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Abstract

This paper demonstrates how the di�erent tools
in the MIMOLA hardware design system MSS are
used during a typical design process. Typical de-
sign processes are partly automatic and partly man-
ual. They include high-level synthesis, manual post-
optimization, retargetable code generation, testability
evaluation and simulation. The paper demonstrates
how consistent tools can help to solve a variety of re-
lated design tasks. There is no other system with an
equivalent set of consistent tools. A key contribution
of this paper is to show how current high-level syn-
thesis systems can be extended by retargetable code
generators which map algorithms to prede�ned struc-
tures. This extension is necessary in order to support
manual design modi�cations.

1 Introduction

The MIMOLA hardware design system MSS is a set
of tools for the design of digital hardware structures.
Main emphasis is on programmable structures. The
MSS contains tools for high-level synthesis [10, 9], for
retargetable code generation [16, 12], for test gener-
ation [6, 7] and for simulation and schematics gener-
ation. Due to the lack of space, we cannot describe
these tools in detail in this paper and the interested
reader is requested to study cited references. Where-
as each of these tools has been described separately,
there does not exist a comprehensive description of
how these tools can be used together. The �rst three
of the tools mentioned above are especially designed
for programmable hardware structures and therefore
can be used for software/hardware codesign.

A typical design process using the tools just men-
tioned, is shown in �g. 1. The organization of this
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Figure 1: Control 
ow during a design with the MSS

2 Speci�cation of Required Behavior

The design process starts with the speci�cation of the
current unit under design (CUD). This speci�cation
describes the required behavior of the CUD in the form
of a PASCAL-like program. The program represents
either an algorithm at the application level or an in-
struction interpreter for a given instruction set. In
the �rst case, there will be no typical instruction set
in the �nal design (c.f. �g. 2). The �nal design will
directly implement user applications. For the sake of
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simplicity, a multiplication program with no input and
output is used as an example for an algorithm at the
application level.

PROGRAM Mult IS

VAR A,

B,

C: Integer;

BEGIN

A := 5;

B := 7;

C := 0;

REPEAT

C := C + A;

B := B -1;

UNTIL B = 0;

END.

Figure 2: Application level algorithm

In the last case, a microcoded program will interpret
the instruction set (c.f. �g. 3, `#' means hex).

PROGRAM Interpreter IS

TYPE word = (15:0); -- bit_array(15:0)

VAR PC, -- program counter

RI : word; -- instr. register

M : Array [0..#FFFF] OF word;

BEGIN

PC:=0;

REPEAT

RI:=M[PC];

CASE RI.(15:8) OF -- (15:8)=OpCode

#00 : ... --instruction 00

#01 : ...

..

END;

UNTIL False;

END;

Figure 3: Instruction set interpreter

Throughout this paper, we use version 4.0 of the MI-
MOLA language, which has been very much in
uenced
by VHDL�.

In order to check the behavior against expected re-
sults, the behavior is normally simulated. This simu-
lation does not make reference to hardware structures
and hence does not include component timing.

�An interface to VHDL is under construction.

3 High-level synthesis

High-level synthesis converts behavioral speci�cations
into a structural description at the RT-level. Good
surveys on high-level synthesis exist [14] and their con-
tents need not be repeated.

In general, there is a large design space to be consid-
ered by high-level synthesis tools. However, only de-
signs satisfying additional design constraints will be
accepted. The most important design constraint adds
some bottom-up information to the top-down design
process: our synthesis algorithms assume that only
predesigned modules should be used in the �nal de-
sign. This restriction guarantees that only e�cient
modules will be used. This restriction is especially
useful if a library of complex cells (ALUs, memories)
is available. The behavior of these cells is also de-
scribed in MIMOLA, using a non-imperative form of
the behavior speci�cation (see �g. 4 for an example).

MODULE Alu(IN a,b:(15:0); IN s:(0);

OUT f:(15:0));

BEHAVIOR AtRtLevel OF Alu IS

BEGIN

f <- CASE s OF -- signal assignment

0 : a - b;

1 : a + b;

END_case;

END_behavior;

MODULE TransAlu(IN a,b:(15:0); IN s:(1:0);

OUT f:(15:0));

BEHAVIOR AtRtLevel OF TransAlu IS

BEGIN

f <- CASE s OF

0 : a - b;

1 : a + b;

2 : a; -- transparent mode

3 : b;

END_case;

END_behavior;

Figure 4: Behavior of available components

The input to our synthesis algorithms contains the
required behavior of the CUD, the behavior of li-
brary components and some additional information
(like cost-constraints, bindings etc.).

Three synthesis algorithms have been implemented
in the MSS environment: the two experimental tools
SUCCASS [3, 18] and IN

3 [2] and TODOS (= TOp
DOwn Synthesis), a stable tool used for a number of
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internal and external designs. TODOS is an extension
of the work described in [10, 9].

Synthesis generates structures using some phases.
Early phases include 
ow analysis and scheduling. Af-
ter completion of these phases, the required behavior
has been transformed into a set of control steps.

The multiplication program, for example, could have
been transformed into the sequence of control steps
CSi shown in �g. 5. In this sequence, PARBEGIN ...

PAREND encloses assignments to be executed in one
control step, Mem[ ] denotes a reference to the memo-
ry implementing variables and Reg and Rcc are regis-
ters required for storing intermediate values. ``=0''

is a monadic function in MIMOLA.

:CS1: PARBEGIN Mem[0] := 5; PC:=CS2 PAREND;

:CS2: PARBEGIN Mem[1] := 7; PC:=CS3 PAREND;

:CS3: PARBEGIN Mem[2] := 0; PC:=CS4 PAREND;

:CS4: PARBEGIN Reg:=Mem[0]; PC:=CS5 PAREND;

:CS5: PARBEGIN

Rcc := "=0" (Mem[1]-1) ;

Mem[1] := Mem[1] - 1;

PC := incr(PC);

PAREND;

:CS6: PARBEGIN

Mem[2] := Mem[2] + Reg;

PC := if Rcc then CS7 else CS5

PAREND;

:CS7: STOP

Figure 5: Control steps for multiplication program

The next synthesis phases include resource allocation
and binding as well as the generation of the required
controller.

Fig. 6 shows a possible solution to the synthesis prob-
lem. Mem.A and Mem.B are memory outputs and in-
puts, respectively. I.xxx denotes signals coming from
the controller. The ALU is able to add and to subtract.
The multiplexer at the input of PC has two modes:
a transparent mode for input c (used for increment-
ing PC) and an IF-mode: c is selected if a is true,
otherwise b is selected (this mode is used for ELSE-
jumps). Note that neither THEN-jumps nor uncondi-
tional jumps can be implemented. The former would
require an IF-mode with c and b reversed, the latter
would require a transparent mode for b.

Other results can be obtained by running the synthe-
sis algorithms with di�erent inputs. In general, new
constraints will be used for additional synthesis runs.
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Figure 6: Solution to the synthesis problem

4 Evaluation of testability and genera-

tion of self-tests

Frequently, the designs resulting from synthesis are
well-testable by self-test programs (programs which
are executed on the CUD). However, this is not guar-
anteed. Addition of built-in self-test hardware is left
to the user, because we believe that this should be
fully under user-control.

Only few papers have been published on the genera-
tion of tests at the RT-level (see e.g. [4]). Our tool
MSST [6, 7] is the only one that is integrated in-
to a consistent design environment. MSST primarily
is intended to compute the binary code for self-test
programs. However, it also generates error messages
whenever sections of the hardware cannot be tested
by self-test programs.

MSST would, for example, generate a self-test se-
quence testing Reg for stuck-at errors. In the case
of a stuck-at error, the generated code would cause a
jump to an error report routine (see �g. 7).
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Mem[0]:=#5555; --binary 0101.. pattern

Reg:=Mem[0]; --load into register

Rcc:="=0" (Mem[0] - Reg);

PC:=IF Rcc --check if ok

THEN incr(PC) --yes

ELSE ErrorExit;--jump to error report

Mem[0]:=#AAAA; --binary 1010.. pattern

Reg:=Mem[0];

Rcc:="=0" (Mem[0] - Reg);

PC:=IF Rcc

THEN incr PC

ELSE ErrorExit;

Figure 7: Self-test program for Reg

In the case of the condition code register Rcc, MSST
would detect that Rcc can be tested for stuck-at-zero
errors (see the sequence in �g. 8). The constant 0

would be generated by �rst loading it into Mem.

Rcc:= "=0" (0); -- try to generate 1 at Rcc

PC:=IF Rcc --check if ok

THEN incr(PC) --no stuck-at-0

ELSE ErrorExit --jump to error report

Figure 8: Self-test program for stuck-at-zero at Rcc

During the development of MSST we have assumed
that there is a su�cient amount of methods for the
computation of test vectors for each of the RT-level
components. These patterns can be stored in a test-
pattern library. If such a library exists, the test pat-
terns stored in the library will replace the default con-
stants #5555 and #AAAA. The fault-coverage de-
pends on the set of patterns stored in the library.

Our example hardware structure unfortunately cannot
be tested for a stuck-at-one at Rcc. Such a test would
need a THEN-jump, which cannot be implemented by
the multiplexer at the input of PC.

5 Design Modi�cations

The user could decide to solve the above problem by
extending the jump hardware such that uncondition-
al jumps are possible. Unconditional jumps togeth-
er with ELSE-jumps can be used to emulate THEN-
jumps.

The user could also decide to make additional mod-
i�cations to the generated hardware. These manual

post-synthesis design changes are frequently required
in order to overcome some limitations of the synthesis
algorithm or e.g. in order to conform to some company
standards. Veri�cation of this step will be described
in the next section.

In the case of our sample hardware, the user could de-
cide to reroute immediate data to be stored in memory
Mem. He could omit the multiplexer at the memory in-
put and select an ALU that has an transparent mode
at least for input b (c.f. �g. 9).
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I.Addr
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incr

I.Addr
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Figure 9: Modi�ed hardware structure

This structure allows the test shown in �g. 10 for a
stuck-at-1 at Rcc.

Rerouting immediate data possibly in
uences the re-
sulting performance: parallel assignments to Mem and
to Rcc would now both store the result computed by
the ALU. The precise e�ect of this change on the perfor-
mance depends upon the original program. The MSS
allows the user to compute the resulting performance
conveniently by using the algorithm mapper MSSQ
(see below).
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Rcc:= "=0" (#5555);-- try to generate 0

PC := IF Rcc THEN incr(PC) --stuck-at-one

ELSE Cont; --ok

PC := ErrorExit; --jump to error report

Cont: <next test>;

Figure 10: Self-test program for stuck-at-one at Rcc

6 Retargetable Code Generation

Hardware structures generated by correct synthesis
systems are automatically correct (\correctness by
construction"). In this context, \correct" means: the
structure together with the binary code implement the
behavior.

Manually modi�ed structures are potentially incor-
rect. The MSS allows verifying the design by mapping
algorithms to prede�ned structures. This is done by
our retargetable code generator. It tries to translate
programs into the binary control code of a given hard-
ware structure. If the binary code can be generated
by the compiler, the structure together with the bi-
nary code implement the behavior. If no code can be
generated by the compiler, then either the structure
is incorrect or the compiler does not have enough se-
mantic knowledge. Several methods are used to con-
vey semantic knowledge to the compiler. The most
important feature is the fact that the compiler is retar-
getable. That means: the code for a di�erent machine
can be generated by changing the structure being used
as input.

Currently, there is a rapidly growing interest in map-
ping algorithms to prede�ned structures. We believe
that such mappers will be a necessary extension of
high-level synthesis tools. Only few algorithms have
been published in the literature. Most of them are
based on retargetable microcode generation. These in-
clude the ones designed by Baba [1], Mueller [15] and
Mavaddat [13]. The speci�c advantage of the compil-
ers that have been designed for the MSS is that no
part of the code generator needs to be rewritten for
new targets. Two compilers have been used:

� MSSV [8, 11], which is based on tree match-
ing. The trees involved are a) expression trees
and b) trees representing the hardware structure.
In order to get by with tree matching, common
subexpressions and fanouts in the hardware re-
sult in duplicated nodes. Code generation and
microcode compaction (scheduling) are separate

phases.

� MSSQ (currently being extended to MAPS =
Mapping Algorithms to Prede�ned Structures)
[16, 12], which is based on graph matching. Fur-
thermore, the di�erent phases of code generation
are more integrated and code alternatives are bet-
ter supported in MSSQ. As a result, there are
examples for which MSSQ is two orders of mag-
nitudes faster than MSSV.

MSSQ has been used to generate code for di�erent
VLIW-machines, including AMD-2900-based designs.
MSSQ was the only compiler that was able to handle
the benchmark at MICRO-20.

In the particular example of �g. 9, MSSQ will generate
the binary code for the modi�ed architecture.

7 Detailed Simulation

This binary code is used for detailed simulation. The
simulator loads (see �g. 11) the binary code into the
appropiate memories.

This time, simulation includes the simulation of all
hardware components, including their timing.

The purpose of detailed simulation is to predict the re-
sulting performance and achieve some additional con-
�dence about the correctness of the design as long as
the MSS itself is not formally veri�ed.

For the particular example, another evaluation of the
testability will �nish the design process.

8 Other Possible Design Sequences

Fig. 1 displays the sequence of design steps in a typical
design process. Actually, the control 
ow of �g. 1 is a
special case of allowed sequences. The user is free to
select any sequence of actions as long as each tool is
supplied with the required input. This means, that the
user is only restricted by the data dependence between
tools. Fig. 11 shows the data dependence among the
main tools of the MSS. Tools for 
oor-planning have
been designed at the University of Kaiserslautern [19].

9 Designs Using the MSS

Designs using the MSS include

� the design of the asynchronous, microprogrammed
SAMP by Nowak [17]
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� the design of a CISC-processor at the University
of Hamburg

In this case, the design was �rst done manually
by directly entering designs into the SOLO-1400
system. Signi�cant e�ort went into optimizing
the design.

Next, the instruction set was described in MI-
MOLA. RT-structures were then synthesized with
TODOS. Due to the lack of time, only few de-
sign iterations were used. The resulting netlist
was converted to MODEL, an input language for
SOLO-1400 software.

The synthesized chip was compared to the manual
design. According to Rauscher et al. [5], the syn-
thesized chip is only 7 % larger than the manually
generated design. Rauscher et al. argue that the
size of the synthesized design could be reduced by
about 5%. One reason for this success is that the
TODOS design uses register �les instead of sep-
arate registers. SOLO-1400 contains generators

producing RAMs with full-custom layout e�cien-
cy.

� The design of the PRIPS PROLOG-machine at
the University of Dortmund

PRIPS is the result of the student's project \de-
sign of PRolog chIPS" the University of Dort-
mund. PRIPS is a RISC-like processor with
special support for the execution of WAM-code
(PROLOG intermediate code).

Early in the project it was realized that it was
impossible to implement a virtual WAM machine
on one standard cell chip. It was therefore de-
cided to design a RISC-machine with some spe-
cial features supporting WAM code. The design
of this instruction set was based on performance
studies, using di�erent versions of a PROLOG to
WAM compiler. A MIMOLA speci�cation of the
instruction set was then used for synthesis. Af-
ter a few iterations, modi�ed design constraints
did not improve the design. The students there-
fore started to manually modify the design and to
use MSSQ. Manual design modi�cations includ-
ed: changes to the tag-ALU, folding of the control
�elds, removal of cascaded multiplexers, manual
addition of self-test logic and changes of the clock-
ing scheme. Due to the fact that all students had
no previous experience in hardware design, we fol-
lowed the principle of least possible commitment.
We therefore decided to have an on-chip writable
control store.

Actual layout for PRIPS was generated using
the Cadence EDGE system (SOLO-2030). Un-
fortunately, no HDL reader for this system was
available to us. The PRIPS design was there-
fore manually entered using the schematics edi-
tor. The resulting layout has been transmitted
to EUROCHIP for fabrication at ES2. PRIPS is
about 12 � 8 mm large. It is one of the largest
chips ever fabricated through EUROCHIP. Ac-
cording to the students who designed the circuit,
this size of a design could not have been han-
dled by them without the help of the MIMOLA
tools. The MSS will also be used for programming
fabricated PRIPS: MSST will generate tests and
MSSQ will map algorithms into microcode.

10 Conclusion

The MIMOLA hardware design system supports the
entire design process from behavioral speci�cations to
RT-structures. Special emphasis is on the testability
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and the correctness of the �nal design. The correctness
is checked both by a formal, automatic procedure and
by simulation. Automatic as well as veri�ed manual
design steps are used in the system. A key contribu-
tion of this paper is to show how current high-level
synthesis systems can be extended by tools for map-
ping algorithms to prede�ned structures in order to
support necessary manual design modi�cations.
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