
Retargetable Assembly Code Generation by
Bootstrapping

Rainer Leupers, Wolfgang Schenk

University of Dortmund,

Lehrstuhl Informatik 12

D-44221 Dortmund, Germany

Report No. 488

July 1993

ABSTRACT

In a hardware/software codesign environment compilers are needed that map software

components of a partitioned system behavior description onto a programmable proces-

sor. Since the processor structure is not static, but can repeatedly change during the

design process, the compiler should be retargetable to avoid manual compiler adap-

tion for any alternative architecture. A restriction of existing retargetable compilers is

that they only generate microcode for the target architecture instead of machine-level

code. In this paper we introduce a bootstrapping technique allowing us to translate

high-level language (HLL) programs into real machine-level code using a retargetable

microcode compiler. The retargetability is preserved, permitting to compare di�erent

architectural alternatives in a codesign framework within relatively little time. As

an application of the new code generation technique we consider hardware/software

codesign of heterogeneous information processing systems.

i

Contents

1 Introduction 1

2 Microcode Generation in the MIMOLA Software System 3

3 Bootstrapping Approach 6

4 Micro-ROM Generation 8

5 Machine Code Generation 10

6 Code Example 12

7 Hardware/Software Codesign for Heterogeneous Systems 14

8 Exploring Architectural Alternatives 15

9 Conclusions 18

ii

1 Introduction

The "hardware/software codesign" approach increasingly gains importance in digital system syn-

thesis from behavioral descriptions. Codesign means partitioning an abstract behavioral description

into hardware and software components forming a system with the speci�ed behavior and meeting

given timing restrictions. Especially it supports design of digital controllers performing real-time

computations. The target architecture might be a simple system containing a programmable pro-

cessor, a main memory, and several ASICs, as proposed in [1] (�g. 1).

&%
'$

&%
'$

6

?

-�

-�

MICROPROCESSOR

CORE

ASIC

ASIC

MEMORY

Figure 1: System Architecture

There, software components of the partitioned description are executed on the processor (core),

whereas real-time routines are performed by ASICs (the hardware components of the partitioned

description). Additionally the processor controls component communication that is done using a

central bus. A standard processor as well as a processor core may be used. Especially in the DSP

domain a very simple core may su�ce, since DSP systems typically perform short, arithmetic-

intensive tasks. In case that arithmetical subtasks are done by ASICs, the smallest possible core

should be chosen, that can execute the necessary software components still allowing other hardware

modules to be put onto the same chip. Complex behavioral descriptions might require extended

target architectures, e.g. more than one core and local component communication, but the simple

model depicted in �g. 1 su�ces for studying general requirements on codesign tools.

Since communication overhead implied by a certain system partition is hardly predictable, code-

signing a digital system requires several iteration steps in general (�g. 2).

During the iteration the necessary hardware and software components change, causing di�erent core

1

requirements in each step. In order to simulate the system behavior for a given hardware/software

partition the hardware components have to be synthesized and the software components have to

be mapped onto the core. For the latter a compiler is needed that translates an HLL program

into the core instruction set. Commercial compilers are available for some standard processors but

never for special cores. Therefore we recommend using a retargetable compiler, processing both an

HLL program and a processor (core) description, and producing machine code for the described

hardware. The compiler retargetability enables the designer to study di�erent core alternatives

without manually changing the compiler itself.

�
�

�
�HW SYNTHESIS COMPILATION

�
�

�
�

HW

COMPONENTS

�
�

�
�PARTITIONING

BEHAVIORAL

DESCRIPTION

SIMULATION

�
�

�
�

STOP

SW

COMPONENTS

?

������
HHHHHj

? ?

@
@@R

�
��/

?

�

OK

NOT OK

Figure 2: HW/SW Codesign Flow

Several retargetable compilers are mentioned in the literature [2, 3, 4], among them our code

generator MSSC. MSSC takes both a target structure description and a PASCAL program emitting

binary code automatically, that executes the PASCAL program on the given structure if possible. A

disadvantage of those compilers (when using it in a codesign environment) is that only code for the

lowest programming level is generated, i.e. microinstructions. if only the processor datapath but

not the controller is to be changed, the core still must be programmed in (assembly-level) machine

code. Generating machine code is not provided by the above compilers. The GNU C Compiler [5],

which is also regarded to be retargetable, generates assembly level code, but retargeting requires a

large amount of translation directives and recompiling for each target machine. MSSC generates

code from the pure RT-level machine description and therefore needs not to be recompiled. To

�ll the gap between microcode and assembly level code generation, we propose a bootstrapping

technique enabling the designer to translate an HLL program into machine code using an existing

retargetable microcode compiler. Using this technique makes the microcode compiler a useful tool

2

in a codesign framework. Di�erent processor datapaths implying di�erent machine instruction sets

can be tried during the design iteration without compiler adaption, still allowing the designer to

specify software components in high-level language, and thus accelerating evaluation of a certain

system partition. The approach even may be used for standard processors, when no target-speci�c

compiler is available although this is not its main purpose.

We describe the bootstrapping approach using the TMS320C25 as an example, a widely-spread

standard DSP. The compiler MSSC itself has been described elsewhere [6, 7], so only a short

overview is given in the following section. After that the basic bootstrapping idea is explained,

followed by a detailed description of the two main steps (micro-ROM generation and machine

code generation). An example for generated machine-level code is given in section 6. Finally it is

shown how the new code generation technique can be applied for hardware/software codesign of

heterogeneous systems. The paper ends with a conclusion.

2 Microcode Generation in the MIMOLA Software System

The retargetable microcode generator MSSC is part of the MIMOLA Software System (MSS),

which supplies hardware synthesis, generation of self-test programs, simulation and schematics

generation, too [10, 11]. Every MSS tool is based on the MIMOLA language that allows both

hardware and software descriptions. Hardware descriptions contain RT modules, their behavior

and their interconnections. For instance, a 32 bit ALU might be speci�ed in MIMOLA as follows:

MODULE ALU (IN a, b : (31:0);

OUT outp: (31:0);

FCT ctr : (1:0))

BEGIN

outp <- CASE ctr OF

0: a + b;

1: a - b;

2: a;

3: a XOR b;

ENDCASE

END;

The ALU has two 32 bit data inputs, a 32 bit output, and a 2 bit control input selecting the

ALU function. A complete hardware description enumerates all modules and all interconnections

(wires). For code generation one register has to be marked as program counter and one memory

module as instruction storage.

Module interconnections are explicitly given in the MIMOLA description, e.g. by

CONNECTIONS ACCU.outp -> ALU.a;

ALU.outp -> ACCU.inp;

3

Software descriptions in MIMOLA may consist of PASCAL statements, but RT-level programming

is supported, too. All high-level control structures (FOR, WHILE, REPEAT,...) are supplied, but

there are no prede�ned data types. They can be declared by bitstrings, e.g. by

TYPE Integer = (15:0);

De�nition of complex data types (ARRAY, RECORD) is supported, e.g. the user could declare

TYPE ArrType = ARRAY [1..10] OF Integer;

Hardware and software description together form the input to MSSC, that translates the given

program into microinstructions for the given programmable hardware structure (�g. 3). MSSC has

been described in detail in [6, 7], we only give a rough summary of the four main steps here.

J
J
JĴ

�
�
���

?

0: 01X00XX110001

1: X01100X01X011

2: 00XX101001011

BEGIN

WHILE a<0 DO

a := a + (b*c)

MSSC

ALU: (...)

CONNECTIONS...

MAINRAM:(...)

SW Description HW Description

Binary Code

Figure 3: Functionality of MSSC

1. Program transformation: The software description is transformed into an RT-level pro-

gram. All user variables are mapped onto real memory locations, and loop structures are

replaced by conditional jumps. Either default or user-de�ned replacement rules are used. For

example the loop

<label>: REPEAT <block> UNTIL <cond>

could be replaced by

4

<label>: <block>

PC := IF <cond> THEN "INCR" PC

ELSE <label>

where PC denotes the program counter. So, execution of <block> is repeated until <cond>

becomes true. The result is an RT-level program that only may contain IF-statements as

high-level elements. IF-statements can be mapped onto hardware directly using multiplexers

or comparators.

2. Preallocation: The Connection Operation Graph is constructed that represents the hard-

ware structure. It contains vertices for every operation performed by the modules and edges

for their interconnections. Within the preallocation step suitable assignments to instruction

word �elds (versions) are calculated for each possible hardware operation. Module control

codes can be provided directly by the instruction word as well as via other modules or by

hardwired constants. If for instance an ALU addition is selected by ALU control code c which

can only be supplied by a decoder, MSSC tries to �nd an appropriate version forcing the de-

coder to generate code c. This ability of indirectly supplying control codes via decoders is

crucial for our bootstrapping technique. Since a large number of versions might be found for

each hardware operation during preallocation, a special data structure is used for e�ciently

handling version alternatives.

3. Code generation: Code generation is done by pattern matching within the Connection

Operation Graph. Every assignment can be represented by a data
ow tree. If the CO-Graph

contains a matching subtree, the assignment can be allocated immediately. Otherwise, the

assignment is split and MSSC tries to �nd an allocation using temporary cells. If a statement

cannot be allocated even when using temporaries, MSSC generates an error message indicating

the failure reason and location, e.g. a missing path between modules. In that case the

hardware structure has to be modi�ed. The result of successful code generation is a list of

micro-orders each performing one micro-operation.

4. Scheduling: Finally the micro-orders have to be packed into complete microinstructions

(control store words). Data dependencies as well as compatibility of micro-orders have to be

obeyed. Micro-operations executable in parallel are packed into one control step. Additionally

unused registers and tristate bus drivers must be disabled.

The result then is a microprogram executing the given PASCAL program on the target structure.

MSSC has proven its capabilities for numerous target structures, e.g. implementation of a virtual

machine language interpreter on the VLIW processor SAMP [8, 9].

5

3 Bootstrapping Approach

This section gives an overview of the bootstrapping technique. A detailed explanation containing

examples is given in sections IV and V. The basic idea for generating machine-level instead of

microinstructions is a two-phase use of MSSC. In the �rst phase MSSC produces a binary program

that corresponds to the processor instruction set. This program is stored into a micro-ROM (a

decoder), that serves as an additional input in the second phase. Extending the hardware descrip-

tion by the micro-ROM enables MSSC to translate an HLL program into machine-level code in

phase 2. This means, phase 1 uses the microcode compiler MSSC for "bootstrapping" a real HLL

to machine code compiler for a speci�ed processor structure and its machine instruction set. The

whole procedure is shown in �g. 4.

CONNECTIONS

ACC ! ADDER

PARTS ADDER: ...

Program

PASCAL

- �

?

- �

?

-

ADD:

ACC := ACC + ...

CMPL:

ACC := NOT ACC

ADD : 0110X010010X

LAR : 100X010110X0

CMPL:110XX0X10010

MSSC

FOR i:=1 TO 10 DO

a := a + i*b;

IF a>0 THEN ...

MSSC

23: 0110000000000011 (SACL 3)

22: 1100110000000001 (ADDK 1)

21: 0100000100000010 (ZALS 2)

Assembly Instructions

HW Description
Behavior of Assembly

Instructions

micro-ROM

Figure 4: Basic Idea of Bootstrapping

6

Phase 1 (Micro-ROM generation)

1. Hardware structure modelling: The target processor's RT-structure is described in MI-

MOLA, containing the datapath, storage modules as well as a simple microcontroller that uses

separate control lines for every module. This controller is dropped in the second phase and

does not need to be structurally identical to the real controller. Therefore, when modelling the

target processor the designer only needs knowledge about the datapath and storage/register

modules. This information can be taken for example from a processor data book, whereas

information about the controller usually is not provided.

2. Assembly instruction modelling: The RT-level behavior of available assembly instruc-

tions is modelled in MIMOLA. The result is a "program" that simply consists of a listing

of all assembly instruction behaviors. This "program" forms the software description for the

�rst MSSC run.

3. Micro-ROM generation: The compiler MSSC is applied to the hardware description and

to the "program" containing the assembly instruction behaviors. For technical reasons we

assume every machine instruction to be executable within a single cycle. As described later,

this means no restriction, however. Thus MSSC generates a microprogram in which each

microinstruction corresponds to a realisation of a certain assembly instruction. The micro-

program is stored into the declared instruction memory. Since this memory is not part of the

real target hardware, it is a kind of "virtual" micro-ROM. Note that successful micro-ROM

generation implies verifying the hardware description, i.e. the structure is able to execute

the speci�ed machine instructions. Therefore, "correctness by construction" is guaranteed.

This feature of our approach may also be used to easily obtain a correct processor model for

simulation purposes.

Phase 2 (Machine code generation)

1. Controller replacement: The micro-ROM generated in phase 1 is now assumed to be

part of the target hardware structure. All control lines still radiate from the micro-ROM

that simply serves as a decoder here. By addressing a line in the micro-ROM execution

of a certain machine instruction can be selected. Addressing the micro-ROM is now done

from the "real" machine instruction memory which in its turn is addressed by the "real"

machine-level program counter. As mentioned in section II, MSSC is able to produce binary

code for controlling modules via decoders. Since every module only can be controlled via the

micro-ROM, and the micro-ROM only contains microcode for machine instructions, MSSC is

forced to generate encoded machine instructions when applied to the structure and an HLL

program.

2. HLL program translation: Now the same hardware structure as in phase 1 serves as an

input to MSSC, extended by the micro-ROM. The software description in principle could

be any HLL (PASCAL in our case) program. MSSC produces binary code in which every

7

instruction contains an address for the micro-ROM (and thus an encoded machine instruction)

as well as necessary operands. This binary code can be easily transformed to real machine

code using a table. The result is an assembly-level machine program for the target processor

realising the given HLL program.

?

6

?

-

-

-

MPC +1

MIS

address

control

lines
.
.
.

. . .

Figure 5: Simple Controller in Phase 1

For a given target processor, phase 1 has to be performed only once. After that any PASCAL

program can be translated into machine code by a single call of MSSC. Both phases are described

in detail in the two following sections. For better understanding of the bootstrapping technique,

we consider the digital signal processor TMS320C25 as an example.

4 Micro-ROM Generation

In phase 1 a micro-ROM is to be generated, in which every control word realises exactly one machine

instruction. At �rst the target structure (here: TMS320C25) has to be modelled. Most of the

datapath structure can be found in [12] and can be written as a MIMOLA hardware description.

Information about the internal controller structure is not available in [12], but this causes no

problems since we only need a simple microcontroller structure for phase 1.

The MIMOLA model of the TMS contains about 2000 text lines. The model needs not to be

exactly equal to the real hardware, the crucial point is that modelled hardware is able to perform

the desired machine instructions. This simpli�es the modelling phase, especially if only a rough

datapath description is available to the user.

The TMS contains a 16 bit program counter and a 4k program ROM. These modules are modelled,

too, but not according to their real functionality in the �rst phase. Instead we use the simple

controller shown in �g. 5. The microinstruction storage (MIS) controls all but the residual control

8

modules directly. Its wordlength is 150 bits in our model. It is addressed by a microprogram

counter (MPC) which is incremented after each cycle. MPC and incrementer are only used for

micro-ROM generation, since MSSC always needs a program counter and at least an incrementer

for compilation. Both modules are unimportant for the further steps.

The software input for MSSC is a "program" which simply enumerates all assembly instructions

and their RT-level behavior (in MIMOLA). This information can also be taken from [12]. The

"program" looks as follows:

PROGRAM InstructionSet IS

LABEL ADDK, CMPL, ...

BEGIN

ADDK: (* add to accu short immediate *)

PARBEGIN

ACC := ACC + ZeroExtend24(PgmROM[PC].(7:0));

PC := "INCR" PC;

PAREND;

CMPL: (* complement accumulator *)

PARBEGIN

ACC := "NOT" ACC;

PC := "INCR" PC;

PAREND;

<further instructions>

END;

This extract shows how the behavior of two simple assembly instructions might be modelled in

MIMOLA. For every instruction a label of the same name is declared. The ADDK instruction adds

an 8 bit constant from the instruction word in the program ROM (addressed by the real program

counter PC) extended by 24 zero bits to the accumulator and stores the result into the accumulator

again. The PC is incremented in parallel. The CMPL instruction inverts the accumulator and can

be modelled similarly.

This "program" is mapped onto the target structure by MSSC. It is never executed, only the

resulting binary code is important. Since no branches occur, the incrementer (�g. 5) is su�cient

for modifying the MPC. The generated microcode is stored into MIS, containing a sequence of

150 bit microinstructions then. Each microinstruction corresponds to a machine instruction (�g.

6). MIS contains as many lines as machine instructions have been speci�ed, because a suitable

hardware model guarantees that only single-cycle instructions are generated. The initialised MIS is

used as one MSSC input in the second phase. It contains the information about available machine

instructions and their implementation by microinstructions.

9

0100............................0X11 (ADDK)

10X0............................1101 (CMPL)

X011............................0010 (LARP)

<further instructions>

0149

Figure 6: Contents of micro-ROM MIS

5 Machine Code Generation

In phase 2 a PASCAL program is to be translated into a TMS machine program. The micro-ROM

is now assumed to be part of the target structure and the controller illustrated in �g. 7 is used.

This step requires only minor changes in the RT-model.

?

?

-
-

-

PC

PgmROM

MIS

address

address

control

lines

Figure 7: Controller in Phase 2

In the second phase the TMS 4k program ROM serves as instruction memory, addressed by the

program counter PC. The microprogram counter MPC of phase 1 is dropped. The modules are

controlled by the program ROM indirectly via the micro-ROM. Thus the micro-ROM now works

as an instruction decoder. Every line in the program ROM has the following format:

16 bit constant 8 bit address 16 bit operands

The 16 bit constant �eld is only used in case of two-word instructions, e.g. jumps. The jump address

is then stored in the constant �eld instead of the next program ROM line, just to avoid the necessity

of generating two-cycle instructions. This means no restriction, since the above 40 bit control word

10

format is �nally transformed to real machine code format by a very simple postprocessing step.

An 8 bit address �eld is used for controlling the MIS. So a certain address corresponds to a certain

machine instruction. The 16 bit operand �elds carry immediate operands for the current instruction

if necessary.

Since the program ROM controls the modules indirectly through MIS, and MIS in its turn only

contains microcode for machine instructions, the code generator is forced to generate nothing but

encoded machine instructions, whereas the hardware structure might be able to perform several

other instructions, too.

The TMS RT-structure together with the MIS and an arbitrary PASCAL program now forms the

input for MSSC. In addition, memory locations for user variables and temporaries can be declared.

Code generation for a single PASCAL statement of the form

a := b + 4;

could be done as follows. We assume the user variables a and b to be located at addresses 0 resp. 1

of the data RAM. At �rst MSSC recognises that a temporary is needed to execute the statement.

Using the TMS accumulator as a temporary, the assignment is split into:

(1) ACC := DataRAM[1];

(2) ACC := ACC + 4;

(3) DataRAM[0] := ACC;

Each statement can be allocated directly now, since there are corresponding microinstructions in

MIS:

(1) ZALS (zero high accu, load low accu)

(2) ADDK (add to accu short immediate)

(3) SACL (store low accu with shift)

Assuming these instructions are located at addresses 1, 2 resp. 3 of MIS, MSSC will generate the

intermediate code:

No. 16 bit const 8 bit addr 16 bit operands

(1) xx: : :xx 00000001 xxxxxxxx00000001

(2) xx: : :xx 00000010 xxxxxxxx00000100

(3) xx: : :xx 00000011 xxxxx00000000000

The 16 bit constant �elds are don't cares, since each instruction occupies only one TMS word. The

8 bit adress �elds select the particular instructions in MIS (1, 2 and 3), and the 16 bit operand

�elds provide the instruction-speci�c operands: memory address 1 of variable b for the ZALS

instruction, the 8 bit constant 4 for ADDK, and for SACL the shift value (here: 0) and the address

11

0 of variable a. This intermediate code can be transformed to real machine code or mnemonics very

easily. Only a table is needed, containing the information about correspondence between addresses

and instructions in MIS, and about operand �eld interpretation for each instruction. For the above

example one obtains:

No. Assembly Code Machine Code

(1) ZALS 1 0100000100000001

(2) ADDK 4 1100110000000100

(3) SACL 0 0110000000000000

Thus, we get a translation of a PASCAL program into real machine code, immediately executable

on the TMS. As mentioned above, this compilation is retargetable, too, i.e. if the target struc-

ture is changed and a new micro-ROM is generated, machine-level output for other processsors or

cores is produced. Therefore, several structural alternatives for software components in a codesign

framework can be tried without adapting the compiler itself. Only the bootstrapping procedure

has to be repeated.

Another important feature of our code generation technique is the exploitation of potential par-

allelism. Besides the central ALU the TMS320C25 contains an 8 � 16 bit auxiliary register �le

(AR) having its own arithmetic unit (ARAU) which is able to perform addition and subtraction

on auxiliary registers. Many TMS instructions allow AR modi�cation in parallel to the "main

operation". Consider the statements

a := a + b;

i := i + 1;

After allocating these statements, the MSSC scheduler �nds that both additions can be performed

within a single control step. If variable a is temporarily located in the accumulator and i is

kept in an auxiliary register, a single ADD ("add to accumulator") instruction is su�cient, that

additionally supplies an increment control code to the ARAU. Thus, the scheduler is capable of

code optimisation. Even a manually designed target-speci�c compiler might have di�culties to

recognise this kind of potential parallelism.

6 Code Example

In this section we show an example for generated TMS assembly code. Phase 1 of the bootstrapping

procedure has to be performed only once, in our model MSSC needs 135 CPU sec on a SPARCsta-

tion for that task. Regarding phase 2 we consider a small program for Euclidian greatest common

divisor computation:

12

PROGRAM gcd IS

VAR u, v, t: Integer;

BEGIN

REPEAT

IF u < v THEN BEGIN

t:=u; u:=v; v:=t

END;

u := u-v

UNTIL u = 0;

END;

After termination of the REPEAT loop, variable v contains gcd(u,v). MSSC generates the following

code for this example within 48 CPU sec on a SPARCstation (AR denotes TMS internal auxiliary

register, help is a temporary located at DataRAM[101]):

1: ZALS 0 // ACC := u

2: SUBS 1 // ACC := ACC - v

3: SACL 101 // help := ACC

4: ZALS 101 // ACC := help

5: BGEZ 12 // IF ACC >= 0 GOTO 12

6: LAR AR1,0 // AR1 := u

7: SAR AR1,2 // t := u

8: LAR AR1,1 // AR1 := v

9: SAR AR1,0 // u := v

10: LAR AR1,2 // AR1 := t

11: SAR AR1,1 // v := t

12: ZALS 0 // ACC := u

13: SUBS 1 // ACC := ACC - v

14: SACL 101 // help := ACC

15: LAR AR1,101 // AR1 := help

16: SAR AR1,0 // u := AR1

17: ZALS 0 // ACC := u

18: BNZ 1 // IF ACC <> 0 GOTO 1

This code is not optimal, for example the lines 3 and 4 may be dropped. Those super
uous in-

structions arise from the fact, that MSSC does not yet include book-keeping of temporary locations

beyond single statements. Also the compilation speed cannot compete with a commercial target-

speci�c compiler, but that is the price for retargetability. However, the code suboptimality is not

crucial within a codesign framework, since critical routines are assumed to be executed by ASICs.

Important here is the ability to map software components onto a certain target structure with-

out compiler redesign. Future versions of MSSC will include global book-keeping of temporary

locations.

13

The next sections deal with applications of retargetable assembly code generation for hardware-

software codesign of heterogeneous systems.

7 Hardware/Software Codesign for Heterogeneous Systems

Among typical DSP applications are image and speech processing, telecommunication, consumer

electronics, medical equipment, as well as military domains like radar processing and missile guid-

ance. Regarding DSP system components two classes of functions can be distinguished:

� Real-time data processing functions: The inputs are data streams that have to be processed

with a certain rate (sample frequency or throughput). In most cases the sample frequency is

part of the system speci�cation. Therefore, any implementation has to meet given throughput

constraints, whereas other system parameters (power dissipation, chip area) are subject to

minimisation.

� Control processing functions: The inputs are variables which have to be processed at irregular

points of time. Normally there are only few timing constraints, the main goal is to guarantee

correct communication between the system and its environment.

A system comprising both kinds of functions is called a heterogeneous system. Its control process-

ing functions form a shell, where its data processing functions are embedded in. This shell acts

as an interface between the real-time components and the nondeterministic system environment.

Examples for heterogeneous systems are the GSM Speech Coder [14] and the epsilon processor [15].

By means of increasing chip integration scales it has become possible to implement complete het-

erogeneous systems on a single chip. This is desirable especially for portable systems, where small

physical volume and weight are required. Furthermore, single-chip implementations result in lower

production costs. According to the two function classes mentioned above, these systems show a

heterogeneous architectural style: a programmable DSP core with additional speci�c datapath ele-

ments for realising data processing functions, a controller, and a small amount of on-chip memory

for storing programs and internal constants and variables.

Using a programmable core in combination with a controller allows late speci�cation changes and

implementing custom functions simply by reprogramming. Instead of allocating a separate con-

troller it is more reasonable to execute both control and data processing functions by means of

the DSP core, supported by accelerator datapaths. The heterogeneous architectural style resulting

from that is depicted in �g. 8.

Due to this architectural style the designer has to make decisions regarding the right accelerator

datapaths as well as the core itself and its instruction set. Finding suitable datapaths for meet-

ing given timing restrictions and minimising other system parameters apparently is a problem of

hardware/software codesign.

Codesigning heterogeneous systems poses some problems if we are looking for single-chip imple-

mentations as depicted in �g. 8. The DSP core together with the accelerator datapaths in a

heterogeneous system can be regarded as one application speci�c processor whose instruction set

14

on

chip

RAM

CORE

DSP

2

acceler.
datapath

accelerator datapath 1

Figure 8: Heterogeneous Architectural Style

varies during the design cycles due to changing datapaths. For example, the designer could decide

to use a hardware divider instead of performing division by sequential subtractions and thereby

"moving" division from software to hardware. This measurement would result in establishing a

new machine instruction DIV. Making use of this new instruction requires either manual compiler

or manual machine code adaption. So we come to a slightly di�erent view of the hardware/software

codesign
ow: Starting with a behavioral system description, the partitioning step decides which

accelerator datapaths are to be implemented. Since we assumed the DSP core to perform (besides

data processing functions) global system control, di�erent datapaths implement di�erent instruc-

tion sets. Hence, implementing the system means mapping its behavioral description onto the

current instruction set within each iteration cycle. So the emphasis lies on the "software branch"

of the codesign
ow. Using a standard DSP core instead of a custom one within a heterogeneous

system dramatically reduces design costs, but on the other hand requires code generation on assem-

bly level instead of microcode level. Thus, the code generation technique explained above can be

applied for studying performance e�ects of di�erent accelerator datapaths. The following section

gives examples of exploring architectural alternatives for the TMS processor.

8 Exploring Architectural Alternatives

We consider two examples for datapath changes: a hardware divider and an additional adder/accu-

mulator unit. Although these datapath changes result in changing TMS instruction sets, the HLL

system behavioral description can remain unchanged and can be mapped onto the new structure

by our retargetable compiler. In order to recompile programs onto the new structure the designer

simply repeats phase 1 of the bootstrapping technique, i.e. adding the new datapaths elements to

the structural description, specifying the behavior of the resulting new machine instructions, and

using MSSC for generating the corresponding new MIS.

15

Let us consider a system behavioral description that contains a division statement

x := y DIV 27;

within a nested loop. Division is not directly supported by the TMS instruction set, but has to be

implemented by repeated subtraction which requires a relatively large number of clock cycles. This

might turn out to be a bottleneck in the implementation, that violates given timing restrictions.

An apparent solution is placing a su�ciently fast hardware divider into the system. If there is not

enough chip area, the designer can decide to drop some unnecessary processor modules and thereby

some machine instructions, but this of course is also supported by retargetable code generation.

Adding the hardware divider allows establishing a new machine instruction, let us say DIVK (divide

accumulator by short immediate), whose RT-level behavior can be modelled by (see section IV):

DIVK:

PARBEGIN

ACC := ACC "DIV" ZeroExtend24(ROM[PC].(7:0));

PC := "INCR" PC;

PAREND;

This means, the accumulator is divided by an 8-bit immediate constant stored in the program

ROM, addressed by PC, extended by 24 zero bits. In parallel, PC is incremented. Applying MSSC

to the new structure, the above statement is translated into the following TMS instruction sequence

(for sake of simplicity, we consider mnemonics instead of binary code)

ZALS y // ACC := y

DIVK 27 // ACC := ACC DIV 27

SACL x // x := ACC

making use of the new DIVK instruction instead of repeated subtraction. So the HLL system

behavioral description can be recompiled for the new structure and the performance gain can be

evaluated immediately without manual compiler or code adaption. Of course, datapath changes

require partial controller re-synthesis, but this has to be performed only once after performance

evaluation has led to the �nal system implementation.

As a second example we consider the e�ects of placing a second adder/accumulator unit into the

system. Fig. 9 shows the architectural extensions.

The new unit works in parallel to the original TMS ALU/accumulator unit, thereby allowing

parallel additions and data RAM manipulations. By supplying separate control signals to the new

modules and assuming the adder to have a transparent mode, �ve new machine instructions can

be established, able to be executed in parallel to the normal TMS instructions:

16

..
..
..
..
..
..
..
..
..
..
..

e
e

..
..
..
..
..
..
..
..
..
..
..

%
%+

ACC2

instruction
word

RAM

?
addr

?

?

�

-
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..

..
.
..
..
.
..
.
..
.
..
..
.
..
.
..6

.

...
....
...
...
...
...
....
.

...
...
...
...
....
...
...
...- �

6
?

DataBus2

data

Figure 9: New adder/accumulator unit

LDA <memadr>: (load ACC2)

ACC2 := DataRAM[<memadr>]

LDI <cnst>: (load ACC2 immediate)

ACC2 := <cnst>

ADA <memadr>: (add to ACC2)

ACC2 := ACC2 + DataRAM[<memadr>]

ADI <cnst>: (add to ACC2 immediate)

ACC2 := ACC2 + <cnst>

STA <memadr>: (store ACC2)

DataRAM[<memadr>] := ACC2

For instance, both additions within the two PASCAL statements

(1) a := b + c;

(2) d := d + 7;

can be performed within a single machine instruction combining the original TMS ADD instruction

with the new ADI instruction. Of course, also other kinds of parallelisation are possible, e.g. storing

ACC2 with STA and in parallel jumping to a new program address. This parallelisation results in

more compact code. We applied the original and the extended TMS structure for translating

two benchmarks, well-known from High Level Synthesis: the di�erential equation solver and the

elliptical wave �lter [13]. Both are typical DSP applications, mainly consisting of additions and

multiplications. We only mention the results here.

prog PASCAL original extended CPU

statements TMS TMS sec

ellip 38 184 105 54

di�eq 35 100 73 64

Columns 3 and 4 show the number of machine instructions that have been generated for the original

TMS instruction set and the extended instruction set allowing parallel additions. In this case the

17

additions had to be bound to the adder modules, but this also can be done automatically by a

preprocessor. Work is in progress to overcome that limitation.

The above data indicate, that using the new adder/accumulator unit accelerates execution of ellip

by 43 % and execution of di�eq by 27 %. When using MSSC combined with the two-phase

bootstrapping technique, a designer can obtain this information rather quickly by simply adapting

the hardware model and recompiling the programs.

9 Conclusions

A hardware/software codesign strategy for heterogeneous information processing systems built

around a DSP core was presented. In order to meet given system timing restrictions, several it-

eration cycles for evaluating performance gains of di�erent accelerator datapaths are required in

general. Therefore, the system behavioral description has to be re-mapped onto di�erent target

structures. We presented a bootstrapping technique for retargetable machine-level code genera-

tion, based on a two-phase use of the microcode compiler MSSC. This overcomes a restriction of

exixsting retargetable compilers and provides a valuable support for hardware/software codesign

of heterogeneous systems, since retargetability allows fast evaluation of architectural alternatives

concerning the target machine. No manual compiler or code adaption is required during design

iterations, only the hardware model has to be changed. Code generation on the assembly level

instead of the microcode level permits using standard DSP cores as the central component within a

heterogeneous system, thus reducing design costs by a considerable amount. Code generation exam-

ples for the widely-spread DSP TMS320C25 with di�erent accelerator datapaths indicate practical

applicability of the new approach.

The authors would like to thank Gert Goossens from IMEC (Belgium) for providing valueable ideas

on heterogeneous system modelling.

18

References

[1] R.K. Gupta, G. De Micheli: System-level Synthesis using Re-programmable Components,

Proc. EDAC 1992, pp. 2-8

[2] R.A. Mueller, J. Varghese, V.H. Allan: Global Methods in the Flow Graph Approach to Retar-

getable microcode Generation, Proc. 17th Annual Microprogramming Workshop (MICRO-17),

1984, pp. 275-284

[3] S.R. Vegdahl: Local Code Generation and Compaction in Optimizing Microcode Compilers,

PhD Thesis and Report CMUCS-82-153, Carnegie-Mellon-University, Pittsburgh, 1982

[4] T. Baba, H. Hagiwara: The MPG System: A Machine-Independent E�cient Microprogram

Generator, IEEE Trans. Comp., Vol C-30, 6(1981), pp. 373-395

[5] Using and Porting GNU CC (V 2.4), Free Software Foundation, Cambridge, Massachusetts,

1993

[6] L. Nowak: Graph Based Retargetable Microcode Compilation in the MIMOLA Design System,

Proc. 20th Annual Microprogramming Workshop (MICRO-20), 1987, pp. 126-132

[7] L. Nowak, P. Marwedel: Veri�cation of Hardware Descriptions by Retargetable Code Genera-

tion, Proc. 26th Design Automation Conference, 1989, pp.441-447

[8] W. Schenk: A High Speed Prolog Implementation on a VLIW Processor, Microprocessing and

Microprogramming Vol. 27, Nos. 1-5 (1989), pp. 601-606

[9] L. Nowak: SAMP: A General Purpose Processor Based on a Self-Timed VLIW Structure,

ACM Comp. Arch. News, Vol. 15, No. 4, Sept. 1987, pp. 32-39

[10] P. Marwedel: The MIMOLA Design System: Tools for the Design of Digital Processors, Proc.

21st Design Automation Conference, 1984, pp. 587-593

[11] P. Marwedel: A new Synthesis Algorithm for the MIMOLA Software System, Proc. 23rd

Design Automation Conference, 1986, pp. 271-277

[12] TMS320C2x User's Guide, Rev. B, Texas Instruments, 1990

[13] S.Y. Kung, H.J. Whitehouse, T. Khailath: VLSI and Modern Signal Processing, Prentice Hall,

1985

[14] V.�Owall, P.Andreani et al.: Custom DSP Implementation of a GSM Speech Coder, Proc. User

Forum and EURO ASIC Prizes, EDAC/EUROASIC 1993, pp. 162{165

[15] C.Chu, M.Potkonjak et al.: HYPER: An Interactive Synthesis Environment for High Perfor-

mance Real Time Applications, Proc. ICCD 1989, pp. 432{435

19

