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Abstract—This paper presents a new algorithm
for calculating the resistance of an arbitrarily
shaped polygon within a VLSI mask layout anal-
ysis program. In contrast to earlier approaches
no polygon decomposition is required. Instead
the current flow is determined by a routing algo-
rithm. The resistance approximation is derived
from the current flow. Experimental results have
shown that this new algorithm achieves accurate
results in comparatively little time.

I. INTRODUCTION

The extraction of parasitic resistances is one of the
most important analysis steps in physical design. The
main problem is to get the resistance value as accurate
as possible within acceptable run time, especially for
complex non-Manhattan style polygons.

The most accurate algorithms for resistance calcula-
tion solve Laplace’s equations numerically ([1]). With
respect to the complexity of VLSI design an approxi-
mate solution must be used. Recently published algo-
rithms are based on the divide-and-conquer paradigm.
An arbitrary polygon is decomposed into simple poly-
gons. The resistance of a simple polygon is found by
heuristics or taken from tables and the resulting resis-
tance is just the sum over all simple polygon resistances
([4, 5]). Decomposition algorithms find resistance values
within 10% of measured values ([5]). Since the resistance
is an important factor for simulation, better results are
desirable.

In general the value of the resistance R of a polygon
can be calculated by the following equation:

R=PRs  Rg

Rs denotes the sheet resistivity which depends on the
specific resistivity and thickness of the conducting ma-
terial. The factor R¢ is called geometric resistance. Rg
only depends on the shape of the polygon and the posi-
tion of electrical nodes connected to it. Rg is intrinsic
to the technology and will assumed to be constant for a
given technology. In the special case of a rectangle we
get:

where L is the distance along the current flow and W
is the width perpendicular to the current flow.

The results of decomposition algorithms differ sub-
stantially, because of the difficulty to get an exact value
for L. If L is determined heuristically for every sim-
ple polygon the fault accumulates. The new approach
presented here comprises two sequential steps:

1. Get the current flow line S. S is the shortest path
between two nodes in the polygon. The length
of the current flow line S supplies a value for L
because it represents the field of maximum current
density. Thus we assume that the current flow can
be 1dentified by a single line.

2. Get the geometric resistance R by repeatedly
probing the width of the polygon perpendicular
to S. The equation Rg = L/W is used in combi-
nation with an appropriate heuristic.

This approach is not restricted to Manhattan-style or
45° structures. The deviation of our results from mea-
sured values lies within 5% and the run time is suitable
to use this approach in a VLSI mask layout environment.

The next section describes the system backround the
extractor is part of. Then the routing part of the algo-
rithm is described. The following section explains how
the resistance is computed using the result of the rout-
ing part. The paper ends with experimental results and
a conclusion.

II. SYSTEM OVERVIEW

The resistance extractor i1s one feature of the CAM-
BIO analysis module. CAMBIO [2] is a CAD-system
to support migration and optimization of geometric IC-
layout. The process starts with an intensive layout anal-
ysis which will be explained in more detail later. Dur-
ing technology migration the input layout is modified
to match the constraints of new technologies. The al-
gorithm uses an one-dimensional constraint graph com-
paction technique. The module optimization is a post-
processor after constructive layout manipulation tasks.
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The optimization provides a set of useful heuristics to
optimize layout with respect to chip area utilization.

The analysis module consists of the following parts:

1) Readers both for technology and layout data. CAM-
BIO supports all standard layout formats (CIF, GDSII
and EDIF) and gets the technology information from
the technology description language DINGO-XT.

2) Device recognition is performed by Boolean mask
operations and topology relations like touch, cross and
overlap.

3) The connectivity analysis delivers the electrical nets.
It takes a set of polygons (after a separation of wires
from gates) and identifies a net by pairwise overlap of
polygons and contacts.

4) Parameter calculation consists of simple geometric
operations (area or perimeter) and more complex algo-
rithms like the resistance extraction which is the objec-
tive of this paper.

All extracted information is kept in the geometric
symbolic data base, the central part of the CAMBIO
system. In short terms the geometric symbolic data
base keeps all links between corresponding structures
in the three data base parts, technology, netlist and ge-
ometry. E. g. every geometric structure has a link to
its corresponding device (netlist) and to the device type
information (technology). The subsequent processing
steps, migration and optimization, directly work on this
data base. The combined geometric symbolic data base
allows device oriented layout manipulation.

III. THE CURRENT FLOW LINE

Regarding the current flow in a polygon, it 1s assumed
that most charge carriers move along the shortest con-
nection between two contacts (the same consideration
holds for other nodes like the source/drain of a MOS
transistor). We call this connection the current flow line
S. The Euclidean length of the current flow line there-
fore is a good approximation of L. The current flow line
S in an arbitrary polygon will not be a straight line but
will have some bends. So we may represent S by the
path P = (p1,...,pn) (fig. 1).

For Manhattan metrics a lot of efficient algorithms
exist for finding the shortest connection between two
points in a polygon, which perform maze routing resp.
line searching. ([6],[7],[3]). In the case of Euclidian met-
ric the problem is quite difficult. Our algorithm uses
a line-search approach, too, but looks for all possible
and relevant solutions and stores them in a tree called
path tree (function BuildPathiree). All these solutions
are compressed (function Compress) and the best one is
selected:

Figure 1: Skeich of the current flow line. The current
flow line 1s the shortest connection between two contacts
that lies within the polygon.

ShortestPath(startpoint, targetpoint)
{ BuildPathiree(pt);
FOR FACH path w represented by pt DO
Compress(w);
OD
Select the shortest path w*
among the compressed paths;

1

The function Build Pathiree builds up a binary path
tree whose nodes are points on the polygon or hole
boundary which have been reached during the search.
The function begins with the start point s. s becomes
the root of the path tree. Starting from the root a try
is made to reach the end point z. If an obstacle edge
e = (a,b) (either the polygon or a hole) is hit in point
y, y will become the son of s in the path tree. a and b
become sons of y (fig. 2). Then the search recursively
starts from a and b until the end point is found. Since
both possible paths around resp. along the obstacle are
tried the end point 1s always found. If it is impossible
to move directly towards the end point (i. e. point z in
fig. 2) the obstacle is bypassed. Every obstacle causes
two paths to be followed. Runtime can be considerably
reduced by the following:

a) Every already reached point is stored in a hashtable
together with its minimum distance to the start
point. The tracking of path W is cancelled if the
current point was already reached on a shorter
path W’. W cannot lead to a better solution than
w'.

b) That path is executed first which directs towards
the end point. Tracking the other alternative may
often be stopped because its total length grows
beyond a boundary.
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Figure 2: Ezample for bypassing an obstacle. The direct
line from s to z hits the hole H in point y. The search
recursively starts from a and b. The hole H will be by-
passed in both directions. The path tree (right figure)
shows the result of the search. It represents the possible
solution candidates (s,y,a,z) and (s,y,b,¢,z).

The algorithm results in a complete path tree where
every path from the root (s) to a leaf represents one pos-
sible solution. Because of the means mentioned above
the number of possible solutions remains small.

A possible solution P = (q1,...,¢mn) normally con-
tains some redundant points. A point ¢; of the path is
redundant if a direct connection exists between points
¢i—1 and ¢;41 which does not hit an obstacle. (e. g.
point y in fig. 2 is redundant on both paths). Redun-
dant points are removed by the function Compress which
tests for any triple (¢;-1, ¢, ¢i+1) whether ¢; is redun-
dant. All compressed possible solutions are examined
with regard to their length. The shortest path is se-
lected. Tt becomes the current flow line S = (p1,...,pn).
One can show:

1. The shortest path algorithm computes the short-
est connection between any two points in an arbi-
trary polygon.

2. The average run time is O(b - n) where b is the
number of bends in the optimal path and n 1s the
number of polygon edges.

IV. RESISTANCE CALCULATION

The FEuclidian length of the current flow line S repre-
sents the value of L. In order to calculate the geometric
resistance Rg = L/WW we still need the value of W. The
value of W varies along S. If W is taken as an average
over the whole current flow line this leads to inaccurate
results. Therefore we look at W within the cuttings
induced by S = (p1,...,pn): Between p; and p;4; the
charge carriers move straight. This leads to the network
in fig. 3, according to the given polygon and S.

The whole geometric resistance R¢g of the polygon can
be regarded as a serial network of part-resistances R;

e

]
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Figure 4: Stripes of the cutting A; with its segment s;.

n—1
Ra=>» R
i=1

where R; is defined between the points p; and p;41 of
S.

To obtain R; we look at the cutting A; caused by the
segment s; := (p;, piy1). This cutting is separated into
m stripes of equal length. Any stripe is perpendicular
to s; (fig. 4).

The geometric resistance of the cutting A; may again
be seen as a serial network

m
Ri =) Rj

j=1

where each R;; belongs to one stripe. The individual
stripes are almost rectangles whose resistances obey the
equation

L;; and W;; are the length and width resp. of stripe
J in cutting A; (fig. 5). The values of L;; are constant
for fixed i. Note that the decomposition into stripes
is not explicitly done but makes the explanation more
transparent.

During experimental results the algorithm, in general,
returned too small resistances because not all charge
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Figure 6: Two branches A and B in a polygon with a
hole.

carriers move on the ideal line S. Some take a small
deviation. This effect is removed by incorporating a
small offset AR;; for each stripe. AR;; is proportional
to the W/L ratio of every stripe. In turn this leads to
small increase of L;; by AL;;. The more precise formula
is:

L;j 32Lij+c'm'Lija 66[0,1]
————
ALy

where |s;] is the length of the segment s; = (pi, pit1)-
The parameter ¢ controls the weighting of the W/ L ratio
by an increase of L;;. Empirically a value of ¢ = 0.27
turned out to be appropriate. The values of L;»]» may be
different for all ¢, j because of the different values W;;.
The geometrical resistance R becomes the sum over all
stripe resistances for all cuttings A;:

n—1 m 1
LZ»]»

RG:ZZW—U

i=1 j=1

This method for resistance calculation in polygons
may be extended to polygons with holes and to the case
of more than two contacts:

Figure 7: Star shaped resistance network for more than
two contacts.

a) There are two alternatives to bypass a hole, e. g.
the hole H of fig. 6 causes the two paths A and
B. The routing algorithm of section 2 finds the
indicated path. The resistance calculation of R4
is done as above. The branch A is then temporary
blocked and the algorithm finds the current flow
line in the branch B. Rpg is calculated and the
total resistance is computed for the resulting net-
work. For this extension the holes have to be clas-
sified by their area. Relatively small holes should
not be taken into account, because their contribu-
tion to the resistance can be neglected.

b) If the polygon contains more than two contacts our
algorithm finds a resistance network. We intro-
duce a settle point ¢ for the polygon and find the
shortest path from ¢ to all contacts (fig. 7). Re-
sistances are calculated as above and the polygon
is replaced by a star shaped network. A suitable
settle point ¢ = (t5,1,) for k contacts ¢q, ..
obtained by:

., Ck 18

k k y
P 2 iz Ch = 2i=1 Ch
o k v k
where ¢} and ¢} are the x- resp. y-coordinates
of the center of cp. If ¢ lies outside the polygon
area it i1s moved to the nearest point within the

polygon.

V. EXPERIMENTAL RESULTS

The resistance extractor has been implemented in C++
on a SUN SparcStation. It has been tested on a wide
range of individual polygons as well as on complete full
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Table 1: Experimental results

Polygon | exact | extracted | error | CPU
1 9.16 9.81 7% | 0.34
2 2.60 2.66 2% | 0.14
3 2.20 2.44 10 % | 0.08
4 6.80 6.82 0% | 0.37
5 12.05 11.43 5% | 0.32
6 10.70 10.40 3% | 049
7 4.40 4.44 1% | 0.13
8 6.90 6.70 3% | 031
9 10.40 10.71 3% | 0.59
10 4.75 4.87 3% | 031
11 4.00 3.62 10 % | 0.29
12 7.3b 6.93 6% | 0.48
13 6.85 6.70 2% | 040
14 8.50 8.53 0% | 0.18
15 18.00 17.80 1% | 043

custom layouts. Table 1 shows results for a selected set
of polygons. Exact and extracted geometric resistances
as well as accuracy and CPU time are given. The num-
ber of stripes (m) was set to 40.

The average accuracy was g = 4.4% for an average
run time of 0.31 sec per polygon. Determination of the
current flow line took about 0.1 sec. For Manhattan-
style polygons a smaller value of m will achieve better
run times without loss of accuracy. Another advantage
is the small deviation of ¢ that means that only rarely
a result deviates more than 10% absolute from the ex-
act value. Our algorithm achieves significant better ac-
curacy (4.4% in contrast to 10%) than known decom-
position techniques ([5],[4]) still having comparable run
times. The resistance extractor ([1]) gets nearly exact
results (within 3%) but needs about 1 min CPU time

per polygon.

VI. CONCLUSION

A resistance extractor based on a routing algorithm is
presented which overcomes the intrinsic error of decom-
position methods because it tracks the flow of charge
carriers. This leads to significant better results and a
smaller absolute deviation from measured values. The
average run time is suitable to use the algorithm in a
VLSI environment. There are no restrictions to Man-
hattan or 45° structures, even polygons with holes may

be handled.
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