
1

1. Abstract
We show how an extended Prolog can be exploited to
implement different electronic CAD tools. Starting
with a computer hardware description language
(CHDL) several problems like digital circuit analysis,
simulation and code generation for programmable
microprocessors are discussed. For that purpose a part
of the MIMOLA (machine independent micropro-
gramming language) system MSS (MIMOLA hard-
ware design system) is presented. Several advantages
obtained by applying techniques of logic programm-
ing to solve problems in the area of integrated circuit
design are shown. Especially maintenance, small
source code, backtracking and the extension of stan-
dard Prolog by a coroutining mechanism to express
Boolean constraints are pointed out.

2. Introduction
Due to the increasing complexity of digital circuits,
the design process is supported by a lot of design tools
covering a wide range of problems. A lot of these pro-
blems are of high complexity. Therefore electronic
CAD systems, commonly written in imperative lan-
guages, consist of a very large amount of source code.
Maintenance, portability and adaptability becomes a
problem. We describe significant software enginee-
ring advantages by using Prolog for these problems.

MIMOLA [BMSJ91] is a computer language with
Pascal-like constructs. It supports design, test, simu-
lation and programming of digital computers and is
integrated into the CAD system MSS [Marw84].
MIMOLA, influenced by other hardware description
languages like VHDL [IEEE92], allows structural
and behavioral descriptions of circuits. Originally the
complete system has been written in Pascal but
onwards from MIMOLA 4.0 we started to redesign
several tools using Prolog.

Using the extended Prolog system ECLIPSE
[ECRC92] new concepts to solve problems in the area
of digital circuit design have been found. Corouti-
ning, which allows the user to express a condition
under which a call to a specified goal will be delayed,
is a very useful mechanism to avoid unnecessary
backtracking steps during simulation, test and code
generation.

Several approaches to digital circuit design using

logic programming have been presented [Gull85,
Cloc87, Simo89, DSH90], most of them concentra-
ting on the gate level or even lower levels of
abstraction. Only a few contributions consider higher
levels of abstraction in the context of logic program-
ming [Rein91, LWG91].

In this paper we describe the use of Prolog for a very
high level of abstraction. An elegant simulator, based
on a hardware description language is presented. The
simulator is able to simulate a processor together with
a given program. We also present a concept to gene-
rate microcode for a given hardware structure.

Starting with a circuit given as a MIMOLA hardware
description an adequate tree based Prolog circuit
representation is generated from a frontend compiler.
Afterwards, a circuit analyser creates a circuit info file
that can be used as input for the codegenerator.
Finally the generated microprogram can be simulated
together with the circuit description.

In what follows we first introduce a small but illustra-
ting processor used as an example for the whole
paper. We continue with the simulator concept based
on three levels of abstraction, followed by a section
describing circuit analysis to prepare code generation.

3. SIMPLECPU: A simple processor
Figure 1 shows SIMPLECPU, a small programmable
microprocessor consisting of 8 modules. The
SIMPLECPU controller (shaded area) consists of a
program counter, an instruction memory, an incre-
menter and a multiplexer. Furthermore a 16 x 4 regi-
ster file, a 4 bit ALU, a second multiplexer and a clock
are part of the structure. Register file and program
counter are connected to the clock (not shown) and
control signals are denoted by c followed by an index
range. MIMOLA hardware descriptions contain regi-
ster transfer modules, their behavior and their inter-
connections. For instance, the 4 bit ALU is specified
in MIMOLA as shown below. CONBEGIN and
CONEND denote a concurrent block, containing two
case expressions as assignments to the outputs. In
MIMOLA, the default data type is the bit vector. Its
index range is denoted as (high-bit : low-bit), i.e. the
ALU has two 4 bit data inputsa andb, a 4 bit output
result, a 1 bit outputcondition and a 2 bit control input
ctr selecting the ALU function.

Using Logic Programming and Coroutining for VLSI Design
(Summary)

Ulrich Bieker, Andreas Neumann
University of Dortmund, Department of Computer Science

D-44221 Dortmund, Germany
e-mail: bieker@ls12.informatik.uni-dortmund.de

2

Using MIMOLA as input language, we generate a
tree based Prolog intermediate format. A circuit is
represented as a list of module descriptions. Every
module consists of a list of connections, a list of sto-
ring cells and a behavior tree. Such a tree is easily
represented by a Prolog structure. The list of con-
nections contains information about inputs and out-
puts of the module and interconnections to other
modules. Every signal is represented by a logic
variable and this variable also occurs in the behavior
tree when the signal is referenced. If signals are
instanciated elsewhere, this leads to an immediate
signal propagation to all modules using this signal.

4. Simulation of a CHDL
The implemented simulator is based on three levels of
abstraction: the built in operators, an interpreter for
the behavior of a single component and an event dri-
ven simulator for a circuit together with a microcode.
Especially for the implementation of the operators,
we made extensive use of the coroutining concept of
ECLIPSE. Due to the lack of space we do not consi-

MODULE ALU
(IN a, b : (3:0); IN ctr : (1:0);
 OUT result: (3:0); OUT condition:(0:0));
BEHAVIOR IS
CONBEGIN

result <- CASE ctr OF
0 : a ;
1 : b ;
2 : a+b ;
3 : a-b ;
END AFTER 1;

condition <- CASE ctr OF
0 : a = 0 ;
1 : b = 0 ;
2 : a+b = 0 ;
3 : a-b = 0 ;
END AFTER 0;

CONEND;

der the interpretation level as described in [Biek93]
and the event driven simulation.

For the interpretation of a Hardware Description
Language an implementation of its built-in operators
is necessary, which range from logic primitives to
complex arithmetic operators. These are represented
as Prolog predicates, which mainly have to fulfill the
following demands:

a) The operators must work bidirectionally, so that
they can also be used for backward simulation of
a circuit.

b) They should work deterministically, i.e. subse-
quent backtracking step must not produce the
same solution. This is especially important for
the backward simulation, as the mapping of an
operator is not necessarily definitely reversible.
Certain backtracking alternatives have to be pru-
ned to avoid duplicate solutions.

c) The computation must be - at least at operator
level - data driven, i.e. the application of an ope-
rator to unbound variables is propagated symbo-
lically as a delayed goal, until the instantiation of
the variables is absolutely unavoidable. By this,
the number of backtracking steps is reduced.

The third point is achieved by using the coroutining
mechanism of ECLIPSE, which allows the program-
mer to specify conditions, under which the execution
of a goal shall be delayed, depending on the bindings
of its parameters. Whenever a variable occuring in
one of these is bound the goal will be woken, and the
delay conditions are checked again.

Nevertheless, at the end of a simulation the set of all
delayed constraints must be consistent, i.e. there
should be a constraint solver1 which finds
contradictions and - if possible - solutions for variable
bindings. Since such a constraint solver is rather

1. Actually we develop a Boolean constraint solver in Pro-
log on top of the ECLIPSE system.

Incre-
menter

REGISTER

FILE A
L
U

MUX

P

fig. 1

SIMPLECPU

Primary Output

Primary
Input

Program
Counter

Instruction

MEMORY

Controller

Clock

4

c(18:15)

c(3:0)
4

4

4
6 6

6

c(14:9)
c(19:0)

1
c(8:7)

c(6:5)

c(19:19)

c(4:4)

address

C
M
U
X

3

complex, there should only be a few types of
constraints. It would be sufficient to consider a
minimal complete set of operators, but for efficiency
reasons we used a set containing AND, OR, XOR and
NOT. The Prolog code for those operators is now
divided into delay clauses and program clauses, e.g.
the logical AND is implemented as shown below:

The delay clauses cover the case, when the two inputs
parameters X and Y are distinct unbound variables,
and the output parameter is either unbound or zero. In
these cases it is impossible to draw any conclusion, so
the call to the predicate is delayed. The program clau-
ses use the commutativity of the logical AND: the
first two of them deal with the case, when one of the
inputs is bound, and calland1with this one in the first
place. For the third clause there are - due to the delay
clauses - only two possibilities left: either the output
is 1, which forces the inputs to take the same value, or
the two inputs are identical variables, to which the
output will be bound, too. The auxiliary predicate
and1 expect its first input to be instantiated. If it is
bound to a 0, the result must be 0 either, if it is 1, the
output is identical to the second input.

The more complex operators are now based on these

four logical primitives, e.g. a full adder is defined as
shown above. Of course the set of operators is not
restricted to single bit operations, but for each of them
there is also a version for bitstrings, which are repre-
sented as lists. Upon these are arithmetic operators
like addition and multiplication and string manipula-
tion operators like shifting and concatenating.

5. Circuit Analysis
When simulating a circuit it is necessary to give prio-
rities to different modules concerning the order in
which to simulate two events for the same time. The
reason for this are causal dependencies between com-
ponents which are connected without delay. This prio-

delay and (X,Y,Z) if var(X), var(Y), var(Z), X\==Y.
delay and (X,Y,Z) if var(X), var(Y), Z==0, X\==Y.

and (X,Y,Z) :-
 nonvar(Y), !, and1(Y,X,Z).

and (X,Y,Z) :-
nonvar(X), !, and1(X,Y,Z).

and (X,X,X).

and1 (0,_,0).
and1 (1,X,X).

halfadd (In1,In2,Sum,Cout) :-
and(In1,In2,Cout),
xor(In1,In2,Sum).

fulladd (In1,In2,Cin,Sum,Cout) :-
halfadd(In1,In2,Sum1,Carry1),
halfadd(Cin,Sum1,Sum,Carry2),
or(Carry1,Carry2,CarryOut).

rity can be compared to the∆-delay of VHDL. The
intention is that an event may be simulated only when
all events its inputs depend on have been considered
before, i.e. the priority of a module is the maximum of
the priorities of all its predecessors incremented by
one. Assume that we have already computed a prio-
rity list of triples(Mod, Prio,Preds),wherePred is a
list of pairs(Mod’, Prio’), so that every occurence of
a module in the whole structure have itsPrio compo-
nent bound to the same variable. Now, for each ele-
ment of the priority list, we only have to compute the
maximum priorities in the predecessor list and bind
the priority to this value incremented by one.
delay max(A,B,M) if var(A).
delay max(A,B,M) if var(B).

max(A,B,A) :- A > B,!.
max(A,B,B).

maxPriority([],Max,Max).
maxPriority([(_,Prio)|Rest],Max0,Max) :-

max(Prio,Max0,Max1),
maxPriority(Rest,Max1,Max).

setPriorities([]).
setPriorities([(Mod,Prio,Preds) | Rest]) :-

maxPriority(Preds,0,MaxPrio),
plus(MaxPrio,1,Prio),
setPriorities(Rest).

In standard Prolog this would lead to difficulties
because we could not compare unbound variables.
This is easily resolved by delaying themax predicate.
If there are no critical races in the circuit, i.e. there are
no cyclic dependencies, there must be at least one
module whose predecessor list is empty, so it will get
priority 1. This will wake up at least one othermax
goal, and so on, so that all priorities will be computed
correctly. If there is a cycle, then a conflict occurs and
an error must be raised. Such a conflict can easily be
detected by checking for delayed goals by a system
call. Note that the plus/3 predicate must also be
delayed, which is done automatically by ECLIPSE.

To prepare microcode generation, several tasks are
done by the circuit analyser. The main task is to gene-
rate a lot of facts describing special characteristics of
a given circuit to reduce complexity of code genera-
tion. Table 1 gives an overview of some generated
facts but due to the lack of space not all generated
facts can be considered.

The first fact is transparent/3, denoting an identity
mapping from one input to at least one output, so that
the module becomes ‘transparent’. That means that
with a special control code, the considered module is
able to pass one input to one output. The transparent/
3 example of table 1 shows a possibility to switch
input a of the SIMPLECPUalu to the outputresult,
i.e. the signal list [D,C,B,A] is switched. This is done
by unifying inputb with the neutral element [0,0,0,0],

4

Table 1: Some selected facts, generated by circuit analysis

fact/arity arguments example

transparent/3 module name
list of inputs
list of outputs

transparent(alu,
[[D,C,B,A], [0,0,0,0], [1,0]],
[[D,C,B,A], [Condition]]).

path/3 source
destination
Path

path(im,reg,[(im,[[_,_,_,_,_,_]],[[0, D,C,B,A,_,_,_,_,_,_,_,_,0,1, _,_,_,_,_]]),
(mux, [[_,_,_,_], [D,C,B,A], [0]], [[D,C,B,A]]),
(alu, [[_,_,_,_], [D,C,B,A], [0,1]] , [[D,C,B,A], [_]),
(reg, [[_,_,_,_], [D,C,B,A], [_], [_]] , [[_,_,_,_]])]).

incrementPC/2 delayed goal
Path

incrementPC(incr([F,E,D,C,B,A], [L,K,J,I,H,G]), [
(inc, [[F,E,D,C,B,A]], [[L,K,J,I,H,G]]),
(pcmux, [[_], [0,0], [L,K,J,I,H,G], [_,_,_,_,_,_]], [[L,K,J,I,H,G]]),
(pcreg, [[L,K,J,I,H,G], [_]], [[F,E,D,C,B,A]])]).

to perform an identity mapping for the selected opera-
tor. The binary control code c(6:5) = [1,0] selects the
add operator.

Using the interpreter and the operators of the simula-
tor, the transparent/3 facts are easily generated. Basic
idea is to unify one input with one output and to per-
form an interpretation step for this module. The inter-
pretation step has to lead to instantiations of some
inputs for the following reasons:

a) Choosing of a control code to select an operation
that is able to perform an identity mapping (e.g.
c(6:5) = [1,0] to select ALU addition).

b) If necessary, choosing of a neutral element for
the selected operation (some operations do not
need a neutral element, e.g. the ALU operation
selected by the control code c(6:5) = [0,0] to
switch inputa to the outputresult).

A successive selection of all operations performed by
a module is done by backtracking. Afterwards, the
selected operation has to be executed symbolically,
holding the input port to be switched as list of
variables. Execution of the selected operation (Op) is
done by the clause findTransparent/4. The lists libr-

ary predicate checklist/2 succeeds if var/1 succeeds
for every element of SwitchPort, ensuring that the
selected input is switched to the selected output for all
possible values of SwitchPort. Finally, we assert the
generated fact.

The fact path/3 describes a path from a source module
to a destination module, possibly through certain

findTransparent(Module,Op,InPorts,OutPorts):-
member(SwitchPort, InPorts),
member(SwitchPort, OutPorts),
Operation =.. [Op, InPorts, OutPorts],
call(Operation),
checklist(var, SwitchPort),
assert(transparent(Modul,InPorts,OutPorts)),
fail.

findTransparent(_,_,_,_).

other modules which are able to perform an identity
mapping. A fact path/3 is a triple with parameters
source, destination andPath. Path is a list of triples
(module name, list of inputs, list of outputs). The first
element of the list is the source module whereas the
last element is the destination module. All modules
between source and destination are able to switch an
input to an output by the use of transparent/3. A path/
3 fact contains all control codes, i.e signals which
have to be 0 or 1 to switch thePath. The example
given in table 1 shows aPath from the instruction
memoryim through the multiplexermux and thealu
to the register filereg. Therefore binary control codes
c(19) = [0] for the multiplexer and c(6:5) = [0,1] to
switch a via through thealu are selected. [D,C,B,A] is
the list of values connected by this path.
A simplified version of the predicate generating path/
3 facts is findPath/3. The first clause terminates the
search of a path ifDestin is a direct successor of
Source. In the second clause we try to find a path
through a moduleNext, which has to be a successor of
the currentSource and has to be switched into a trans-
parent mode. Afterwards, a recursive search with
Next as source is started. A lot of implementation

details are omitted, e.g. the check to prevent entering
a cycle and the complete circuit representation.

A frequently done subtask of microcode generation is
to increment the program counter. Therefore we gene-
rate a symbolic increment instruction where the
address is unbound. The real address will be instantia-
ted at the end of code generation. For that reason we
generate a delayed goal, so that the code generator is

findPath(Source, Destin, [Source, Destin]):-
successor(Source, Destin).

findPath(Source,Destin, [Source | RestPath]):-
successor(Source, Next),
transparent(Next, Inputs, Outputs),
findPath(Next, Destin, RestPath).

5

able to bind these addresses to real values with respect
to certain constraints. As a consequence of that, an
increment instruction incrementPC/2 is a pair, contai-
ning a delayed goal which performs the increment
operation and aPath from the output of the program
counter to the input of the program counter.Path is a
list of triples as described above. The given example
of table 1 shows the unique solution to increment the
program counterpcreg for the example processor.
Therefore the binary control code c(8:7) = [0,0] is
selected for the multiplexerpcmux. [F,E,D,C,B,A] is
the current state of the program counter whereas
[L,K,J,I,H,G] will be the next state. The delayed goal
incr([F,E,D,C,B,A],[L,K,J,I,H,G]) denotes the opera-
tion to be executed at the end of code generation.

We conclude this section by enumerating some addi-
tional facts not considered here:

a) jump/1: denotes an unconditional jump, i.e. a
possibility to move a constant value into the pro-
gram counter without consideration of a condi-
tion.

b) conditionalJump/2: denotes a conditional jump
version, i.e. a conditional path to the program
counter.

These facts are mainly generated by the use of path/3
and transparent/3. Using failure driven loops (see e.g.
findTransparent/4), all possible solutions of the
described facts are generated and asserted.

At the end of code generation the microprogram has
has to be bound to real addresses of the instruction
memory. This is done by unifying the symbolic
address of the first instruction with the start address
e.g. 0. Now all delayed goals like incr/2 are woken
and this leads to a successive binding of concerned
addresses. Such microinstructions or even complete
microprograms can be simulated by the simulator
described above.

6. Conclusion
We have presented how logic programming and
coroutining are exploited for some tools of the
MIMOLA hardware design system. A simulator for
structural hardware models, described in a hardware
description language, has been presented. The simu-
lator e.g. consists of 2700 lines of code whereas the
original Pascal simulator has about four times more
lines of code. Most of the new simulator can be used
bidirectionally and symbolically which is very
important for code and test generation. Using corouti-
ning to express certain constraints, a lot of backtrak-
king steps can be avoided. Backward simulation in
general is non-deterministic and therefore backtrak-
king and bidirectionality of Prolog is advantageous.
Moreover, the original simulator is very difficult to
maintain. Time to develop VLSI tools using logic pro-
gramming is much shorter than for imperative langua-

ges. On the other hand, software written in standard
Prolog is slower, but with the new concept of con-
straint logic programming this disadvantage becomes
smaller, because this technique leads to a significant
reduction of unnecessary backtracking steps.

This work was supported by the DFG, the German
research foundation.

7. References
[BMSJ91] R. Beckmann, P. Marwedel, W. Schenk,

and R. Jöhnk. The MIMOLA Language
Reference Manual - Version 4.0. Research
Report 401, Computer Science Dpt.,
University of Dortmund, February 1991.

[Biek93] U. Bieker. On the Formal Semantics of a
CHDL - A Case Study. GI/ITG-
Workshop: Formale Methoden zum
Entwurf korrekter Systeme, Bad
Herrenalb, March 1993.

[Clock87] W. F. Clocksin. Logic Programming and
Digital Circuit Analysis. Journal of Logic
Programming, pp. 59 - 82, March 1987.

[DSH90] M. Dincbas, H. Simonis, P. Van
Hentenryck. Solving Large Combinational
Problems in Logic Programming. J. Logic
Programming, 1990.

[ECRC92]ECLIPSE 3.3 User Manual. ECRC
Common Logic Progamming System.
ECRC GmbH, Arabellastr. 17, Munich,
Germany, August 1992.

[Gull85] E. Gullichsen. Heuristic circuit simulation
using PROLOG. North-Holland,
Integration, the VLSI-Journal, No. 3, pp.
283 - 318, 1985.

[IEEE92] Design Automation Standards
Subcommittee of the IEEE. Draft standard
VHDL language reference manual. IEEE
Standards Dpt., 1992.

[LWG91] Y. Lichtenstein, B. Welham, A. Gupta.
Time Representation in Prolog Circuit
Modelling. 3rd UK Annual Conference on
Logic Programming, Edingburgh 1991.

[Marw84] P. Marwedel. The MIMOLA Design
System: Tools for the Design of Digital
Processors, Proc. 21st Design Automation
Conference, pp. 587 - 593, 1984.

[Rein91] P. B. Reintjes. A Setof Tools for VHDL
Design. Logic Programming, Proc. of the
eigth Int. Conference, pp549 - 562, 1991.

[Simo89] H. Simonis. Test Generation using the
Constraint Logic Programming Language
CHIP. In Proceedings of the 6th
International Conference on Logic
Programming, Lisboa, Portugal, pp. 101 -
112, June 1989.

