Tree-Based Mapping of Algorithms to Predefined Structures

*

Peter Marwedel
University of Dortmund, Informatik XII
D-44221 Dortmund, Germany

e-mail: marwedel @ls12.informatik.uni-dortmund.de

Abstract

Due to the need for fast design cycles and low produc-
tion cost, programmable targets like DSP processors
are becoming increasingly popular. Design planning,
detailed design as well as updating such designs re-
quires mapping existing algorithms onto these targets.
Instead of writing target-specific mappers, we propose
using retargetable mappers. The technique reported
in this paper is based on pattern matching. Binary
code is generated as a result of this matching process.
This paper describes the techniques of our mapper
MSSV and identifies areas for improvements. As a
result, it shows that efficient handling of alternative
mappings is crucial for an acceptable performance.

1 Introduction

For many years, research on high-level design tools
was focused on high-level synthesis. High-level syn-
thesis starts with a behavioral description and gener-
ates a structure with the same behavior. In most of
the cases, the generated structure inplements just the
given behavior. The limitation of that approach lies
in its low flexibility. Even minor variations of the be-
havior require a complete redesign and remanufactur-
ing. This limitation does not exist for programmable
systems, containing processors (microprocessors, DSP
processors, processor cores from a cell library). These
processors can be extended by custom datapaths or
memories in order to obtain the necessary through-
put. In the following text, we will call these systems
our target structures or just targets. With these tar-
gets, manufacturing cost is significantly reduced, pos-
sibly at the expense of lower speed. This reduction
in speed can be eliminated by a proper selection of
custom datapaths. This way, some parts of the be-
havior are implemented by custom datapaths, other
parts by programmable processors. Obviously, this is
an example of hardware/software codesign.

*Reprint from latex-source. Copyright of original publica-
tion: IEEE Computer Society.

Programmable targets result in the need for tools
which map existing algorithms onto these. Such tools
are required to examine tradeoffs between different
targets. Analysing these tradeoffs is an important
design action during the early design phases. With
these tools it is possible to “play” around with dif-
ferent architectural options. Standard high-level syn-
thesis does not have this functionality, because it usu-
ally assumes some freedom for the implementation.
In many cases however (including DSP), the user has
a good knowledge about the range of reasonable im-
plementations. Currently, he cannot try these out,
because mapping his application onto possible struc-
tures just takes too long. Recently, Paulin (in a talk at
the high-level synthesis workshop) has emphasized the
effort spent on mapping applications onto program-
mable systems. Techniques for reducing this effort
would have a major economical effect.

Simple assembler-like tools are hard to use for evalu-
ating different targets, because the application must
be rewritten for each target. Compilers are only avail-
able for frequently used targets. Writing compilers for
every target is too costly, especially because several
algorithmic languages are in use. The lack of such
compilers is a severe bottleneck during design style
selection and early cost/performance estimation.

The solution is a retargetable mapper. Such a tool can
be used to compile algorithms into binary code for pre-
defined structures by performing a pattern-matching
of the two descriptions.

2 Related work

We are aware of two so-called checkers of executability,
which do the same type of matching [1, 2]. However,
they do not generate binary instructions and hence do
not perform the function which we need.

Some high-level synthesis systems are are capable of
accepting partially specified structures as addition-
al input and some also generate binary instructions.
Using algorithms which were designed to synthesize

Int. Conf. on Comp. Aided Design (ICCAD), 1993

structures in order to generate code would at least
be inefficient. What will be described in this paper
requires methods different from high-level synthesis,
even though some similarities exist!
There has been some research on retargetable compil-
ers for standard machine languages containing a sim-
ilar pattern matching [3, 4]. They require a rather
complicated partially manual preprocessing and hence
cannot be used if targets change frequently.
More adequate for the current problem is previous
work on retargetable microcode compilers [5, 6, 7, 8, 9].
Of these, the compilers by Mueller and Vegdahl can
only be used for infrequent remapping to new tar-
gets because they require labour-intensive complicat-
ed preprocessing. Baba’s work is mainly oriented to-
wards mainframe microprogramming and the associ-
ated complicated next-address logic. The grammar-
based approaches by Evangelisti and Mavaddat have
to cope with an inherent ambiguity and complexity
and consequently no results for complex designs are
available up to now .
The approach taken in the MSS, however, applies to
the new situation immediately. It does not require
complex manual preprocessing and is based on a true
structural hardware description. Two compilers have
been designed for the MSS:

e MSSV, [10] based on tree matching and

e MSSC, [11] using graph matching.
The purpose of this paper is to present the basic ideas
of MSSV, because many of the design decisions for
MSSC are based on the observations made for MSSV.

3 Representation of Structures

The target structure has to be represented in our inter-
mediate language TREEMOLA. The structural subset
of TREEMOLA can be generated from MIMOLA or
VHDL. The structure basically is described as netlist.
The behavioral description of the components has to
identify performed operations and the control codes
which are required to select an operation.

Example: Assume that we want to map to the struc-
ture shown in fig. 1. The structure contains memo-
ry SH, ALU ALU, accumulator register AC, multiplexer
BMUX, decoder DEC, instruction counter PC and instruc-
tion memory I. Memory SH allows accessing two in-
dependent locations concurrently. Henceforth, we will
call the set of ports (in the sense of VHDL) to access a
location, a port group. The input to MSSV describes
the nets of fig. 1 as well as the behavior of the com-
ponents. Some part of this input is listed in fig. 2.

In MIMOLA, the default datatype is the bit vector.

587

SH.P1 1< 1.(7:6)
Laenn | 1239) DEC

addr1 |<5%29 W‘_‘_‘

datal

SH.P2

addr2f<=—1.(23:8)
data2 e
Cc f=— clock ——=c AC

cntrl2 [<— 1.(5) 1.(2)~=1 entrl

AL A
! 4] PC

Figure 1: Target structure

TARGET simplecpu;
STRUCTURE IS PARTS {components}
ALU: MODULE alu(a,b:(15:0);s:(1:0);
0UT £:(15:0));
BEHAVIOR bl IS BEGIN
f <-CASE s OF {<- = signal assignment}

0 : a x b; 1:Db;
2 :a + b; 3:a - b;
END; END;

DEC: MODULE dec(s:(1:0);0UT £:(15:0));

BEHAVIOR bl IS BEGIN
f <- CASE s OF

0: 0; 1:3; 2: 5; 3: 8;
END; END;

SH: MODULE sh (IN addril,addr2,data2:(15:0);
0UT datal:(15:0);IN cntrl2:(0);CLK c:(0));
BEHAVIOR b1l IS

CONBEGIN
AT c DO CASE cntrl2 OF
0: sh[addr2] := data2; (x LOAD *)

1: ; (* NOLDAD x*)
END;
datal <- sh[addri] (x READ %)
CONEND; (other components)

CONNECTIONS

SH.datal -> ALU.a; (all nets)

Figure 2: Description of structure (incomplete)

Its index range is denoted as (high-bit:low-bit). The
body of component descriptions is restricted to the

Int. Conf. on Comp. Aided Design (ICCAD), 1993

forms shown in the example. Each case clause de-
fines an available component operation mode and the
required control codes (the case labels). With its con-
trol input s set to 1, component ALU is in a transparent
mode. For sequential components, the operation iden-
tifiers LOAD, NOLOAD and READ are generated automat-
ically. In MSSV, operation modes are also represented
as TREEMOLA trees, very much like the trees used
to represent the algorithm (see below). An available
report [10] describes the full input to MSSV exactly.
Usually, temporary locations are required in order to
map an algorithm onto a certain hardware. A group of
locations has to be correspondingly tagged. Tagging is
also required for the locations which are available for
the algorithm’s variables, the binary instructions and
the program counter (controller state register). The
following is an example in MIMOLA V3.45:
LOCATIONS_For_Temporaries AC;
LOCATIONS_For_Variables SH[O0..9];
LOCATIONS_For_Instructions I;{entire ROM}
LOCATIONS_For_ProgramCounter PC;
Subranges of bits of the output of the instruction
memory are called instruction fields. In total, the
structure is described by the netlist, the behavior of
the components, the instruction fields, target-specific
transformation rules (see below) and location lists.

4 Representation of the Algorithm

Our compilers also expect the algorithm to be de-
scribed in TREEMOLA. Behavioral TREEMOLA can
be generated from MIMOLA or other source lan-
guages. MIMOLA is essentially PASCAL, extended
by bit-level addressing and language elements for de-
scribing hardware structures.

Example: As a (simple) running example, we will con-
sider the assignment

a:=b+38

Source level text like this is first passed through stan-
dard tools MSSF, MSSR, and MSSI which perform
among others the following functions:

e Translation from MIMOLA to TREEMOLA.

e Replacement of high-level language elements (e.g.
loops and procedure calls) by simple assignments.
Target-dependent, user-definable program trans-
formation rules can be used to map procedure
calls e.g. to pushes and pops of hardware stacks.
Transformation rules are a mechanism for passing
information about code generation for a particu-
lar target over to the compiler. Many changes of
the target structure (like changes of the datapath)
do not require changes to the rules.

588

e Replacement of variables by memory locations
e Replacement of unimplemented by implement-
ed operators (e.g. replacement of (ax2) by
(a+a)). This replacement is controlled by target-
dependent, user-definable program rules.
After preprocessing, algorithms have been mapped to
blocks of register transfers with the IF-statement be-
ing the only remaining high-level language element.
Example: The above assignment could be transformed
into the TREEMOLA representation of the following
statement:
SH[O0] := SH[1] + 8
Preprocessing has replaced variables a and b by refer-
ences to memory locations SH[0] and SH[1].
MSSV uses the linked-node in-memory tree represen-
tation that is depicted in fig. 3. In that representation,
READ and LOAD operations have been made explicit.

1 READ

A1/
NV
SH
Figure 3: In-memory representation of an assignment

The meaning of a child depends upon its position:

e The rightmost child denotes an operation. The
parent node can be interpreted as an APPLY-
command for the operation and contains the
name of the component, which should implement
the operation (= ’?" if no predefined opera-
tion/operator binding exists).

e The next child denotes an address, if the opera-
tion is either READ or LOAD.

e All other children denote data.

5 Matching Structure and Algorithm
5.1 Fundamental Concept

The main idea of the mapper is the following:

e For each constant of the algorithm, find decoders
or instruction fields in order to generate it.

e For each operation of the algorithm, find ALUs
with an appropriate operation mode.

e For each READ and LOAD-operation, find suitable
memory ports.

e For each operation e, find paths from the modules
computing the arguments to the input(s) of the
modules implementing operation e.

Int. Conf. on Comp. Aided Design (ICCAD), 1993

During the matching process, MSSV attaches par-
tial solutions to sections of the algorithm, for which
matches have already been found. The matching
process follows the 'recursive descend approach’ which
is used in traditional compilers. With this approach,
the calling structure of code generation reflects the
recursive nesting of syntactical elements. The outer-
most procedures handle blocks of assignments. For
every assignment they call procedure expression.

5.2 Expressions

In the remaining procedures, variable source denotes
a source (= an argument of an expression) and vari-
able sink denotes the node that will be bound to the
hardware performing the operation.
expression is the most important procedure:
PROCEDURE expression(e :
BEGIN

FOR ALL source IN nodes(e)

SEQUENCE right-to-left, depth-first DO

CASE nodetype (source) OF

tree) ;

IntegerTyp constant (source) ;
OperationTyp : operation(e,source);
END;

IF NotLeaf (source) THEN bundling(source);
IF source<>root(e) THEN path(source,sink);
END;
This procedure traverses all nodes, starting with the
leaves. On each level within the tree, it starts with the
rightmost nodes, denoting operations to be performed.
For these, expression calls procedure operation.

5.3 Matching of operations

In the example, the first node visited is the LOAD-node.
expression calls operation to find components (or
port-groups) with a matching operation mode. Match-
ing includes the operation identifier, the number and
bit-width of the arguments and the bit-width of the re-
sult. In order to select this operation mode, a control
code must normally be applied to a control input. To
generate this control code, operation calls constant.
After calling operation, expression calls path to
find a path from the component (or instruction field)
generating the control code to the control input of the
component corresponding to the sink node. The re-
sulting information is called a partial version. Partial
versions are attached to the sink node (see dashed line
in fig. 4). I(x). (y:z) stands for a value x that should
be supplied by instruction field I.(y:z). Note that,
in fig. 1, there is a direct path from the instruction
field I.(5) to control input SH.P2.cntrl2.

589

READ

\/
I/

P —————

2 0 wap I 106 1
NI '
I |

sH T I SH.P2.cnui2 |

Figure 4: Partial version for LOAD-node

5.4 Matching of Constants

The node visited next by expression is the 0-node.
Another partial version is added to the tree (fig. 5).

1 READ
SH 8 +

\1/ —_—

? 0 LOAD 1(0).(5) 10)-23:8) |

\|/ ' |

N |
e

|
SH SH.P2.cntrl2 -k SH.P2.addr2

Figure 5: Partial version for 0-node

This time the partial version describes how a 0 could
be implemented at address inputs of components or
port-groups for which partial versions for the control
input exist. Constants like 0 can be generated by in-
struction fields, by hardwired constants and by de-
coders. The latter require control codes which in turn
have to be generated by a call to expression.

The node visited next by expression is the +-node.
Another partial version, describing the control code
for + is linked to the TREEMOLA tree (see fig. 6).

1 READ
SH 8 + : |(2).(4:3)'=
NI/ T
o I awus |
(|) /LOAD 1(0).(5) 1(0).(23:8)
SH T SH.P2.cntrl2 --- SH.P2.addr2

Figure 6: Partial version for +

Int. Conf. on Comp. Aided Design (ICCAD), 1993

Next, partial versions for the node containing the 8
will be generated. One version can be generated for
the decoder and for the instruction field, respectively.

I 1(3).(7:6) I
1 READ
\ / | 1(8).(23:8) 1(0).(1:0) | '(1)-(130):
DEC
‘\

SH8 + 12 (4?)\\ N\ / '
BMUX BMux |
\ | o | |
CAREEEEEE ALUs - ALUDb ------ ALU.b }

c|) LOAD |((|)).(5) 1(0).(23:8)
SH T SH.P2.cntrl2 77 SH.P2.addr2

Figure 7: Partial versions for 8

5.5 Matching of Paths

In fig. 7, there is a reference to multiplexer BMUX.
BMUX is required because there is no direct path from
I.(23:8) and DEC to the sink’s input and proce-
dure path has to find a vie. path calls procedures
dirpath, viapath and temppath. dirpath scans the
netlist to find a direct path from source to sink.
viapath scans the netlist to find a path from source
to vias. It adds a node describing the via to the tree
and then calls path recursively to find a path from the
via to candidates for the sink.

5.6 Insertion of Temporaries

temppath scans the netlist to find a path from source
to a component containing temporary locations. If
such a path is found, temppath creates an assignment
of the tree with root source to that component. Fur-
thermore, it adds a READ-operation to the remaining
tree (with root t) and calls expression recursively
for this tree. As a result of the insertion of temporary
locations, sequential versions will be attached to root
node t. Sequential versions consist of
1. an assignment to a temporary and the related
non-sequential versions
2. the remaining tree with root t, for which this
structure may be repeated.
Example: If AC is available as a temporary location,
we could generate the sequence
AC := 8; (x via ALU.b %)
SH[O0] := SH[1] + AC;
and the associated versions. This sequence would be
required if the 8 were replaced by a constant which

590

cannot be generated by DEC.

The nodes visited next therefore denote the READ-
operation and the constant 1. The generated partial
versions can be seen in fig. 8 and fig. 9, respectively.

1 READ "%x__'l I(3).(7:6)
\/ / .
SH 7y ! shp1 (entrl) | DEC
1(0).(1:0) I(1).(1:0)
1(8).(23:8)
si /+ 1(2).(4:3) BI|VIUX BMUX
o ALU S ALUD - ALU.b
| ;)AD 1(0).(5) 1(0).(23:8)
"""""" SH.P2.cntrl2 "7 SH.P2.addr2

Figure 8: Partlal version for READ (%X=don’t care)

F
1 READ %X | /(D39:24) [13).(7:6)

N/ |

SH -+ SH.P1 (cntrl) - SH.PL. addril DEC

— el

1(0).(1:0) 1(1).(1:0)
1(8).(23:8)
si /+ 1(2).(4:3) BMUX BI|\/IUX
o tmmmmeeeees ALUs ---ALUb - ALU.b
c|) LOAD 1(0).(5) 1(0).(23:8)
SH T SH.P2.cntrl2 7777 SH.P2.addr2

Figure 9: Partial version for 1

5.7 Bundling

Up till now, we have visited leaves. For these, ex-
pression does not call bundling. For other nodes,
bundling tries to turn partial versions into ver-
sions. All possible combinations of partial versions
are checked to find ways for implementing entire ex-
pressions in hardware. This task is called bundling.
The result of the first call to bundling is shown in fig.
10. A version with root SH.P1 is generated.

An important task of bundling is to detect resource
conflicts: partial versions for the different input ports

Int. Conf. on Comp. Aided Design (ICCAD), 1993

1 READ \|_(1)_.(3;w2_4)___%;J
\ 27 13).(7:6)
SH T \SHPL 7 |
DEC 1(1).(1:0)

1(8).(23:8) 1(0).(1:0)

g + 12.43) BMUX BMUX
|/ | |
PRI AI|_U § eeee ALU.b ---eeees ALU.b
c|) LOAD 1(0).(5) 1(0).(23:8)
| |
SH T SH.P2.cntrl2 "7 SH.P2.addr2

Figure 10: Result of bundling for node SH

could be in conflict to each other. Both MSSV and
MSSC check for such conflicts by checking if there is
a conflict at instructions. Conflicts with respect
to hardware components are mapped to con-
flicts at the control word (instruction conflicts).
There is no blocking the hardware resources
that are used in a certain control step. There-
fore, components which can perform several opera-
tions concurrently, can be modeled. This approach is
feasible, because multiplexers are explicit in our hard-
ware model. There is one exception, however: pro-
grammable hardware conflicts, i.e. programmable bus
conflicts. This case is handled separately (see below).
The call to path for source = SH.P1 generates a par-
tial version with root ALU.a (see fig. 11).

1 READ
SH 1(3).(7:6) I_'(i).'(39:24)|
I8).23:8) 10).(1:0) | 10).1:0) I\ %X
DEC | |
\/ \/ | |
8 + 1(2).(4:3) BMUX BMUX |SHP1,
B
J— ALU.S - ALU.b ------ ALUb—-daLual
L =
0 LOAD 1(0).(5) 1(0).(23:8)
SH ~TTTTT SH.P2.cntrl2 7T SH.P2.addr2

Figure 11: After calling path for SH

991

The outstanding completion of expression for the
first two nodes results in two additional calls to
bundling and path. This leads to figs. 12 and 13.

—— S R E—

1 READ

1(3).(7:6 |

\ // (3).(7:6) |
1(1).(39:24) I

SH|I(1).(39.24) 18).(23:8) DEC I
\ %X | 1(0).(1:0) | %X | 1(1).(1:0)]
\ I
N/ A

I

8 +\ SH P1 BMUX SH.P1 BMUX

|/ \ \\ 1(2).(4:3) \/ 12).(4:3) |

------------- N AL e AL !
0 LOAD 1(0).(5) 1(0).(23:8)
SH -------- SH.P2.cntrl2 -------- SH.P2.addr2

Figure 12: Result of bundling at ?

L READ| 1(3).(7:6) \
\ / \|(1) (39:24) | \
%X DEC 1(2).(1:.0) \
\ | \/ \
\ SHPL BMUX |(2).(4:3)\\
\\ \ // \
0 LOAD\\ ALU 1(0).(23:8) :
NNV CIC)
SH T N SH.P2 I

) WS-

Figure 13: Result of bundling at 2nd SH-node

Note that the version containing I(8).(23:8) is not
included in fig. 13 because it causes an instruction
conflict with I(0).(23:8).

6 Additional Tasks
6.1 Disabling buffers and storage devices

The code generated so far (as stored in the leaves
of fig. 13) does not yet guarantee, that the states of
sequential components, to which no assignment ex-
ists, remain unchanged. For example, the binary code
which we just generated does not specify any value
for the control input of AC (bit 2 of the instruction).
We avoid such incorrect codes by generating versions
for the NOLOAD-operation of sequential components.

Int. Conf. on Comp. Aided Design (ICCAD), 1993

Our scheduler augments the code generated so far by
NOLOAD-versions for all components (or port groups)
to which no assignment exists within a certain control
step. In the case of our example, the scheduler adds a
leaf to fig. 13, setting bit 2 to the code which disables
AC. A similar method is used to set unused bus drivers
into TRISTATE-mode.

6.2 Scheduling

Generated version lists are fed into the scheduler. The
scheduler is an ASAP scheduler with provisions to
handle alternate code sequences for each assignment.
The scheduler tries to put as many statements into one
control step as possible by checking available versions.
The scheduler starts by trying to find a schedule with
the smallest number of steps first.

6.3 Extraction of binary code

The binary code can be extracted from fig. 13 (aug-
mented by NOLOAD-codes) quite easily (see table 1).

Bits 39:24 | 23:8 | 76 | 5| 43| 2| 1:0
Code 1 0 310 211 1

Table 1: Binary code for the running example

7 Concluding remarks
7.1 Observations and limitations

The most important observation is that the number
of versions for typical designs is significantly larger
than expected. Hundreds of versions per statement
are rather common for real designs. This slows down
the code generation considerably. The reason for the
large number of versions frequently originates from
control code alternatives high up in the tree. If there
are several such alternatives at various places in the
tree, the cross product of these alternatives results in a
huge amount of versions. Generating only one version
at a time and then going to backtracking if it cre-
ates conflicts does not help, because we expect that
the number of backtracks would be in the order of the
number versions which MSSV creates. And backtrack-
ing would cause much more overhead.

Mapping as described above works for programmable
targets with fixed length instructions. Multi-port
memories and chaining are supported, but multi-cycle
operations are not yet implemented. Due to its limited
speed, the mapper cannot be used for large algorithms.
Therefore, we are now using an extension.

592

7.2 Extension

Using the experience with MSSV, we have extended
the mapping technique and implemented it in MSSC.
MSSC uses the same formats for its input and output,
but is faster. Selection of improvements is based upon
observations made for MSSV.
e MSSC allows version-nodes (or-lists) anywhere in
the tree, eliminating the cross-product problem.
e MSSC uses a more efficient method for handling
some special transformation rules.
All full description of MSSC is beyond the scope of this
paper. Although MSSC(uick) is faster than MSSV,
MSSYV is ideal for demonstrating the basic principles
in an emerging discipline.

7.3 Results

First of all, the method that we have described above
works for real architectures. We have tried it on vari-
ous targets and it was able to generate code. A well-
studied example is that of AMD-2900 based designs.
They are challenging because of the strong encoding
of instructions. Table 2 contains the size of the MI-
MOLA description of some standard components. It
can be seen that the models are compact.

Circuit Size of the HDL description
Lines local components

AMD 2904 584 25

AMD 2910 414 14

AMD 29203 533 11

TMS 320C25 | 1995 95

Table 2: Size of target descriptions

Table 3 contains some code sequences, generated
for our running example simplecpu. This code as-
sumes that variables a,b,c,d are bound to locations
SH[O0. .3], respectively.

Source | Instruc- binary code (high-/low-bit)
state- tions 39 | 23 7151421
ments 24 8 6 53|20
a:=b+8 | a :=b+8 1 0O} 3]0]2]|1]|1
a:=b+c | AC:=c-0 2| X[01301

a:=b+AC 1 0| X|0|2]1]2
a:=b+ AC:=d-0 3/ X|O0f1]3]0]1
(c+d) | ACi=c+AC | 2| X | X |[1]2]0]2

a:=b+AC 1 0| X |0|2]1]2

Table 3: Generated code for some examples

The next example consists of the essential data compu-
tations of the differential equation solver benchmark,
as specified by the following MIMOLA assignments:

Int. Conf. on Comp. Aided Design (ICCAD), 1993

X := dx + x;
ul:= u * dx;
y =y + ul;

u:=u- ((ul * (x *5)) - (dx * (y * 3)));
Table 4 contains the corresponding code, using
simplecpu as the target. It is assumed that variables
x, dx, ul, u, y are bound to locations SH[4..8]
and that locations SH[10..12] have been declared
as additional temporary locations. Excluding setup
times, MSSC needs 104 milliseconds to compile this
example on an hp 9000/425 workstation. This corre-
sponds to 134 instructions per second.

Source | Instruc- binary code (high-/low-bit)
state- tions 39 (23| 7514|221
ments 24 81 6|5]3]|2|0
diff_ AC:=x-0 4| X 013|001
eq- x:=dx+AC 5 41X |02 (112
lite AC:=dx-0 51/ X[0]1]3|]0]|1
ul:=uxAC 7 6| X|0]0]|1]|2
AC:=ul-0 6| X| 013|001
y:=y+AC 8 8| X |0|2(1]2
h1:=xx5 6 | 10 2101011
AC:=ul-0 6| X| 013|001
h2:=h1xAC |11 (xXj{o|0|1|2
h3:=y%3 8 | 12 1101011
AC:=dx-0 51 X 0[1]3]|]0]|1
AC:=h3+AC | 12 | X | X |1 |0 |02
AC:=h2-AC 11 X|X]1[3]0]2
w:=u-AC 7 7TIX|0[3|1]2

Table 4: Code for modified benchmark diff eq_lite

7.4 Conclusion

We have described a method for generating binary ma-
chine code by matching true structural hardware de-
scription and the algorithm to be implemented. Such
an approach, which does not need any instruction set
description, is feasible for real architectures.

The importance of this approach reaches beyond the
matching technique which we have described. The
tool, which we have presented, has the potential of be-
ing the prototype of a whole new class of tools, which
will link software and hardware. We predict that tools
of this type will be essential for software/hardware
codesign [12]. Furthermore, they will contribute to
our understanding of the software/hardware interface.
A better compiler technology for parallel architectures
and superior CAD support for higher levels of abstrac-
tion could be results of this.

References

[1] F. Anceau. Force: A formal checker for exe-

[10]

[11]

[12]

993

cutability. in: D. Borrione (ed.): From HDL
Descriptions to Guaranteed Correct Circuit De-
signs, Proc. of IFIP WG 10.2 Working Conf.,
North Holland, 1986.

S. Takagi. Rule based synthesis, verification
and compensation of data paths. Proc. IEEE
Conf.Comp.Design (ICCD’8}), pages 133-138,
1984.

M. Ganapathi, C.N. Fisher, and J.L. Hennessy.
Retargetable compiler code generation. ACM
Computing Surveys, Vol. 14, pages 573-593,
1982.

R. M. Stallman. Using and porting GNU CC.
Free Software Foundation, 1993.

C.J. Evangelisti, G. Goertzel, and H. Ofek. Us-
ing the dataflow analyzer on LCD descriptions
of machines to generate control. Proc. Jth Int.
Workshop on Hardware Description Languages,
pages 109-115, 1979.

T. Baba and H. Hagiwara. The MPG system:
A machine-independent microprogram generator.
IEEE Trans. on Computers, Vol. 30, pages 373—
395, 1981.

S.R. Vegdahl. Local code generation and com-
paction in optimizing microcode compilers. PhD
thesis and report CMUCS-82-153, Carnegie-
Mellon University, Pittsburgh, 1982.

R.A. Mueller and J. Varghese. Flow graph ma-
chine models in microcode synthesis. 17th Ann.
Workshop on Microprogramming (MICRO-17),
pages 159-167, 1983.

F. Mavaddat. Data-path synthesis as grammar
inference. IFIP-Workshop on Control Dominated
Synthesis from A Register Transfer Description,
Grenoble, 1992.

P. Marwedel. MSSV: Tree-based mapping of al-
gorithms to predefined structures. Technical Re-
port 431, Computer Science Dpt., University of
Dortmund, 1993.

P. Marwedel and L. Nowak. Verification of hard-
ware descriptions by retargetable code genera-

tion. 26th Design Automation Conference, pages
441-447, 1989.

R. Leupers and W. Schenk. Retargetable assem-
bly code generation by bootstrapping (extended
version). Technical Report 488, Computer Sci-
ence Dpt., University of Dortmund, 1993.

