
1

METHODS FOR RETARGETABLE DSP
CODE GENERATION

Rainer Leupers, Ralf Niemann, Peter Marwedel

University of Dortmund
Dept. of Computer Science XII
44221 Dortmund, Germany

Abstract { E�cient embedded DSP system design requires methods of hardware/software code-

sign. In this contribution we focus on software synthesis for partitioned system behavioral

descriptions. In previous approaches, this task is performed by compiling the behavioral de-

scriptions onto standard processors using target-speci�c compilers. It is argued that abandoning

this restriction allows for higher degrees of freedom in design space exploration. In turn, this

demands for retargetable code generation tools. We present di�erent schemes for DSP code

generation using the MSSQ microcode generator. Experiments with industrial applications

revealed that retargetable DSP code generation based on structural hardware descriptions is

feasible, but there exists a strong dependency between the behavioral description style and the

resulting code quality. As a result, necessary features of high-quality retargetable DSP code

generators are identi�ed.1

1 INTRODUCTION

Embedded systems in general comprise heterogeneous components like standard DSPs, DSP cores,
ASIPs, dedicated datapaths, storages and communication hardware. Mapping a system behavioral
description onto a heterogeneous architecture requires partitioning the description into hardware and
software components and synthesizing both for the �nal implementation. This is a subproblem of
hardware/software codesign which has been recognized to be a key problem in electronic design au-
tomation at the system level. However, there is still no agreement in the research community upon
an exact problem de�nition. In particular, this holds for the target architectural styles to be investi-
gated. While synthesizing a dedicated hardware structure from behavioral speci�cations for various
technologies is quite well understood, synthesis of software components of a partitioned system behav-
ioral description strongly depends on the underlying programmable hardware model. Currently, most
of the research on hardware/software codesign is based on the assumption that the target machine is a
standard processor [1, 2] or a standard DSP core [3]. In these cases, the problem of software synthesis
is reduced to the usage of available compilers for standard processors. For industrial needs, it may
often turn out that using a standard processor is inadequate because of area or speed constraints.
Instead, application-speci�c instruction set processors (ASIPs) are better suited for running software
components in embedded systems. This fact was recently outlined by industrial surveys [4]. Employ-
ing ASIPs instead of o�-the-shelf processors in turn requires compilers that may be easily retargeted
towards di�erent machines with a minimumamount of work for compiler re-design, since the processor
structure itself becomes subject to hardware/software tradeo�s in this case. We believe that this less
restrictive approach yields the highest degree of implementation freedom for system level design, and
thus will gain more and more importance in the future.
While ASIP hardware design might be addressed by traditional high-level synthesis or by special
approaches [5], software synthesis for ASIPs requires a new class of CAD tools: retargetable compilers.
Besides system-level design, such compilers have applications for industrial in-house DSPs, for which
no target-speci�c compiler exists, and where code generation still has to be done manually at the
machine code level.
The CodeSyn compiler presented in [4] is tailored towards embedded DSP system design. However,
retargeting still requires a large amount of manual preprocessing. In contrast, the retargetable compiler

1This work has been partially supported by ESPRIT BRA project 9138 (CHIPS)

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 2

....................................

......

Retargetable

Compiler

110100100100010

110110010100100

100010001001001

001000100010001

FOR i := 1 TO 64 DO

BEGIN

a[i] := c[i] *x[i-1];

j := j-1;

IF i > j THEN j:=k;

END;

Behavioral Description

(High Level Language)

Target Architecture Netlist

(HW Description Language)
......
......
.......
.......
.......
.......
........
........
..........
...........

...................
..
.............
..........
........
........
.......
.......
.......
.......
......
......
..

..
...............................
........
.......

.........
........
.........
........
.........
........
.........
.........
........
.........
........
.........
........
.........
........
.........
........
.........
........
.....

.......
.......
.......
.........................

.........................
.....................

...............................
.......
.......
...

..................
......

......

..................
......

..................
......

..................
......

......

..................
......

..................
......

Binary Machine Code

+/-

Figure 1: Retargetable compilation based on structural descriptions

MSSQ, which is part of the MIMOLA system [6], is based on pure structural hardware descriptions.
Since a netlist of the target processor is usually available during the design process, retargeting the
compiler to a new machine requires no or only few manual work. However, MSSQ was not intended to
be a special compiler for DSP applications. Therefore, there exist various schemes for code generation
when applying MSSQ to compilation of DSP algorithms. The code quality strongly depends on the
style of the input behavioral description. The purpose of this paper is to outline the tradeo� between
the behavioral description style and the resulting code quality, and to identify necessary improvements
in code generation for DSPs or ASIPs. Nevertheless, it is shown that retargetable code generation
with MSSQ for embedded systems is feasible. This is done using a real-life example. The following
section gives a short overview of the functionality of MSSQ. Then, the sample DSP application and the
target architecture are presented. Section 4 deals with di�erent styles for describing the application
and their impact on the resulting code quality. The paper ends with conclusions and hints for further
research.

2 THE MSSQ MICROCODE COMPILER

The MSSQ microcode compiler is integrated within the MIMOLA Design System [6]. It reads a
behavioral speci�cation in a PASCAL-like language as well as a RT-level netlist of the target processor
in a hardware description language. Both are given in the MIMOLA language [7]. The behavioral
speci�cation is compiled into binary microcode for this processor (�g. 1). Convenient retargetability
is guaranteed by the fact, that code generation is based on a true structural hardware description,
including the controller part. Changing the target architecture only requires adapting the hardware

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 3

model. Furthermore, a RT-level netlist is usually available during the design process. This is in sharp
contrast to CodeSyn [4], which is based on manually speci�ed instruction sets. Code generation in
MSSQ proceeds in several separate phases:

1. Mapping of the abstract behavioral description into a RT-level program.

2. Optionally, application of user-speci�ed high-level transformation rules.

3. Allocation of di�erent versions for IF-statement implementation.

4. Allocation of available hardware operations and the corresponding partial instruction word set-
tings based on a graph representation of the target structure.

5. Statement allocation within the graph structure by pattern matching.

6. Microcode compaction based on a heuristic scheduler.

Due to the �nal code compaction phase, MSSQ is able of exploiting potential parallelism within the
hardware structure. This feature turned out to be crucial for the sample application which is presented
in the following section. See [8] and [6] for more detailed descriptions of MSSQ and its integration
into a complete CAD system.

3 SAMPLE APPLICATION AND TARGET STRUCTURE

This section gives a short overview of the DSP application which was compiled onto a given ASIP
target architecture.

3.1 Behavioral description

The investigated DSP application consists of two identical discrete �lters. The application is used in
scope of digital audio signal processing. For this reason, each of both �lters represents one of two
stereo channels. Both parts are a combination of a FIR-�lter and an IIR-�lter. The outputs of the
FIR-�lters xl and xr represent the inputs of the IIR-�lters. The �lter schematic for one channel is
depicted in �gure 2.
The behavior of the channels can be easily explained by the transmission functions (�gure 3) of both
�lters. The FIR-�lter eliminates high frequencies and the IIR-�lter boosts the lower ones. Therefore,
the complete �lter realizes a digital bass booster.
The application was originally described in the data-
ow language SILAGE ([9]). In contrast to im-
perative languages where programs are represented as a sequence of assignments, a SILAGE program
is realized as a set of signal de�nitions. Consequently, the relative ordering of statements in the source
code has no e�ect. Concurrency is not determined through operation order, but by the information
about concurrency inherent in the corresponding data-
ow graph. For this reason, SILAGE as an
applicative behavioral speci�cation language is well suited to describe DSP applications.
The SILAGE description was translated into the MIMOLA language for code generation purposes.

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 4

.......
...
...8

...
...1

...
...3

..
...................

...................
..

+

.......
...
...2

...
...4

.......
...
...7.......

...
...6

..
.............

..............
.

+

.......
...
...5

............

...
.........................

........................
..

+

............

.......
...
...1

...
...2

...
...3

...
...4

...
...3

...
...2

...
...1

z-1 z-2 z-3 z-4 z-5 z-6

z-1

z-1

p

p

p

..
.......................

.......................
........................

.......................
.......................

..

+

outl

inl

xl

CLP

CLP

CLP

CLP

Figure 2: Filter Schematics

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 5

3.2 Target architecture

The behavioral description had to be compiled onto the target architecture shown in �g. 4. The main
characteristics of this architecture are the following:

� Horizontal 42-bit microinstruction word

� Address calculation unit realizing a ring bu�er

� 120 � 18 bit RAM

� Coe�cient ROM

� 22/24 bit multiply-accumulate section

� Extensive data pipelining for high throughput

3.3 Hardware model

The above target architecture has been modelled in the MIMOLA language by specifying all RT-
level modules with their behavior (similar to VHDL descriptions) and the module interconnect. The
MIMOLA hardware model contains about 400 text lines. Since the instruction format and the in-
struction sequencer are implicitly part of the model, no additional information about restrictions due
to encoding or sharing had to be speci�ed manually.

4 TRADINGOFF DESCRIPTIONEFFORTAGAINST CODE

QUALITY

In the original design of the �lter application, microcode generation has been done manually. In case
of extensive parallelism and data pipelining, manual code generation is quite a di�cult task. In our
approach, we applied the MSSQ compiler to generate microcode automatically, based on the structural
hardware model. MSSQ reads the behavioral description as well as the hardware model and produces
a binary program listing, immediately executable on the target machine:

*---------+-----------+--+

*I-Address| L A B E L | 40 36 32 28 24 20 16 12 8 4 0|

*---------+-----------+---|---|---|---|---|---|---|---|---|---|---|+

#000 |L0 | 0000000001000000000x00010000000xxxxxxxxxxx|

#001 |Line0487 | 1000000010000000001000100000111xxxxx000000|

#002 |Line0490 | 000000001100100000100000xxxxxxxxxxxxxxxxxx|

#003 |Line0492 | 000000010000000001000000xxxxxxxxxxxxxxxxxx|

#004 |Line0493 | 000000010100000100100000xxxxxxxxxxxxxxxxxx|

....................

#03C |Line0794 | 000011110100001110100000xxxxxxxxxxxxxxxxxx|

#03D |Line0798 | 0000111110010000100x0000xxxxxxxxxxxxxxxxxx|

#03E |Line0802 | 0000111111000000000x0100xxxxxxxxxxxxxxxxxx|

#03F |Line0804 | 0000000000000000000x0000xxxxxxxxxxxxxxxxxx|

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 6

Since MSSQ cannot exploit DSP-speci�c hardware automatically (e.g. ring bu�er addressing), we
used three models for the behavioral description, di�ering in the level of abstraction. The target
hardware model was retained in each of the three versions. Code could be generated in each case,
but the code quality was heavily dependent on behavioral description style. The characteristics of the
di�erent versions are given in the following.

4.1 Version 1: low level

In the "low-level" version, behavior was speci�ed as a RT-level program. Memory management and
parallelisation were done manually. The behavioral description consisted of a sequence of parallel
blocks, each being compactable into one microinstruction:

PARBEGIN

data := DataRAM[adr];

adr := base + ((adr + 1) "MOD" mod);

PAREND;

PARBEGIN

m := data * coef;

data := DataRAM[adr];

adr := base + ((adr + 1) "MOD" mod);

coef := 2;

s1 := 0;

PAREND;

PARBEGIN

data := DataRAM[adr];

s1 := s1 + m;

m := data * coef;

coef := 3;

adr := base + ((adr + 1) "MOD" mod);

PAREND;

Addressing was done using physical storages instead of abstract user variables. In this case, MSSQ
worked more like a micro-assembler instead of a compiler. Nevertheless, important subtasks were
still performed automatically, e.g. constant and operator allocation, disabling unused storages within
each cycle, and binary code generation. Behavioral description at this low level required quite a large
amount of work, but the achieved code quality was nearly optimal (64 microinstructions for both �lter
channels).

4.2 Version 2: high level

In contrast to the previous version, behavior was modelled at a very high level of abstraction. Signals
were declared as abstract user variables, and memory management and parallelisation were left to
MSSQ. The program was speci�ed in a PASCAL-like manner:

...

VAR xrin,xlin: ARRAY[0..6] OF Short;

yr1,yr2,yl1,yl2: ARRAY[0..1] OF Short;

xr,xl: Short;

BEGIN

xrin[0] := indata;

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 7

xr :=

(xrin[0] * 1)

+ (xrin[1] * 2)

+ (xrin[2] * 3)

+ (xrin[3] * 4)

+ (xrin[4] * 3)

+ (xrin[5] * 2)

+ (xrin[6] * 1);

...

Behavioral description at this high level was quite e�ortless, e.g. a complete FIR �lter computation
could be described as one single assignment (xr := ...). Although MSSQ emitted compact code, the
resulting code size was large (197 microinstructions). This was mainly due to the fact, that no ring
bu�er addressing was used. Instead, all sample delay operations were speci�ed as explicit memory
data moves which are impossible to parallelise. These delay operations required about 50 percent of
the total code size.

4.3 Version 3: mixed high/low level

The third version of behavioral description o�ers a compromise between the two previous ones. Reg-
ister and memory assignment were done manually, but all other tasks were left to the compiler,
including the di�cult subtask of parallelisation for data pipelining. The behavioral description in this
case looks very similar to the one of version 2, besides the fact that physical memory cells are used
instead of abstract user variables. Using this approach, the problem of code generation for sample
delay operations could be eliminated, still retaining a low description e�ort. The resulting code size
was 98 microinstructions, i.e. only about 30 percent above the optimum.

Table 1 summarizes the results of the application study:

version behavioral description e�ort code size (instr)

1 high 64
2 low 197
3 low 98

Table 1: Results of application study

5 CONCLUSIONS

It was shown that retargetable code generation for ASIPs based on true structural target hardware
descriptions is feasible. We believe that this approach is better suited for integration into a CAD
environment, compared to the ones based on instruction set speci�cation. It extends the possible
range of architectural styles for hardware/software codesign, which in turn o�ers higher degrees of
freedom for embedded system implementation.
Di�erent behavioral description styles have been investigated for a real-life example. This applica-
tion study revealed that high-quality code generation is possible with existing tools, when behavior is
modelled at a low to medium level of abstraction. Moving to higher levels of abstraction, yet retaining

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 8

good code quality, will require several improvements, e.g. automatic exploitation of DSP-speci�c hard-
ware features (ring bu�er, repeat counter), a more global scheduling and temporary cell allocation,
extended capabilities for modelling target structures, and a concept of handling real-time constraints
in the compilation process. Nevertheless, using MSSQ for code generation even at the lowest level of
abstraction (see version 1) saves a large amount of work compared to totally manual code generation.
Furthermore, MSSQ is capable of exploiting potential parallelism within the hardware structure auto-
matically by microcode compaction. Up to �ve microoperations are issued in parallel for the sample
structure, obeying data dependencies.
Further research will focus on developing a retargetable code generator dedicated to DSP applications,
based on the experience with MSSQ.
The authors would like to thank Jef van Meerbergen from Philips Research Labs, Eindhoven (NL),
for providing material on the driver applications used for this work.

References

[1] R.K. Gupta, G. De Micheli: System-level Synthesis using Re-programmable Components, Proc.
EDAC 1992, pp. 2-8

[2] K. Buchenrieder, A. Sedlmeier, C. Veith: Design of HW/SW-Systems with VLSI Subsystems
Using CODES, Proc. 6th IEEE Workshop on VLSI Signal Processing, 1993, pp. 233-241

[3] G. Goossens, F. Catthoor, D. Lanneer, H. De Man: Integration of signal processing systems on
heterogeneous IC architectures, Proc. 6th Int. Workshop on High-Level Synthesis, 1992, pp. 16-25

[4] C.Liem, T.C.May, P.G.Paulin: Instruction Set Matching and Selection for DSP and ASIP Code
Generation, Proc. European Design and Test Conference, 1994, pp. 31-37

[5] A. Fauth, M. Freericks, A. Knoll: Generation of Hardware Machine Models from Instruction Set
Descriptions,Proc. 6th IEEE Workshop on VLSI Signal Processing, 1993, pp. 242-250

[6] P. Marwedel, W. Schenk: Cooperation of Synthesis, Retargetable Code Generation and Test
Generation in the MIMOLA Software System, European Design and Test Conference, 1993, pp.
63-69

[7] R. J�ohnk, P. Marwedel: MIMOLA Reference Manual V 3.45, Technical Report No. 470, available
from: University of Dortmund, Dept. of Computer Science, 44221 Dortmund, Germany

[8] L. Nowak, P. Marwedel: Veri�cation of Hardware Descriptions by Retargetable Code Generation,
Proc. 26th Design Automation Conference, 1989, pp. 441-447

[9] P. Hil�nger: SILAGE: A language for signal processing, Proc. CICC, 1985

VLSI Signal Processing 94, 0-7803-2123-5/94 $04.00 c
1994 IEEE 9

jH(j!)j

2
-p

2
-p- 0 pp

......

..............

..
...................

..
........
.........
.......
.......
........
......
.......
.......
.......
.......
......
.......
.......
......
........
.......
......
.......
.......
........
.......
.......
.......
........
.......
.......
..........
...

...................
.. !

FIR-Filter:

jH(j!)j

2
-p

2
-p- 0 pp

......

..............

..
...............

...........
...........
...........
.........
..........
..........
........
.........
........
.........
........
.........
........
........
.........
........
.........
.......
.......
........
.......
.......
.........
........
.........
........
..............

.. !

IIR-Filter:

Figure 3: Filter transmission functions

.................

...................................

q

q

q

q

...........
..........
...........
.

...........
..........
...........

.

................

................

................

.................................
.......
........
.......
....

................

..............
..

..

..............
..

....................

..............
..

................................

................

..

..............
..

................

..

..............
..

......

..........

0 inl, inr

outl, outr

IW

PC

adr

s1

s2

m

sumdata

coef

ACU

RAM

ROM

MUL

ADD CLP

clpres

base

offset

mod

Figure 4: Target architecture for �lter application

