
On the Formal Semantics of a CHDL - A Case Study
Ulrich Bieker

University of Dortmund, Department of Computer Science
Postfach 500500, W-4600 Dortmund 50

e-mail: bieker@ls12.informatik.uni-dortmund.de

1. Abstract
The semantics of HDL descriptions influences all facets of VLSI design such as synthesis, test, veri-
fication, logic simulation and fault simulation. In this paper formal semantics of the intermediate lan-
guage TREEMOLA, used in the MIMOLA hardware design system MSS, is presented. In particular
semantics of module declarations, described at the Register Transfer Level by the CHDL MIMOLA,
is defined.

2. Introduction
Usually the semantics of a hardware description language is either implicitly given by a simulator or
is in the mind of the designer of the language. Therefore, a formal semantics definition is of great
importance for every user of the language. The work presented here is intended to fill this gap in the
context of MIMOLA. Principles of defining formal semantics are commonly known, but it is intere-
sting how this is done for an already existing HDL in detail.

MIMOLA (machineindependentmicroprogramminglanguage) [BMSJ91] is a computer hardware
description language (CHDL) which has been influenced by other hardware description languages
like VHDL [IEEE88] and DACAPO [DOS87]. TREEMOLA (tree micro operation language)
[Bec91] is the language that is used to exchange design data between different CAD-tools in the MSS
[Kel87], [Mar90].

Using first order predicate calculus [Scho89] a formal semantics definition is obtained for a subset of
the intermediate language TREEMOLA. With this subset it is possible to describe a hardware at the
RT - level, i.e. to describe the behavior of certain modules such as registers and gates up to ALU’s and
their interconnections. Based on the principles of the semantics described below, a simulator for this
particular level has been implemented in Prolog [ClMe81]. Derivation of a logic program from a cor-
rect logic description has led to the simulator for the hardware description language MIMOLA. A
detailed description of the techniques concerning derivation of logic programs is given in [Devi90].
The idea of formulating this semantics was inspired by the bookVerifikation digitaler Systemewritten
by Hans Eveking [Eve91].

In what follows we first show the basic methodology of the semantics and due to the lack of space we
discuss a very small but illustrating example. The complete semantics definition is given in [Biek92].

3. Methodology of the Semantics
A TREEMOLA RTL - description is a netlist of modules. Modules, ranging in size from gates and
ALU’s up to complete finite state machines, are described in terms of their interface and their behav-
ior. Such a module is called aTREEMOLA unit module description (Fig. 1). A unit module description
is a tree r(s1,...,sn), with root r and n subtrees (sons) s1,...,sn. {s1,...,sn} = SONS(r) is the set of sons
of r. Each si can be e.g. a statement, an expression or a port description. The semantics described here
is defined by a predicateI which determines whether a sequence of states in a given time interval Tmin
to Tmax and for a given unit module description is a feasible sequence or not. Therefore, timing behav-
ior has to be considered. To decide whether the behavior of a circuit is a feasible sequence (I = TRUE)
or not (I = FALSE), it must be possible to access values of signals, memories and registers. Therefore
it is assumed that there is a large 3-dimensional tableSQ (Signals and States), in which an arbitrary
number of values of signals, registers and memories can be stored asbitstrings. The function f is able

to access this table. f needs parameters <identifier>, <address>, <time> and SQ to return the value of
an identifier with a given address at a definite time. Additionally, function f requires a bit number i to
select bit i of the considered bitstring. Possible values of one bit of a bitstring are {0, 1, X, Z}. X
denotes an undefined value and Z a high impedance (tristate) value. If no address is available (e.g. for
registers and signals), the default address is taken as 0.SQ may be partial predefined andI decides
whether a given circuit is able to realize this sequence of signals and states.

Given a 3-dimensional tableSQ, a string <identifier> of arbitrary length, an address <address> ∈ N0,
a time <time>∈ N0 and a bit number i∈ N0; functionality of f is defined as:

Expressions, also represented as trees, are evaluated in a similar manner. An expression a+b is repre-
sented as a tree +(a,b) with root (operator) + and two sons (arguments) a, b. For an expression tree
e(s1,...,sn) with the root e and the n arguments s1,..., sn, the function exp is able to return the value of
the expression at time t. It is possible that every si is an entire subtree or that the set of sons of si is
empty, i.e. si is a leaf. Function exp requires a bit number i to select bit i of the considered expression.

Given a 3-dimensional table SQ, an expression e(s1, ..., sn) with n ∈ N0, a time <time>∈ N0 and a
bit number i∈ N0; functionality of exp is defined as:

Given a circuit description as tree r(s1, ..., sn) and a time interval [Tmin, Tmax] (Tmin, Tmax∈ N0 and
Tmin ≤ Tmax) and the 3-dimensional table SQ described above; functionality of the interpretation pre-
dicateI is defined as:

Tmin = Tmax is possible only if the considered tree has a delay of 0, otherwise the interpretation pre-
dicateI fails. Starting with root r, the entire tree is traversed by the interpretation predicateI . The com-
plete semantics, including constructs like IF, CASE, LOAD, READ and AT, is defined by such
interpretation predicates. As case study an example module which is basically a clock, is discussed.

4. Detailed Semantics of a Simple Component

Fig. 1:A MIMOLA module description and the corresponding TREEMOLA structure

Fig. 1 shows on the left side the MIMOLA description of a clock with an output port OC of width 1.
Different pull-up and pull-down delay times are specified in the behavior assignment. Because a start
delay and an initialization are missing, the signal OC starts by default with a low value at time 0.

Every line of the TREEMOLA structure on the right side is a node of a tree. Nodes starting in the same
column are brothers (e.g.iCLCK andoTIMER,CLCK). Indented lines are sons of the previous lines.
Now, a short explanation for every line of the TREEMOLA structure is given. The first character of
every line represents the type of the node (e.g.U of the rootUCLCK is an abbreviation forunit type,
which specifies the beginning of a definition of a primary design unit with the identifierCLCK). In the

f SQ identifier〈 〉 address〈 〉 time〈 〉 i, , , ,() 0 1 X, , Z{ , }→

exp SQ e s1 … sn, ,() time〈 〉 i, , ,() 0 1 X, , Z{ , }→

I r s1 … sn, ,() Tmin Tmax,[] SQ, ,() TRUE FALSE{ , }→

MODULE clck(OUT OC : (0));
BEHAVIOR timer IS
CONBEGIN

OC <- TOGGLE UP AFTER 10 DOWN AFTER 1
CONEND;

UCLCK
iCLCK

SOUT,OC@1(0)
oTIMER,CLCK

u
:OUTPUT,OC@1(0)”u,I=10,10””d,I=1,1”

.TOGGLE(0)

second lineiCLCK, characteri denotes the interface of the moduleCLCK, which can consist of
several ports. TheS of the lineSOUT,OC@1(0) is an abbreviation forsignal type,which specifies the
OUTput portOC with a width of one bit. Line 4 is the beginning of the behavior description (called
TIMER) of the moduleCLCK. Characteru denotes the beginning of a concurrent statement. Line 6
describes an interface assignment.OUTPUT OC is the destination of the expression son.TOGGLE(0)
in the last line. The remaining part of the line:OUTPUT,OC@1(0) ”u,I=10,10””d,I=1,1” denotes a
pull-up delay of 10 and a pull-down delay of 1. A TOGGLEis an operator which yields alternating 0s
and 1s.

To define semantics we show how the interpretation predicateI defined above, is evaluated in the con-
text of the clock example. In the following, an interpretation predicate is defined for every subtree of
the TREEMOLA structure. Using the first character of each line as identifier for the nodes, the com-
plete tree in a short form isU(i(S), o(u(:(.)))). In what follows, we consider how the treeU(i(S),
o(u(:(.)))) is traversed by the interpretation predicateI .
Starting point of the interpretation predicateI is the rootU with its two sonsi(S) ando(u(:(.))). In
general it is possible that there are n sons s1, ..., sn of U. To achieve a true interpretation of the com-
plete unit module description it is necessary that all sons sj lead to a true interpretation in the given
time interval Tmin to Tmax. This leads to an interpretation predicateI for the root U(s1, ..., sn) as fol-
lows:

I(U(s1, ..., sn), [Tmin,Tmax], SQ) :⇔ ∀ j, 1 ≤ j ≤ n: I(sj, [Tmin, Tmax], SQ)

Because rooti of i(S) is just the beginning of the interface description tree and rooto of o(u(:(.))) is
just the beginning of the behavior description tree, both interpretation predicates for these subtrees are
equal to the interpretation predicate above:

I(i(s1, ..., sn), [Tmin,Tmax], SQ) :⇔ ∀ j, 1 ≤ j ≤ n: I(sj, [Tmin, Tmax], SQ)

I(o(s1, ..., sn), [Tmin,Tmax], SQ) :⇔ ∀ j, 1 ≤ j ≤ n: I(sj, [Tmin, Tmax], SQ)

Note that the complete time interval [Tmin, Tmax] has been passed through the interpretation predica-
tes. In addition to the constructs considered in this case study, there are structured statements like AT,
IF and CASE which are slightly different because they invoke their sons only at a determined time t.

An interface tree consists of one or several ports described by signal type nodes starting with the cha-
racterS. Semantics of such port specifications is the definition of signals, representing a value 0, 1, X
or Z. Usually a range, specifying the width of a port, is given as a tuple (high, low). In the clock
example high = low = 0 and the identifierOC for the output port is given. The interpretation predicate
of each port description is as follows:

I(S, [Tmin,Tmax], SQ) :⇔ ∀ i ∈ N0, (low ≤ i ≤ high)Λ ∀ t, (Tmin < t ≤ Tmax):

(f(SQ,OC, 0, t, i) = 1)∨
(f(SQ,OC, 0, t, i) = 0)∨
(f(SQ,OC, 0, t, i) = X) ∨
(f(SQ,OC, 0, t, i) = Z)∨

(f(SQ,OC, 0, t, i) = f(SQ,OC, 0, t-1, i))

The output port has only 1 bit, so i is always 0. The meaning of the last alternative is a storing property
of signals. That means, if there is no explicit assignment to a signal at time t, the value at the prede-
cessor time t-1 is assumed to be holding. As mentioned above, the default address is taken as 0. Note
that the set of sons ofS is empty. Here, the interpretation predicate do not identify that a clock output
is described and value Z is unpossible. Clock output value Z is prevented by interpretation of the inter-
face assignment tree described below.

Next, the concurrent statementu has to be considered. In general it is possible that there are n sons s1,
..., sn of a concurrent statement, whereas only one son:(.) is given in the clock example. All interpre-

tations of all n subtrees have to lead to a true interpretation and therefore we have an interpretation
predicate for the concurrent statementu, equal to some predicates above:

I(u(s1, ..., sn), [Tmin,Tmax], SQ) :⇔ ∀ j, 1 ≤ j ≤ n: I(sj, [Tmin, Tmax], SQ)

Sons of the concurrent statement could be a simple, a structured (e.g. AT, IF, CASE) or another con-
current statement. In this case a simple statement, an interface assignment, has to be considered.
Obviously, the value returned by the expression.TOGGLE(0) has to be assigned to the output signal
OC, which serves as an identifier. The clock starts with a low initialization value at time 0

. After a pull-up delay of 10 the signal is going up and then,
after a pull-down delay of 1, signalOC is going down. At last the complete interpretation predicate
for the interface assignment together with the TOGGLE operator is given:

I(:(.), [T min,Tmax], SQ) :⇔
∀ t, (Tmin < t ≤ Tmax): f(SQ,OC, 0, t, 0) = exp(SQ, .TOGGLE(0), t, 0)Λ

(exp(SQ, .TOGGLE(0), 0, 0) = 0) Λ
((exp(SQ, .TOGGLE(0), t, 0) = 1Λ exp(SQ, .TOGGLE(0), t+1, 0) = 0)∨
(exp(SQ, .TOGGLE(0), t, 0) = 0 Λ exp(SQ, .TOGGLE(0), t+10, 0) = 1))

An informal example of an unfeasible sequence (I = FALSE) can be a constant sequence of the value
1 as output of the clock instead of expected alternating values of 0 and 1.

Such interpretation predicates have been defined [Biek92] in a general form within the context of
MIMOLA. Transformation of circuit descriptions into the TREEMOLA format is done automatically
and the given predicates are used as a specification of the derived simulator.

As a practical example a processor, computing prime factors for a given 16 bit number, has been simu-
lated. The processor consists of 16 modules like a 64 KB-RAM, 3 ALU’s, an instruction memory, a
program counter, 3 multiplexer, 2 register and a clock.

5. Conclusions
It is necessary to formalize what is meant by a HDL description and provide a calculus for working
with such descriptions. Such a calculus makes the task of test generation, synthesis, logic simulation
and fault simulation easier and more reliable. It also has significant impact on verification.

The functional semantics for a subset of the TREEMOLA language has been defined. Expressions,
memories, registers, declarations, initializations of states, interface and behavior descriptions and
compound statements are considered and a simulator based on this semantics has been implemented.
This semantics can serve as a basis for verification and supports designers of other tools in the MSS.
Translation to and from other intermediate languages as well as other hardware description languages,
e.g. VHDL or DACAPO, becomes easier with this semantics. Converters from TREEMOLA to
VHDL and vice versa are currently under development. As an important future work, directly
executable specifications of circuits using Prolog or ML will be generated automatically from hard-
ware specifications in MIMOLA.

exp SQ.TOGGLE0() 0 0, , ,() 0=()

6. References
[BMSJ91] R. Beckmann, P. Marwedel, W. Schenk, and R. Jöhnk. The MIMOLA Language

Reference Manual - Version 4.0. Research Report 401, Fachbereich Informatik,
University of Dortmund, February 1991.

[Bec91] R. Beckmann, W. Schenk, D. Pusch, and R. Jöhnk. The TREEMOLA Language
Reference Manual – Version 4.0. Research Report 391, Fachbereich Informatik,
University of Dortmund, July 1991.

[Biek92] U. Bieker. On the Semantics of the TREEMOLA Language Version 4.0. Research
Report 435, Fachbereich Informatik, University of Dortmund, July 1992.

[ClMe81] W. F. Clocksin, C. S. Mellish. Programming in Prolog. Springer Verlag, Berlin
Heidelberg New York, 1981.

[Devi90] Yves Deville. Logic Programming: Systematic Program Development. Addison-
Wesley, 1990.

[DOS87] DACAPO II, User Manual, Version 3.0.DOSIS GmbH, Dortmund, 1987.

[Eve91] Hans Eveking.Verifikation digitaler Systeme. B.G. Teubner Stuttgart, 1991.

[IEEE88] Design Automation Standards Subcommittee of the IEEE. IEEE Standard VHDL
Language Reference Manual (IEEE Std. 1076).IEEE Inc., New York, 1988.

[Kel87] K. Kelle, G. Krüger, P. Marwedel, L. Nowak, L. Terasa, and F. Wosnitza. Werkzeuge
des MIMOLA-Hardware-Entwurfssystems. Bericht 8707, Inst. f. Informatik und
prakt. Mathematik, Universität Kiel, June 1987.

[Mar90] P. Marwedel. Matching system and component behaviour in MIMOLA synthesis
tools.Proc. EDAC 1990, 1990.

[Scho89] Uwe Schöning, U. Kulisch, and H. Maurer.Logik für Informatiker. Reihe Informatik.
BI Wissenschaftsverlag, Mannheim/Wien/Zürich, 1989.

