consider the assignment

a := b + 8

Source level text like this is �rst passed through standard tools MSSF, MSSR, and MSSI
which perform for example the following functions:

� Translation from MIMOLA to TREEMOLA.

� Replacement of high-level language elements (e.g. loops and procedure calls) by simple
assignments. Target-dependent, user-de�nable program transformation rules can be
used to map procedure calls e.g. to pushes and pops of hardware stacks or other mech-
anisms for implementing procedures

Example:

MACRO ForProcedures IS

REPLACE CALL &id WITH BEGIN save:=pc&; pc&:= &id END;

REPLACE RETURN WITH pc&:= save+1 END;

END;

These transformation rules can be used in case of parameter-less, unnested procedure
calls. Calls to any procedure &id are replaced by two assignments. The �rst assignment
saves the program counter in register save. The second stores the entry label &id in
the program counter. All identi�ers starting with an &-sign are formal parameters. All
identi�ers ending with an &-sign are built-in functions.

� Replacement of abstract variables by memory locations (variable-storage binding for
the algorithm's variables).

� Computation of the index ranges for all bit vectors.

� Operator canonization: e.g. replacement of < by > and swapping of arguments for
commutative operations such that constants will never be used as left arguments.

� Replacement of unimplemented operators by implemented operators (e.g. replacement
of (a * 2) by (a + a)). This replacement is again controlled by target-dependent,
user-de�nable program transformation rules.

This preprocessing basically has already been described elsewhere [Mar84]. After prepro-
cessing, algorithms have been mapped to blocks of register transfers with the IF-statement
being the only remaining high-level language element.

Example:

The above assignment could have been transformed into the following slightly simpli�ed
TREEMOLA syntax:

(LOAD'SH(+(READ'SH(1)|8)0)

Note that preprocessing has already replaced references to variables a and b by references
to memory locations SH[0] and SH[1]. READ and LOAD operations for SH have been made
explicit.

MSSV uses the linked-node in-memory TREEMOLA representation that is depicted in �g.
2.

In �g. 2, the meaning of a son depends upon its position:

6

SH

?

SH

8 +

0 LOAD

1 READ

Figure 2: In-memory representation of an assignment

� The rightmost son denotes an operation. The father node (the sink node) can be inter-
preted as an APPLY-command for the operation and contains the name of the compon-
ent, which should implement the operation (= '?' if no prede�ned operation/operator
binding exists). This format for operators has been chosen because the operator nodes
later will represent an additional input to the component, generating required control
codes.

� The next son denotes an address, if the operation is either READ or LOAD.

� All other sons denote data.

4 Matching of Structures and Algorithms

4.1 Assignments and Expressions

The matching procedure follows the 'recursive descend approach' which is used in many
traditional compilers. With this approach, the calling structure of code generation reects
the recursive nesting of expression trees. The outermost procedures handle blocks. They
do not perform any matching and are therefore skipped in this report. The �rst procedure
which we consider is procedure assignment. In our example, it will be called with (a pointer
to) the root node as an argument. Procedure assignment basically just calls procedure
expression:

PROCEDURE assignment(s : tree);

BEGIN

expression(s);

(* other actions concern the generation*)

(* of error messages, the output of *)

(* generated code and book-keeping for *)

(* temporary locations *)

END;

In the remaining procedures, variable source denotes (a pointer to) a source (= an argument
of an expression) and variable sink denotes (a pointer to) the node that will be bound to
the hardware performing the operation.

The most important procedure is procedure expression:

7

PROCEDURE expression(e : tree);

BEGIN

FOR ALL source IN nodes(e)

SEQUENCE right-to-left, depth-first DO

CASE nodetype(source) OF

IntegerTyp, LabelTyp, StringTyp: constant(source);

OperationTyp: operation(e,source);

OTHERWISE :;

END;

IF nodetype(source)=CatenationTyp

THEN catbundling(source)

ELSE

BEGIN

bundling(source);

IF source<>root(e) THEN path(e,source,sink);

END;

END;

This procedure traverses all nodes, starting with the leaves. On each level within the
tree, it starts with the rightmost nodes, denoting operations to be performed. For these,
expression calls procedure operation. operation tries to �nd ways for implementing op-
erations in hardware and links a description of the required control code to the expression
tree. Furthermore, expression calls procedure constant, which tries to �nd ways for imple-
menting constants in hardware. Possible implementations are linked to the constant itself.
catbundling, bundling and path will be described below.

4.2 Matching of Operations

In the example, the �rst node visited is the LOAD-node. expression calls operation to
�nd components (or port-groups) with a matching operation mode. In order to select this
operation mode, a control code must normally be applied to a control input. To generate
this control code, operation calls constant.

The pseudo code for procedure operation is the following:

PROCEDURE operation(e, source : tree);

BEGIN

Let w be a component which is able to implement the operation denoted

by source (matching includes the operation identifier and the number

and bit-width of the arguments;

commutativity and possible use of wider components for some operations

is taken into account).

IF implementation needs control code THEN

call expression to generate this code;

Link generated information to source;

END;

Note that the search for matching operations is based on comparing operation identi�ers.
Overloading of operation identi�ers, except for di�erent bit vector lengths, is not possible.

The situation after the completion of the calls to operation and constant can be seen in
�g. 3. The generated information is called a partial version. Partial versions are attached to

8

the tree (see dashed line in �g. 3). I(x).(y:z) stands for a value x that should be supplied
by instruction �eld I.(y:z).

SH

?

SH

8 +

0 LOAD

1 READ

I(0).(5)

Figure 3: Situation after completion of constant

After calling operation, expression calls path to �nd a path from the component (or
instruction �eld) generating the control code to the control input of the component corres-
ponding to the sink node. Note that, in �g. 1, there is a direct path from the instruction
�eld to the control input.

SH

?

SH

8 +

0 LOAD

1 READ

I(0).(5)

SH.P2.cntrl2

Figure 4: Situation after completion of path

4.3 Matching of Constants

The node visited next by expression is the 0-node. Another partial version is added to the
TREEMOLA tree (see �g. 5).

SH

?

SH

8 +

0 LOAD

1 READ

I(0).(5)

SH.P2.cntrl2 SH.P2.addr2

I(0).(23:8)

Figure 5: Partial version for 0-node

This time the partial version describes how a 0 could be implemented at address inputs of
components or port-groups for which partial versions for the control input exist. Constants
like 0 can be generated by instruction �elds, by hardwired constants and by decoders. The

9

latter require control codes which in turn have to be generated by a call to expression.
The matching between the algorithm and the structure considers the fact that constants can
be generated by concatenations. Hence, the routine starts the matching at one end of the
constant and accepts matches of subranges of the full bitwidth. In the case of such a partial
match, it calls itself recursively for the remaining bits:

PROCEDURE constant(source : tree);

BEGIN

FOR ALL field IN instruction-fields DO

IF length(field) <= length(source)

THEN BEGIN

Create partial version I(value) with length(field);

Link version to source;

IF length(field)<length(source) THEN

call constant for remaining bits;

END;

FOR ALL components DO

IF component is able to supply required constant value THEN

BEGIN

Create partial version, calling the component with the

required control code.

IF the control code is <> don't care

THEN call expression to generate control code;

IF component supplies only subrange of bits

THEN call constant for remaining bits;

END;

END;

Procedure constant analyses reachability relation ;� in order to ignore �elds and compon-
ents which cannot be connected to the sink.

The fact that constants can be generated by concatenations is responsible for a signi�cant
amount of execution time of MSSV. In order to reduce this time, MSSV supports a user-
de�nable limit for the minimum number of bits per argument of the concatenation.

The node visited next by expression is the +-node. Another partial version, this time
describing the control code for + is linked to the TREEMOLA tree (see �g. 6).

?

SH

0 LOAD

SH 8 +

1 READ

ALU.s

SH.P2.addr2

I(2).(4:3)

I(0).(5)

SH.P2.cntrl2

I(0).(23:8)

Figure 6: Partial version for +

Next, partial versions for the node containing the 8 will be generated. One version can be
generated for the decoder and for the instruction �eld, respectively (c. f. �g. 7).

10

?

SH

0 LOAD

+8SH

1 READ

ALU.s

I(2).(4:3)

SH.P2.cntrl2 SH.P2.addr2

I(0).(5)

ALU.b

BMUX

I(0).(1:0)

ALU.b

BMUX

I(1).(1:0)

DEC

I(3).(7:6)

I(0).(23:8)

I(8).(23:8)

Figure 7: Partial versions for 8

4.4 Matching of Paths

In �g. 7, there is a reference to multiplexer BMUX. This multiplexer is required because there
is no direct path from I.(31:16) and DEC to the sink's input and procedure path has to �nd
a via through multiplexer BMUX. The pseudo code for path is the following:

PROCEDURE path(t, source, sink: tree);

BEGIN

dirpath(source,sink);

IF additional paths are possible THEN

BEGIN

viapath(t, source, sink);

temppath(t, source, sink);

END;

END;

Procedure path also analyses reachability relation ;� in order to ignore �elds and compon-
ents which cannot be connected to the sink. dirpath scans the netlist to �nd a direct path
from source to sink.

viapath scans the netlist to �nd a path from source to vias. It adds a node describing the
via to the tree and then calls path recursively to �nd a path from the via to candidates for
the sink.

4.5 Insertion of Temporaries

temppath scans the netlist to �nd a path from source to a component containing temporary
locations. If such a path is found, temppath creates an assignment of the tree with root
source to that component. Furthermore, it adds a READ-operation to the remaining tree
(with root t) and calls expression recursively for this tree. This remaining tree is tagged
such that the same component cannot be used again unless some useful operation has been
performed on the data. As a result of the insertion of temporary locations, sequential versions
will be attached to root node t. Sequential versions consist of

1. an assignment to a temporary and the related non-sequential versions

11

2. the remaining tree with root t, for which this structure may be repeated.

Example: If ACCU were available as a temporary location, we would generate

1. ACCU := 8; (* via ALU.b *) and the associated versions

2. SH[0] := SH[1] + ACCU; and the associated versions

This sequence would be required if the 8 would be replaced by a constant which cannot be
generated by DEC. The nodes visited next by expression denote the READ-operation and the
constant 1. The generated partial versions can be seen in �g. 8 and �g. 9, respectively.

SH.P1 (cntrl)

?

SH

0 LOAD

+8

ALU.s

SH

1 READ %X

I(2).(4:3)

SH.P2.cntrl2 SH.P2.addr2

I(0).(5)

ALU.b

BMUX

I(0).(1:0)

ALU.b

BMUX

I(1).(1:0)

DEC

I(3).(7:6)

I(0).(23:8)

I(8).(23:8)

Figure 8: Partial version for READ (%X=don't care)

SH.P1 (cntrl)

?

SH

0 LOAD

+8

ALU.s

SH

1 READ %X

I(2).(4:3)

SH.P2.addr2SH.P2.cntrl2

I(0).(5)

SH.P1.addr1

ALU.b

BMUX

I(0).(1:0)

ALU.b

BMUX

I(1).(1:0)

DEC

I(3).(7:6)

I(0).(23:8)

I(8).(23:8)

I(1).(39:24)

Figure 9: Partial version for 1

4.6 Bundling

Up till now, we have visited only leaves. For these, the calls to bundling and to catbundling
within expression have no e�ect. For the other nodes, these procedures will try to turn
partial versions into versions. All possible combinations of partial versions are checked in

12

order to �nd ways for implementing an entire expression in hardware. This task is called
bundling. After bundling, (full) versions for implementing the expression tree with root
source exist. The result of the �rst call to bundling is shown in �g. 10. This call generates
a version with root SH.P1.

?

SH

0 LOAD

+8

SH

1 READ

SH.P1

%X

I(0).(5)

SH.P2.cntrl2 SH.P2.addr2

ALU.s

I(2).(4:3)

ALU.b

BMUX

I(1).(1:0)DEC

I(3).(7:6)

ALU.b

BMUX

I(0).(1:0)

I(1).(39:24)

I(8).(23:8)

I(0).(23:8)

Figure 10: Result of bundling for node SH

The pseudo-code for bundling is the following:

PROCEDURE bundling(n : tree);

BEGIN

generate all possible (full) versions;

delete partial versions linked to n;

END;

A very important task of bundling is to detect resource conicts: partial versions for the
di�erent input ports could be in conict to each other. Both MSSV and MSSQ check for
such conicts by checking if there is a conict at instructions. Conicts with respect to

hardware components are mapped to conicts at the control word (instruction
conict). There is no blocking the hardware resources that are used in a certain

control step. Therefore, components which can perform several operations concurrently,
can be modeled.

This approach is feasible, because the main limitation of actual hardware is that no wire
can carry two di�erent signals at a time. Since multiplexers are explicit in our hardware
model, avoiding conicts at the control word is su�cient for guaranteeing conict-free signal
assignments. There is one exception, however: the programmable bus conict. This case is
handled separately (see below).

Bundling is slightly di�erent for ordinary nodes and for catenation nodes (c. f. catbundling).
Whereas bundling tries to �nd partial versions for all required ports, catbundling tries to
�nd the partial versions for all required bits of one port.

After bundling, expression tries to �nd paths from the root of versions linked to source to
components matching the sink node.

The call to path for source = SH.P1 generates a partial version with root ALU.a (see �g.
11).

13

?

SH

0 LOAD

+8

SH

1 READ

I(0).(5)

SH.P2.cntrl2 SH.P2.addr2

ALU.s

I(2).(4:3)

ALU.b

BMUX

I(0).(1:0)

ALU.b

BMUX

I(1).(1:0)
DEC

I(3).(7:6)
%X

SH.P1

ALU.a

I(1).(39:24)

I(8).(23:8)

I(0).(23:8)

Figure 11: After calling path for SH

The outstanding completion of expression for the �rst two nodes results in additional calls
to bundling and path. This leads to �gs. 12, 13 and 14.

?

SH

0 LOAD

8

SH

1 READ

+ BMUX

%X

SH.P1

ALU

I(0).(1:0)

I(2).(4:3)

I(0).(5)

SH.P2.cntrl2 SH.P2.addr2

BMUX

%X

SH.P1

ALU

I(2).(4:3)

DEC

I(3).(7:6)

I(1).(1:0)

I(0).(23:8)

I(1).(39:24)
I(1).(39:24)

I(8).(23:8)

Figure 12: Result of bundling at ?

Note that the version containing I(8).(31:16) is not included in �g. 14 because it causes
an instruction conict with I(0).(31:16).

14

?

SH

0 LOAD

8

SH

1 READ

+

I(1).(47:32)

I(0).(31:16)I(0).(5)

SH.P2.cntrl2 SH.P2.addr2

BMUX

%X

SH.P1

ALU

I(8).(31:16)

I(0).(1:0)

I(2).(4:3)

BMUX

%X

SH.P1

ALU

DEC
I(1).(47:32)

I(2).(4:3)

I(3).(7:6)

I(1).(1:0)

SH.P2.data2 SH.P2.data2

Figure 13: After calling path for ?

?

SH

0 LOAD

8
SH

1 READ

BMUX

%X

SH.P1

ALU

DEC

SH.P2

I(3).(7:6)

I(2).(4:3)

I(0).(5)

I(1).(1:0)

I(1).(39:24)

I(0).(23:8)

Figure 14: Result of bundling at 2nd SH-node

4.7 Extraction of binary code

The binary code can be extracted from �g. 14 tree quite easily (see table 1).

Bits 47:32 31:16 15:8 7:6 5 4:3 2 1:0

Code 1 0 X 3 0 2 X 2

Table 1: Binary code for the running example

5 Additional Tasks

5.1 Disabling bu�ers and storage devices

The code generated so far does not yet guarantee, that the states of sequential components, to
which no assignment exists, remain unchanged. For example, the binary code which we just

15

generated does not specify any value for the control input of ACCU (bit 2 of the instruction).
We avoid such incorrect codes by generating versions for the NOLOAD-operation of sequential
components. Our scheduler augments the code generated so far by NOLOAD-versions for all
components (or port groups) to which no assignment exists within a certain control step.

A similar problem arises with busses. In some cases, bus drivers can be controlled such
that multiple writes to a bus exist (programmable bus conict). We avoid such conicts
by generating versions for the TRISTATE-operation of bus-drivers. The scheduling algorithm
then guarantees that, for every control step, unused bus drivers are in TRISTATE-mode.

5.2 Scheduling

Generated version lists are fed into the scheduler. The scheduler is an ASAP-time scheduler
with special provisions to handle alternate code sequences for each of the assignments. The
scheduler tries to put as many statements into one control step as possible by checking
available versions.

6 Limitations

Mapping as described above works for programmable targets with �xed length instructions.
Multi-port memories and chaining are supported, but multi-cycle operations are not yet
implemented. Multi-cycle clocking is assumed to be invisible at the instruction level. Delayed
jumps are not supported by MSSV. A linker has not yet been designed (although this would
be straightforward).

Due to its limited speed, the mapper cannot be used for large algorithms (this is not a
problem for DSP applications).

7 Conclusion

First of all, the method that we have described above works for real architectures. We
have tried it on various targets and it was able to generate code. A well-studied example is
that of AMD-2900 based designs. They are challenging because of the strong encoding of
instructions.

The most important observation is that the number of versions for typical designs is signi�c-
antly larger than expected. Hundrets of versions per statement are rather common for real
designs. Unfortunately, this slows down the code generation considerably. Execution times
of a few seconds per statement are no exception. Mappers for the applications at hand are
not used for large algorithms, but the speed of MSSV would inhibit real applications. The
reason for the large number of versions frequently originates from control code alternatives
very high up in the tree. If there are several such alternatives at various places in the tree,
the cross product of these alternatives results in a huge amount of versions. Generating only
one version at a time and backtracking in case of conicts does not help, because the number
of backtracks is estimated to be in the order of the number versions which MSSV creates.
And backtracking would cause much more overhead. Another problem of MSSV is that it
cannot be used with large lists of components containing temporary locations.

We are therefore now using MSSQ instead of MSSV. MSSQ allows version-nodes (OR-lists)
anywhere in the tree. This eliminates the cross-product problem. As a result, all code

16

alternatives can be stored even in a small main memory. No alternative has to be ignored
due to memory or run-time constraints and hence it can be guaranteed that MSSQ does not
generate multiple control steps in cases where a solution with a single control step exists.

Although MSSQ(uick) is faster than MSSV, MSSV is ideal for demonstrating the basic
principles in an emerging discipline. The key ideas of the matching process are easier to
understand than for a complex system like MSSQ. This report on MSSV should contain
enough information to stimulate further research in this emerging area.

17

References

[BH81] T. Baba and H. Hagiwara. The MPG system: A machine-independent micropro-
gram generator. IEEE Trans. on Computers, Vol. 30, pages 373{395, 1981.

[BMSJ91] R. Beckmann, P. Marwedel, W. Schenk, and R. J�ohnk. The MIMOLA language
reference manual - version 4.0 -. Technical Report 363, Computer Science Dpt.,
University of Dortmund, 1991.

[BPSJ91] R. Beckmann, D. Pusch, W. Schenk, and R. J�ohnk. The TREEMOLA language
reference manual { version 4.0 {. Technical Report 391, Computer Science Dpt.,
University of Dortmund, 1991.

[EGO79] C.J. Evangelisti, G. Goertzel, and H. Ofek. Using the dataow analyzer on
LCD descriptions of machines to generate control. Proc. 4th Int. Workshop on
Hardware Description Languages, pages 109{115, 1979.

[Fis91] J. Fisher. RISC: The death of microcode, or the victory of microcode? Proc.
24th Ann. Int. Symp. on Microarchitecture, keynote, 1991.

[Fly90] M. Flynn. Instruction sets and their implementations. Proc. 23rd Ann. Int.
Symp. on Microarchitecture, pages 1{6, 1990.

[GCLM92] G. Goossens, F. Catthoor, D. Lanneer, and H. De Man. Integration of signal
processing systems on heterogeneous IC architectures. 6th ACM/IEEE High-
Level Synthesis Workshop, 1992.

[GFH82] M. Ganapathi, C.N. Fisher, and J.L. Hennessy. Retargetable compiler code
generation. ACM Computing Surveys, Vol. 14, pages 573{593, 1982.

[IEE92] Design Automation Standards Subcommittee of the IEEE. Draft standard VHDL
language reference manual. IEEE Standards Department, 1992, 1992.

[IFI93] IFIP. Workshop on hardware/software codesign. Innsbruck, Austria, 1993.

[LCG+90] D. Lanneer, F. Catthoor, G. Goossens, M. Pauwels, J. Van Meerbergen, and
H. De Man. Open-ended system for high-level synthesis of exible signal pro-
cessors. 1st EDAC, Glasgow, 1990.

[Mar84] P. Marwedel. A retargetable compiler for a high-level microprogramming lan-
guage. ACM Sigmicro Newsletter, Vol. 15, pages 267{274, 1984.

[Mav92] F. Mavaddat. Data-path synthesis as grammar inference. IFIP-Workshop on
Control Dominated Synthesis from A Register Transfer Description, Grenoble,
1992.

[MN89] P. Marwedel and L. Nowak. Veri�cation of hardware descriptions by retargetable
code generation. 26th Design Automation Conference, pages 441{447, 1989.

[MV83] R.A. Mueller and J. Varghese. Flow graph machine models in microcode syn-
thesis. 17th Ann. Workshop on Microprogramming (MICRO-17), pages 159{167,
1983.

[Now87] L. Nowak. Graph based retargetable microcode compilation in the MIMOLA
design system. 20th Annual Workshop on Microprogramming (MICRO-20), pages
126{132, 1987.

[TI91] Texas-Instruments. TMS320C2x. User's Guide, 1991.

[Veg82] S.R. Vegdahl. Local code generation and compaction in optimizing microcode
compilers. PhD thesis and report CMUCS-82-153, Carnegie-Mellon University,
Pittsburgh, 1982.

18

[War89] E. Warshawsy. Retargetable microcode generation from VHDL. JRS Research
Lab. Inc., Irvine, (personal communication), 1989.

[XIL91] XILINX. The XC 4000 data book. San Jose, 1991.

19

