
1

OSCAR: Optimum
Simultaneous Scheduling,
Allocation and Resource
Binding Based on Integer

Programming

Birger Landwehr, Peter Marwedel,

Rainer D�omer

Lehrstuhl Informatik XII

University of Dortmund

Report No. 484

April 1994

2

Abstract: In this report we describe an IP-model based high-level synthesis system. In contrast

to other approaches, the presented IP-model allows solving all three subtasks of high-level synthesis

(scheduling, allocation and binding) simultaneously. As a result, designs which are optimal with

respect to the cost function are generated. The model is able to exploit large component libraries

with multi-functional units and complex components such as multiplier-accumulators. Additionally,

the model is capable of handling mixed speeds and chaining in its general form. Applying algebraic

transformations helps to exploit underlying component libraries more e�ciently than other HLS-

systems1.

1This work has been partially supported by ESPRIT project BRA 6855 (LINK).

Contents

1 Introduction 5

2 Related work 7

3 Design ow in the OSCAR system 9

4 IP-model based high-level synthesis 13

4.1 Integrated Scheduling, Allocation and Binding : 13

4.1.1 Binding model : 13

4.2 Constraints : 14

4.2.1 Operation assignment constraints : 14

4.2.2 Resource assignment constraints : 18

4.2.3 Precedence constraints : 19

4.2.4 Chaining Constraints : 19

4.2.5 Timing constraints : 20

4.3 Cost function : 21

5 Intelligent library component selection & management 23

5.1 Overview about required libraries : 23

5.2 Dataow-/ Controlow Speci�cation : 24

5.3 Analysis of the data ow graph : 26

5.3.1 Operator extraction : 26

5.3.2 Improving the applicability of components by algebraic transformations : : : : 27

5.3.3 Handling complex expressions : 29

3

4 CONTENTS

5.3.4 Implication rule based component representation : : : : : : : : : : : : : : : : : 32

5.3.5 Extending the applicability of components : 35

6 Combining HLS and intelligent component selection 39

6.1 Interface to high-level synthesis : 39

6.1.1 Component matching : 39

6.1.2 Equation generation : 39

6.1.3 Generating the control-step-list : 39

6.2 Postprocessing : 40

6.2.1 Netlist generation : 40

6.2.2 FSM-description generation : 40

6.2.3 The role of COMPASS in the HLS-System : 40

7 Experimental results 43

7.1 5th-Order Elliptical Wave Filter : 43

7.2 Di�erential Equation Solver : 45

7.3 Optimization of the Di�erential Equation Solver : 47

8 Conclusion and future research 51

Chapter 1

Introduction

During the recent years, there has been an ever-increasing demand to speed up the design cycles for

the design of electronic systems. This demand is caused by time-to-market requirements for products

in this area. At the same time, there has been an increasing need to achieve for correctness by

construction.

Due to these driving forces, synthesis techniques are now being used for the design of many electronic

products. Currently, logic synthesis and synthesis of �nite state machines are the most widely em-

ployed techniques. Unfortunately, these techniques cannot be used for the design of e�cient systems

containing data paths. The design of such systems is the goal of the various approaches to high-level-

synthesis. Despite signi�cant e�orts by researchers in the area, high-level synthesis is still hardly used

in industry. A major reason for this is the ine�ciency of current high-level synthesis systems. This

ine�ciency has several reasons. We believe, the two most important reasons are

1. the partitioning of algorithms for high-level synthesis into algorithms for solving the three sub-

tasks (scheduling, allocation and binding) independently. However, these subtasks are related

and therefore this approach potentially results in inferior designs.

2. library mapping { in contrast to its popularity for logic synthesis { is still very poor.

In this report, we will describe a method which potentially improves the e�ciency of high-level syn-

thesis signi�cantly by avoiding these two sources of ine�ciencies. The synthesis system based on our

method is called OSCAR (optimum simultaneous scheduling, allocation and resource binding).

In the following chapter, we classify our work with respect to previous publications. A brief overview of

the entire high-level system follows in chapter 3. The underlying IP-model as the basis of our synthesis

method will be described in chapter 4. Thereafter, in chapter 5 we present a method for intelligent

library component in combination with an e�cient library management. Experimental results can be

found in chapter 7. Chapter 8 concludes this report with a summary and future research topics.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

Almost all early approaches to high-level synthesis partitioned the problem into subproblems for

scheduling, allocation and binding. This includes the work by Tseng and Siewiorek [ST83], Marwedel

[Mar86] and others (see [MPC90] for a survey). This work helped �nding solution methods for these

subproblems. Later it was recognized, that these subproblems should be solved simultaneously in

order to avoid suboptimal results.

The work of Gebotys is especially stimulating in this respect, because it is based on a formal integer

programming (IP)-model, which has the potential of solving several subproblems concurrently. The

approach to scheduling in this work is an improvement over an earlier model by Hwang [HLH91].

Early work by Gebotys into this direction [GE91] did not include binding. Recently, the two-index

model in [GE91] has been extended into a three index model (see e.g. [GE93]). The three-index

model has the potential of handling advanced features such as pipelining, mixed speeds and wiring

optimization. Unfortunately, the latter is not described in [GE93].

Other approaches which are based on IP-models include the following:

Library mapping (see also Dutt [Dut88]) is emphasized in a paper by Achatz [Ach93], integrating

scheduling and allocation. If only scheduling and allocation have to be integrated and if additional

constraints are met, the 0/1 integer program used by Gebotys can be replaced by a more e�cient

general integer problem [WMGB93].

Allocation and assignment have been integrated for example by Rim and Jain [RJL92].

In addition to having the potential for solving subproblems concurrently, IP-models have the advantage

of being formal models of high-level synthesis. This makes formally checking the correctness of high-

level synthesis easier.

Now that a considerable amount of heuristics have been published, we believe that it is the time to

investigate more formal models.

Currently available IP-models, however, do still have major limitations. For example, currently pub-

7

8 CHAPTER 2. RELATED WORK

lished IP-models do not allow chaining in its general form. For all existing algorithms, operations to

be chained must be manually replaced by a single, more powerful operation before actual synthesis is

started. This means, these algorithms cannot automatically decide whether or not two operations are

to be chained.

Moreover, existing algorithms usually consider simple libraries containing mostly adders and multipli-

ers. They are not capable of exploiting e�cient complex components such as multiplier-accumulators

and many of them are unable of selecting components with di�erent speeds.

Chapter 3

Design ow in the OSCAR system

The OSCAR system (see �g. 3.1) essentially consists of two parts: the actual high-level synthesis

kernel which is based upon an IP-model (left part) as well as the library component selection and

management (right part).

The input speci�cation of our target design consists of two separate descriptions: the behavioral

description based on a VHDL subset and the design speci�cation. The latter especially contains user

de�ned timings and manual bindings of operations to control steps and/or component instances.

After reading the two input descriptions, the internal control- and data-ow graph will be created.

Our data structure is based upon a version of the Assignment Decision Diagram [VC92][HCG92])

which is extended in order to handle additional timing information (TADD).

The next major task consists in selecting suitable library components and to �nd an optimal coverage

(in the sense of costs) concerning the data-paths. We have divided this task into 5 basic steps:

1. Extracting primary operators (by the DFG Analyzer): all arithmetical and relational operators

in the TADD are extracted and saved in the operation list. Constants as arguments are saved

together with the related operators as well. This simpli�es the recognition of expressions which

can be simply implemented by interconnect (e.g. consider that expression x * 2 can be simply

implemented by an o�set in the wiring pattern).

2. Extracting secondary (derived) operators (by the DFG Analyzer): Each operation is checked

whether it can be transformed to a simpler one. For example, a multiplication by 2 can be

transformed to either (a + a) or (a shl 1). Obviously, both derived operations are simpler and

cheaper (in their realization) than the original multiplication. Such applicable transformations

are stored in the external algebraic rule library. For this example, the operation list contains

now the add and shift operation together with the previously extracted multiplication.

3. Extracting algebraic expressions (by the DFG Analyzer): In the next step, we will try to �nd

expressions in the TADD which can be implemented by single components. We call such expres-

9

Figure 3.1: System overview

11

sions macro-operations. Such macro-operations will be also saved in the operation list.

4. Component generation: Cell libraries usually consist of data-path cells and simple standard cells

like gates etc. Data-path cells are often realized by cell compilers which generate components of

the required bit width on demand. We have divided this compilation process into two phases:

(a) Phase I (by the Component Generator): In the �rst phase only the functional view of n-bit

components is generated. This view is su�cient for component selection since only the

actual behaviour is required at this time. The generation of the relating component netlists

is task of phase II.

(b) Phase II (by the underlying CAD tool Compass): The component netlists are only generated

on demand in the case of a component instantiation. Consequently, we can move this phase

to the end of the entire synthesis process.

5. Component library extension (by the Library Extender): The component library contains all

those components which are capable to execute at least one operation of the operation list.

Since components were specially generated for a certain operation, the utilization for other

operations is generally poor. The utilization can be optimized by applying algebraic rules to the

component's functional description.

In the next step an optimal matching between components and the TADD is determined. TheMatching

Tool can be considered as connecting link between the component selection part and the actual HLS

part. It generates a list of possible and useful matches between available components and (macro-)

operations.

Now, all required equations can be generated by the equation generator and passed to the IP-solver

[Ber92]. The synthesis result { a list of integer variables { is transformed to the so-called control-

step-list which is used as input for netlist generation and for the controller description. Then, the

controller is synthesized and mapped to the target technology by the underlying CAD tool. Finally,

all netlists of required components are generated (phase II of component generation).

12 CHAPTER 3. DESIGN FLOW IN THE OSCAR SYSTEM

Chapter 4

IP-model based high-level synthesis

4.1 Integrated Scheduling, Allocation and Binding

4.1.1 Binding model

High-level synthesis basically has to establish bindings between operations j, control steps i and

resources k. Such bindings can be represented by binary decision variables. Triple-indexed variables

are required for integrating scheduling, allocation and binding.

xi;j;k =

8<
:

1; if operation j will be started on resource instance k at control step i

0; otherwise

Throughout this text, we will use index k as a name for a particular component. K will be the index

set (value range) of these names.

Each component k will be an instance of a component type contained in the component library. We will

use index m to denote a certain component type and M to denote the set of names of all component

types. Function type is assumed to return the component type of a certain component instance.

Furthermore, we will use index j to uniquely denote an operation contained in the TADD. J will be

the set of all j's. More precisely, each j corresponds to an operation instance. Each j is of a certain

type, e.g. a particular operation in the TADD may be an instance of operation type add or multiply.

We will use g to denote a certain operation type and G to denote the set of all operation types.

Function optype(j) is assumed to return the operation type of a certain operation instance j.

Table 4.1 contains the used mathematical symbols.

Variables xi;j;k have to be computed by the synthesis system. This will assign a control step i and a

component instance k to each operation instance j.

All combinations of i, j and k for which no solution is feasible will not be used as subscripts of x. For

13

14 CHAPTER 4. IP-MODEL BASED HIGH-LEVEL SYNTHESIS

I � IN0 the set of control steps

i 2 I control step i 2 I

J � IN0 the set of operations in the TADD

j 2 J operation j 2 J

K � IN0 index set of resource instances

k 2 K resource instance k 2 K

M � IN0 index set of existing resource types

m 2M resource type m 2M

R(j) range of possible control steps for operation j

Gm operation types that can be executed by m

kmax maximum number of all available instances

`(j; k) latency of component k for operation j

type(k) component type of component instance k

G � IN0 the set of operation types

g 2 G operation type g 2 G

optype(j) operation type of operation instance j

C(j; k) delay for executing j on k

C(j) = maxk C(j; k) maximum of delays for executing j on k

Table 4.1: Mathematical notation

example, if k cannot perform operation j, the corresponding decision variables are never generated in

order to reduce the number of variables and relations.

4.2 Constraints

4.2.1 Operation assignment constraints

Each component type m is assumed to be able to execute a set Gm of operation types. E.g. a certain

component type may be able to perform additions and multiplications while others are only able to

perform either of the two.

Our �rst set of constraints now models the fact that each operation j should be started on exactly

one resource instance of the appropriate type. Furthermore, each operation j should be started in a

control step i which lies within the range R(j) of feasible control steps. R(j) is the range of control

steps between the earliest (ASAP) and latest (ALAP) control step feasible for operation j. These

conditions are modelled by the following relations:

4.2. CONSTRAINTS 15

8j 2 J :
X

i2R(j)

X
k2K

j executable on k

xi;j;k = 1 (4.1)

For each j, the sum over k includes only instances for which the relation \j executable on k" holds.

This ensures that operations will be mapped to appropriate components. Relation \j executable on

k" can be de�ned as:

j executable on k () optype(j) 2 Gtype(k) (4.2)

Note that relation \j executable on k" is more general than the corresponding implicit relation in

[GE91]. For each k, we have to know the corresponding type m before solving our synthesis problem.

To model this knowledge, we are using a function called type. For each potential instance k, function

type has to return the corresponding resource type. Without loss of generality, we require type to be

a monotone step function of k. Before synthesis, a su�ciently large number of potential instances is

automatically computed for each type m.

In order to model the fact that for a certain potential instance k, the instance may be either selected

or left out of the �nal design, we introduce decision variables bk:

bk =

8<
:

1; if instance k is selected

0; otherwise

A simple observation can be used to speed up the search for optimal designs: if type(k) = type(k+1),

then the solutions bk = 1; bk+1 = 0 and bk = 0; bk+1 = 1 are equivalent, except for renaming of resource

instances. In order to generate only one of these equivalent solutions, we require that

8k : if type(k) = type(k+ 1) then bk � bk+1 (4.3)

without loss of generality.

Experimental results have shown that this constraint can reduce the execution time of the IP-solver

by a factor of 10 - 50 even for small examples!

This redundancy is not eliminated in other models [Gebotys93].

Components which we have considered so far are able to perform certain functions. Results computed

by these functions can be described in terms of expressions involving operators, input ports and

constants. Up till now, high-level synthesis systems have only considered expressions involving a single

16 CHAPTER 4. IP-MODEL BASED HIGH-LEVEL SYNTHESIS

operator, e.g in a + in b. In the following, we will call components computing those expressions

simple components.

Recent component libraries, however, do contain components such as multiplier-accumulators (MACs),

which compute expressions like (in a * in b) + in c. These components correspond to complex

gates in logic synthesis and we will therefore call these components complex components. Complex

components allow very e�cient implementations, but high-level synthesis systems in general are not

capable of exploiting them.

One of the goals we set for OSCAR is to decide automatically whether to map sets of adjacent

operations to several simple components or to a single complex component.

To this end, we de�ne macro-operations1 to be a set of adjacent operations which can be executed by

at least one component type. Let Y be the set of all such macro-operations.

Constraint (4.4) ensures that either all operations contained in a macro-operation y 2 Y are assigned

to separate simple components or to a single complex component.

8j 2 J :
X

i2R(j)

X
k2K

j executable on k

xi;j;k +
X
y2Y :
j2y

X
i2R(y)

X
k2K

y executable on k

xi;y;k = 1 (4.4)

If no complex components are employed, the right sum of (4.4) becomes 0. In this case the constraint

reduces to the standard operation assignment constraint (4.1).

Additionally, constraint (4.5) restricts the assignment of macro-operations to at most one complex

component:

8y 2 Y :
X

i2R(y)

X
k2K

y executable on k

xi;y;k � 1 (4.5)

Before calculating the IP-model, a matching between the system and component behavior must be

performed in a preprocessing phase. Figure 4.1 illustrates the matching between an DFG (elliptical

wave �lter [KWK85]) and a MAC represented by an expression tree.

The MAC can also be employed to perform only one of the two operations by applying neutrals to

the input lines according to the selected operation. Due to this, a component library which consists

of only this component is su�cient for synthesizing this benchmark.

The described technique of compiling operations to macro-operations in order to exploit complex

components can be also applied for module sharing: a set of data-independent operations are allowed

to be assigned to the same component instance at the same control step if the following presumptions

are ful�lled:

1Note that macro-operations y 2 Y can be handled in the following constraints just as conventional operations j 2 J

4.2. CONSTRAINTS 17

+

+

+

*

+

+

+

*

+

+

*

+

+

+

+

+

+

+

+

*

+

+

*

+

+

+

*

+

+

*

+

+

*

+1

2

3

4

5

6

7

8

9

10

11

12

13

14

2

2

2

2

2

2

2

2

a b

+

c*

f

X

+

out

in1 in2 in3

Figure 4.1: Matching module and system behavior (elliptical wave �lter)

- the number of port lines must be at least as large as the sum of argument bitwidths

- a su�cient number of separation bits between the arguments must be inserted to avoid interac-

tions between the operations

- all unused input lines of the module must be don't care-extendable2

These requirements are ful�lled by several function units like the n-bit adder shown in �gure 4.2.

A2 A1 B2 B1

C1C2

4

4 4

A B

C

n-bit adder

1 1

1

0 0

(A1+B1)
carry

k k k k

k k

Figure 4.2: n-bit adder

Such components can be employed to perform two data-independent additions which are de�ned on

2the required information is speci�ed in the function attribute library, see chapter 5.1, 5.3.

18 CHAPTER 4. IP-MODEL BASED HIGH-LEVEL SYNTHESIS

k bits (with k+ k+ 1 � n). One separation bit s = 0 has to be inserted between both argument pairs

in order to avoid carry propagation.

While generating the netlist, the resulting output C1xC2 (x represents the carry of A1+B1) must be

split into two bit vectors C1 and C2.

Another extension of the operation assigment constraint deals with alternative DFG versions. We

obtain such alternative DFGs by applying algebraic transformations to an original DFG. The original

DFG and all derived DFGs are equivalent and must be considered as mutual exclusive during synthesis

(see chapter 5.3.2).

We de�ne D as set of all original DFGs d in the TADD. The set V (d) contains all alternative versions

v of one DFG d 2 D. The decision variable ud;v describes whether or not a certain version v of DFG

d is selected in the �nal design:

ud;v =

8<
:

1; if version v of DFG d is selected

0; otherwise

For each DFG d, the mutual exclusiveness of alternative versions is formulated by constraint (4.6).

8d 2 D; 8v 2 V (d); 8j 2 J :
X

i2R(j)

X
k2K

j executable on k

xi;j;k +
X
y2Y :
j2y

X
i2R(y)

X
k2K

y executable on k

xi;y;k = ud;v (4.6)

Constraint (4.7) models the fact that exactly one version v of a certain DFG p must be selected.

8d 2 D :
X

v2V (d)

ud;v = 1 (4.7)

4.2.2 Resource assignment constraints

We assume that all components are only able to start a limited number of operations. More precisely,

we assume that component k is able to start a new operation j every `(j; k) control steps. `(j; k) is

called the component latency. This restriction is modelled by the following relations:

8i 2 I : 8k 2 K :
X
j2J

j executable on k

i+`(j;k)�1X
i0=i

i2R(j)

xi0;j;k � bk (4.8)

A naive approach would use 1 as the constant at the right hand side of this equation. With the current

approach we avoid solutions in which operations are assigned to non-selected instances.

4.2. CONSTRAINTS 19

Summing up into forward direction (from i0 = i to i+ `(j; k)� 1) has the advantage of replacing the

two constraint sets (2) and (13) in [GE93] by a single constraint set.

4.2.3 Precedence constraints

Data dependency relations are explicitly represented in the TADDs. For data-dependent operations,

the following constraints have to be met:

8j1 � j2 : 8i 2 R(j2) \ (R(j1) + C(j1)� 1) :

X
k

j2 executable on k

X
i2�i�chain(j1;j2)

i22R(j2)

xi2;j2;k +
X
k

j1 executable on k

X
i�(C(j1;k)�1)�i1

i12R(j1)

xi1;j1;k � 1 (4.9)

C(j1; k) denotes the delay of operation j1 on component instance k. This notation allows di�erent

execution times of a certain operation on di�erent function units. It can be shown that this approach

is su�cient to guarantee correct solutions even in the case of components with mixed speeds.

Parameter chain(j1; j2) describes a possible assignment of both operations j1; j2 to the same control

step presuming that suitable components are available. This parameter should be calculated for all

operation pairs in a preprocessing step.

If chain is set to 0, data-dependent operations will be assigned to di�erent control steps. In this case,

the support of chaining is limited to manually created combined operations. This is the approach

taken in [GE91].

If chain is set to 1, data-dependent operations are allowed to be assigned to the same control step.

This case corresponds to chaining in the more traditional sense.

4.2.4 Chaining Constraints

In case that two or more data-dependent operations are assigned to the same control step the sum of

real execution times must be less than the user de�ned cycle time timecycle .

We de�ne a new relation

j1 �� j2 () j1 � j2 ^

9k1 : j1 executable on k1;

9k2 6= k1 : j2 executable on k2 :

time(j1; k1) + time(j2; k2) + `phy � timecycle

20 CHAPTER 4. IP-MODEL BASED HIGH-LEVEL SYNTHESIS

Constant `phy describes a system dependent latency caused by interconnect delays. Further, we de�ne

a new set CHAINS. Each ch 2 CHAINS is the longest chain j1 � � � � � jn (1 : : :n are local indices) in

the data ow graph with:

1. operations j1 to jn are data dependent: 8ji; i 2 f1; : : : ; n� 1g : ji � ji+1

2. at least two operations ji; ji+1 2 ch can be executed in the same control step: ji �� ji+1

3. ch is maximal: 6 9 j0 : j0 �� j1 ^ 6 9 jn+1 : jn �� jn+1

CHAINS :=
[

ch

ch := fj1; : : : ; jn j ji 2 J ^ 8ji; i 2 f1; : : : ; n� 1g : ji �� ji+1g

Constraint (4.10) restricts the maximum number of chained operations j 2 ch per control step. In

combination with constraint (4.9) only coherent operator chains are allowed to be assigned to the

same control step. The maximum length of each chain is restricted by timecycle � `phy

8ch 2 CHAINS : 8i 2 I :
X
j2ch:
i2R(j)

X
k2K

j executable on k

time(j; k) � xi;j;k � timecycle � `phy (4.10)

Figure 4.3 illustrates the e�ect of chaining for simple expression tree. A cycle time of 100ns and

latency of 10ns restrict the total execution time of all chained operations to at most 90ns. The left

side of the �gure represents two possible solutions with maximum number of chained operations in

one control step.

In this example, ch1 consists of fj1; j3; j4g because of j1 � j3 � j4 and j1 �� j3; j3 �� j4. The other

set ch2 is represented by fj2; j3; j4g. Set CHAINS consists of fch1; ch2g.

In case of solution I, constraint (4.10) is ful�lled only for the �rst two elements of ch1 and ch2. The

alternative solution shown underneath consists of the entire set ch1. The additional assignment of

operation j2 2 ch2 in the same control step would violate constraint (4.10).

4.2.5 Timing constraints

Models for timing constraints can be taken over from [GE91]. For example, if two operations j1 and

j2 should be separated by T control steps, then the following relations should hold:

8i :
X
k

j1 executable on k

xi1;j1;k +
X
k

j2 executable on k

X
i2 6=i+T
i22R(j2)

xi2;j2;k � 1; i1 2 R(j1) (4.11)

4.3. COST FUNCTION 21

j1
j3

j2

j1

j3

j2

j4

j4

50 ns20 ns

30 ns

40 ns

time = 100 nscycle

lphy = 10 ns

n+1

n+1

cs n

cs

cs n

cs

j1

j3

2j

j4

jn

Solution II

Solution I

Figure 4.3: Operation chaining

Minimum timing constraints3 can be represented by the following relation, respectively:

8i :
X
k

j1 executable on k

X
i1�i

i12R(j1)

xi1;j1;k +
X
k

j2 executable on k

X
i2�i+(C(j1;k)�1)+T

i22R(j2)

xi2;j2 ;k � 1 (4.12)

4.3 Cost function

One of the objectives of the current paper is to show how interconnect optimization can be integrated

into a uni�ed model for scheduling, allocation and binding. Therefore, the cost function has to include

terms describing interconnect. The following cost function ful�lls this requirement:

X
m2M

(cm �
X
k2K

type(k)=m

bk) +
X
k1;k2

ck1;k2 � wk1;k2 (4.13)

with

wk1;k2 =

8<
:

1; if component k2 is connected to component k1

0; otherwise
(4.14)

The �rst term describes the cost of functional units. cm is the cost per instance of component type

m.

The second term describes the cost of the interconnect. ck1 ;k2 is the cost for interconnecting k1 to k2.

Due to the lack of layout information, ck1;k2 is usually set to the bitwidth.

3in order to formulate maximum timing constraints exchange the � resp. � relations of the sum boundaries

22 CHAPTER 4. IP-MODEL BASED HIGH-LEVEL SYNTHESIS

A naive implementation for computing wk1;k2 would contain terms of the form xi;j1;k1 � xi;j2;k2 , which

are quadratic in x. The corresponding quadratic assignment problem can be avoided by using a trick

published by Rim, Jain and De Leone [RJL92]. The trick consists in de�ning wk1;k2 as:

8j1 � j2 : wk1;k2 �

0
@ X
i12R(j1)

xi1;j1;k1 +
X

i22R(j2)

xi;j2;k2

1
A� 1 (4.15)

wk1;k2 � 0 (4.16)

If both variables xi;j1;k1 and xi;j2;k2 are set to 1, wk1;k2 also becomes 1. In the case that only one of

both variables takes the value of 1, wk1;k2 becomes 0. Constraint (4.16) avoids negative values if both

variables are set to 0. Consider that a variable wk1;k2 is only created if both j1 and j2 can be executed

on instances k1 resp. k2. With this trick, the cost function is still a linear function in x.

Hence, algorithms for solving (linear) integer programming problems can be used to compute optimal

bindings.

Chapter 5

Intelligent library component selection

and management

In the last chapter we described the underlying IP-model in detail. However, the actual high-level

synthesis { realized by the subtasks scheduling, allocation, binding { is only one part in the OSCAR

system. The other part concerns the intelligent component selection and library management. In this

chapter now, we deal with this important part.

5.1 Overview about required libraries

The selection and management of components requires a large amount of information about supported

operations inclusively their attributes, rules for transforming these operations or entire expressions to

equivalent ones and the availability of suitable components. The OSCAR system makes use of four

libraries:

The function attribute library (FAL) contains attributes of supported operators and functions. Syn-

thesis fails, if a used function is not de�ned in the FAL or has no synthesizable VHDL-body.

The algebraic rule library is employed to transform algebraic expressions to equivalent ones.

The cell library contains cells which are speci�ed by their ports and their internal structure. In OSCAR,

we need an additional representation of their behavior together with area and timing information. Both

speci�cations, the structure as well as the functional speci�cation are stored in two di�erent views.

1. Functional view: The functional description contains the behavioral cell description inclusively

several attributes like cell area, timing etc. Since this view is fundamental to generate both the

functional and structural component description it must contain additional compiler information

as well. This information refers to available bit widths and compiler directives.

2. Layout view: This kind of representation is very CAD tool dependent and has no importance for

23

24 CHAPTER 5. INTELLIGENT LIBRARY COMPONENT SELECTION & MANAGEMENT

the actual selection of library components. A description of this view is omitted in this report.

The component library contains all available components in the required bit widths. Since it is unnec-

cessary to compile all potentially employed components of di�erent bit widths in advance, we divided

this library into two views as well :

1. Functional View: The functional description is based on implication rules [Mar90]. For example,

an ALU may be capable to perform an addition on the ports a and b controlled by a certain

control signal c. We describe its behavior by

ALU (a, b, `0', f) -> a + b

The left side of this implication is represented in the way of a conventional function call. The

arguments (in this example a, b, c = `0', f) correspond to the signals which are implemented

as interconnects in the �nal netlist. The right side of the implication consists of the algebraic

expression to be performed for this function call.

Additional entries in this library inform about port names, area and the timing.

2. Netlist view: The compilation of bit slices will be performed on demand by the underlying CAD

tool at the end of the synthesis process.

5.2 Dataow-/ Controlow Speci�cation

For the internal representation of the data and control ow, Assign Decision Diagrams (ADD) are

employed in our synthesis system (see �gure 5.1). This data structure, introduced by CHAIYAKUL,

GAJSKI et al. in [VC92][HCG92] combines the data- and control-ow and minimizes the syntactical

variance in behavioral descriptions at same time. \Syntactical variance" is understood as the possiblity

to describe a certain hardware structure by di�erent behavioral descriptions.

Figure 5.1 shows the basic structure of an ADD. An ADD represents the maximum parallel form of

a given behavioral description. This means, all operations, which can be performed in parallel occur

on di�erent data-ow graphs. However, di�erent operators can be mapped to the same function units

depending of the scheduling, allocation and binding steps in the synthesis process.

The representation of an ADD consists of the following parts:

� Assignment Value Part: This graph consists of read nodes containing the input values and data

ow graphs (represented as ovals in �gure 5.1). Each data ow graph (DFG) corresponds to

one basic block occuring in the input description. Nodes in the DFG correspond to operators

(operator nodes), edges between operator node represent the data dependencies. The results of

the single DFGs are used as inputs to the assignment decision nodes (ADNs). Each ADN is

controlled by assigment conditions and writes the selected DFG result to the write node.

Figure 5.1: Assignment Decision Diagram

26 CHAPTER 5. INTELLIGENT LIBRARY COMPONENT SELECTION & MANAGEMENT

� Assignment Condition Part: The selection of a certain result of DFGs within the assignment

value part depends on conditions occuring in the behavioral description. Such conditions can

be formulated by statements like \IF <condition> THEN <expr1> ELSE <expr2>". The

assignment condition part represents the evaluation of condition to select either the result of

expr1 or expr2 by the ADN.

� Assignment Decision Part: The assigment decision nodes (ADNs) select one of several results

coming from in the assignment value part. The selection is controlled by the mutually exclusive

inputs from the assignment condition part.

� Assignment Target: The output of each ADN is passed into the write node and thus can be used

as input to the ADD in subsequent control steps.

In addition to the information about the data and control ow, the ADD must be extended to include

timing constraints. We call this extended representation TADD. Assuming that results of time con-

strained operations are saved in registers, we can insert additional edges between the read and write

nodes. These edges are labelled with intervals representing the minimum and maximum timing.

5.3 Analysis of the data ow graph

In sections 5.1 and 5.2 we gave a short overview about the employed libraries in the OSCAR system

and the CDFG representation as well. Now we want to follow the path in the design ow, beginning

with the behavioral input description down to the �nal netlist.

5.3.1 Operator extraction

After parsing the behavioral description and the additional synthesis speci�cation by the front end the

TADD will be generated. The DFG analyzer extracts operators inclusively their bit widths from the

DFG. We call such operators primary operators. By way of contrast, we obtain secondary operators

by applying algebraic rules to primary or other secondary operators.

In the following, we will describe the component selection process on the basis of a simple example:

ARCHITECTURE behavior OF example IS

signal a, b, f: bit_vector (15 downto 0);

BEGIN

f <= (a * 2) + (b * 2);

END behavior;

5.3. ANALYSIS OF THE DATA FLOW GRAPH 27

The arithmetic expression shown in this example consists of the two operators + and * whose attributes

are stored in the function attribute library. We briey describe the attributes of the add-operation:

FUNCTION +

ARGUMENTS 2

COMMUTATIVITY TRUE

ASSOCIATIVITY TRUE

NEUTRALS X, 0

EXTENSIONS DONT CARE, DONT CARE

RESULT WIDTH MAX (#1, #2) + 1

The �rst entry declares the operator name (+) followed by the number of arguments. The entries

COMMUTATIVITY and ASSOCIATIVITY indicate that an expression potentially has alternative represen-

tation forms (e.g. a + b = b + a, (a + b) + c = a + (b + c)). Neutrals may be applied to the

ports in order to perform the identity function f = x. Due to the commutativity in this case it is

su�ent to specify only one valid entry { others can be simply derived (here: applying the neutral

"0": f = x , f = x + 0 = 0 + x). In order to execute operations on components with larger bit

widths than the relating arguments, additional inputs must be applied to the remaining port lines.

Valid entries are the SIGN-/ONE-/ZERO-/NO- extension as well as DONT CARE. NO-extension means that

the bit widths of the component and the corresponding operator must be identical. RESULT WIDTH is

required to determine the bit width of the result dependent of its argument bit widths. Due to the

carry bit, the result width of an addition is always MAX (#1, #2) + 1 (#n means the bit width of the

n-th argument).

After extracting the two primary operators ("+" and "* 2") from the DFG the operation list consists

of the following entries:

(* [15:0] 2 [15:0])

(+ [15:0] [15:0] [15:0])

Each entry consists of the operator identi�er, the bit width of the calculated result and the bit widths

of the arguments. Constants, belonging to the analyzed operation will be also saved in the operation

list.

The operation list may also contain entire expressions. In this case, arguments represent the subex-

pressions.

5.3.2 Improving the applicability of components by algebraic transformations

We essentially exploit algebraic transformations in order to extend the applicability of available func-

tion units. Due to this, we can employ restricted component libraries even in cases in which simple

Figure 5.2: Extracting primary operators

5.3. ANALYSIS OF THE DATA FLOW GRAPH 29

component selection methods could fail or lead to inferior results. Algebraic rules are represented in

the following format:

(<left-expr>) -> (<right-expr>)

Both the left and the right side of each rule are represented in pre�x notation.

Continuing or example, we are now able to replace (a * 2) (resp. (b * 2)) using the algebraic

transformations:

(* a 2) -> (+ a a)

(* a 2) -> (shl a 1)

Consequently, the operation list can be extended by the entries ("+" [15:0] [15:0] [15:0]) and

(shl [15:0] 1 [15:0]) (�g. 5.3).

5.3.3 Handling complex expressions

Up to now, we treated complex expressions by dividing them into simple operations. However, li-

braries frequently contain complex components like MACS, so it seems to be sensible to employ such

components in their entirety.

Figure 5.4 represents the analysis process taking information about available components into account.

The exemplary component library contains an AMD 2901 like ALU which is capable to perform an

add- and a shift-operation in sequence.

Generally, algebraic rules are not restricted to simple operations. Also complex expressions corre-

sponding to complex components can be described. Rules of this type, like the distributive law

(a * c) + (b * c) -> (a + b) * c

are necessary to perform component selection exceeding simple operations. In combination with the

rule a * 2 -> a shl 1, the expression (a * 2) + (b * 2) can be transformed into (a + b) shl 1

which can be computed now by a single complex component.

At the end of the DFG analysis, the operation list contains all primary operators, operators derived

by algebraic transformations (secondary ops.), and �nally expressions executable in their entirety on

complex components (macro-operations).

Continuing our example (see �g. 5.4) the �nal operation list consists of the following entries:

(* [15:0] 2 [15:0])

(+ [15:0] [15:0] [15:0])

(shl [15:0] [15:0] 1)

Figure 5.3: Extracting secondary operators

Figure 5.4: Selecting complex components

32 CHAPTER 5. INTELLIGENT LIBRARY COMPONENT SELECTION & MANAGEMENT

5.3.4 Implication rule based component representation

The component library contains the complete component speci�cation including the interface declara-

tion as well as the behavioral description. Due to this, a complete structural component description,

based on a layout or netlist representation can be obtained. Consequently, the component library is

well suited as interface to arbitrary component libraries, since all information about ports, behavior,

timing and areas are included.

We give a short overview of the internal representation on the basis of a behavioral VHDL component

description (see �g. 5.5).

COMPONENT addsub6x16 1

CELL NAME vdp1asb001

AREA 444416

PORTS (a [15:0], b [15:0], c [1], f [15:0])

ACTIVATION ((a [15:0], b [15:0], `0', f [15:0]))

-> (= f [15:0] (+ a [15:0] b [15:0]) 140 140)

((a [15:0], b [15:0], `1', f [15:0]))

-> (= f [15:0] (- a [15:0] b [15:0]) 140 140)

The �rst two entries "COMPONENT" and "CELL NAME" represent the component name and its underlying

cell. The entry "AREA" measures the required area in �2. The port declaration consists of the port

name together with the corresponding bit width. The functional description of each component is

speci�ed by a set of so-called implication rules: a certain application of (control) signals to the inports

implies a function to be performed.

This way of representing component behavior by implication rules is described in the following sections.

5.3. ANALYSIS OF THE DATA FLOW GRAPH 33

Functional component description based on implication rules

The following VHDL description represents the behavior of a simple ALU:

ENTITY alu IS PORT (a, b : IN bit vector (15 Downto 0);

c : IN bit;

f : OUT bit vector (15 Downto 0));

END alu;

ARCHITECTURE component descriptions OF alu IS

BEGIN

WITH c SELECT

f <= a + b WHEN `0',

a - b WHEN `1';

END component description;

Figure 5.5: VHDL-description of an adder-subtractor

Its behavior can by simply described by the following implications rules:

alu (a, b, `0', f) -> f = a + b

alu (a, b, `1', f) -> f = a - b

<|||| `can be implemented by'

Signals on the left side correspond to the port declaration occuring in the ENTITY description.

Arguments on the right side correspond to the port names and are used as free variables in the sense

of transformational reasoning.

For each implication of the form <activation> -> <expression> the relation "can be implemented by"

is de�ned, which is determines the required control signals for a given operation. In this example, the

behavior of the component is represented by two implication rules selecting either the addition or the

subtraction.

This representation of multi-functional units can be simply extended to complex components.

The complex component used in our example is capable to compute each of the following expressions

by applying neutrals to several inports:

alu (a, b, c, f) -> f = (a - b) shl c

alu (a, b, 0, f) -> f = a - b

alu (a, 0, c, f) -> f = a shl c

Figure 5.6: Functional component descriptions

5.3. ANALYSIS OF THE DATA FLOW GRAPH 35

Representation of multi cycle operations

Function units, which require more than one cycle to load data and to perform the selected operation

can be described by implications as well. In this case, one component activation consists of several

entries corresponding to single cycles.

The implication below represents a registered adder, which requires two cycles to load data into an

internal register and perform the add operation.

radd ((a, b, '0', X) { load registers, control signal: '0'

(X, X, '1', f)) { add registers, control signal: '1'

-> f = a + b

In the �rst cycle, the internal register is loaded with the external input values, appearing at ports a

and b. Since the internal register is not required for synthesis, it may be hidden to the component

description. In the second control step, both registered values are added and passed to the outport f.

5.3.5 Extending the applicability of components

Up till now, we applied algebraic transformations to the DFGs in order to extend the operation list

by equivalent (macro-)operations. In order to improve the component utilization, we apply algebraic

rules once more to the activation entries in the component library.

We want to describe this procedure on the basis of the ALU the following port and activation speci�-

cation.

PORT: a, b, c, f

ACTIVATION: alu (a, b, c, f) -> f = (a - b) shl c

The algebraic rule library contains the entries:

a shl 1 -> a * 2

(a - b) * c -> (a * c) - (b * c)

Now, we can extend the activation entry by applying the two derived rules

(a - b) * 2 -> (a * 2) - (b * 2)

(a - b) shl 1 -> (a shl 1) - (b shl 1)

The generation of the additional activation entries is the task of the library extender which compares

the right side of each component implication (function to be performed) with the left side of each rule.

The following activations can be generated by applying the speci�ed rules.

Figure 5.7: Extending the applicability of components

5.3. ANALYSIS OF THE DATA FLOW GRAPH 37

PORT: a, b, c, f

ACTIVATION : alu (a, b, c, f) -> f = (a - b) shl c

alu (a, b, c, f) -> f = (a shl 1) - (b shl 1)

alu (a, b,'1',f) -> f = (a - b) shl 2

alu (a, b,'1',f) -> f = (a - b) * 2

alu (a, b,'1',f) -> f = (a * 2) - (b * 2)

alu (a, b,'0',f) -> f = (a - b)

alu (a, 0,'1',f) -> f = (a shl 1)

alu (a, 0,'1',f) -> f = (a * 2)

At the end of of the component section task, we have a complete component library allowing optimal

matches between available function units and DFG operations. The next chapter deals with the link

the actual high-level synthesis and the �nal steps to the netlist.

38 CHAPTER 5. INTELLIGENT LIBRARY COMPONENT SELECTION & MANAGEMENT

Chapter 6

Combining high-level synthesis and

intelligent component selection

6.1 Interface to high-level synthesis

6.1.1 Component matching

The connecting link between the actual IP-model based HLS-part and the component selection part

is realized by the matching tool. It performs a tree-matching between the TADD and the right sides

of implication rules in the component library. The FAL contributes the required function attributes

like commutativity, neutrals etc.

The matching tool creates for each operation a list of suitable components. In case that entire expres-

sions can be mapped to single components, macro-operations are built. The matching process fails if

at least one operation cannot be mapped.

6.1.2 Equation generation

Now, all equations can be generated for the constraints described in chapter 4. For this, the equation

generator demands the information from the TADD and the function attribute library (operation

assignment constraints, precedence constraint, chaining constraint), the list of matched components

by the matching tool (resource assignment constraint) and �nally timing-information from the design

speci�cation (timing constraint).

6.1.3 Generating the control-step-list

The output of the IP-solver representing the synthesis result in combination with the TADD is used

to generate the control-step-list which is required for the netlist generation and controller synthesis in

39

40 CHAPTER 6. COMBINING HLS AND INTELLIGENT COMPONENT SELECTION

the subsequent steps.

For each (macro)-operation, the list contains the assigned control step, the component instance as well

as a certain condition on which the operation will be performed.

6.2 Postprocessing

6.2.1 Netlist generation

The �nal netlist is generated by a traversal of the control-step-list. At this time, the component

instances exist only in form of port declarations. The complilation of the data-path cells as well as

controller synthesis is performed by the underlying CAD system (COMPASS).

6.2.2 FSM-description generation

The controller is speci�ed on the basis of the control step list. Since this representation is independent

of the underlying statemachine synthesis, arbitrary controller description can be generated. The states

of the controller correspond to the control steps, the state transistions to the conditions. The output

function of the state machine correspond to the component activations.

In a subsequent step, the controller description is synthesized and mapped to the target technology

by the underlying COMPASS synthesis tool.

6.2.3 The role of COMPASS in the HLS-System

Our HLS-system expoits capabilities of COMPASS to map modules of the RT level to cells contained

in the supplied cell library. The netlist and statemachine descriptions are passed to COMPASS via

the Logic and ASIC Synthesizer.

The Logic Synthesizer reads the controller description and performs a synthesis process to obtain

a gate level netlist. The ASIC Synthesizer assumes two tasks in our system: at �rst, it is used as

front end to import the structural VHDL description delivered by the netlist generator. Secondly, it

synthesizes all data path components, which are speci�ed previously by the implications. The result

of synthesizing these components consists of a netlist of slices.

After controller and component synthesis, three groups of netlists have been generated:

� gate netlist of the statemachine,

� netlists of instanciated components, and

� global netlist of the synthesized hardware which contain the controller and instanciated compo-

nents

Figure 6.1: Employing commercial CAD-tools

42 CHAPTER 6. COMBINING HLS AND INTELLIGENT COMPONENT SELECTION

The Logic Assistant merges all netlists yielding a complete structural description of the synthesized

hardware. The �nal netlist can be passed in subsequent steps to oorplanning, placing and routing

tools.

Chapter 7

Experimental results

We have applied our synthesis system to several benchmarks. All calculated results are optimal. The

execution times have been measured on a Sparc 10 using the mixed IP-solver [Ber92].

In the following, we present experimental results for the 5th-order Elliptical Wave Filter [KWK85]

and the Di�erential Equation Solver benchmark.

7.1 5th-Order Elliptical Wave Filter

Table 7.1 shows the results of the EWF employing adders, multipliers and multi-functional units with

di�erent delays, latencies and costs. All delays are measured in control steps. The entry 2:1 means

a pipelined function unit with a delay of two cycles. The speci�ed costs represent the size relations

between the particular component types. For each component type an upper bound of required

instances was calculated by OSCAR, e.g. 2 out of 7 adders have been allocated for the �rst example.

FU + * f+,*g + * f+,*g + * f+,*g

delay 1 1 1 1 2 2 1 2:1 2:1

costs 20 30 40 time 20 30 40 time 20 30 40 time

cstep 14 2/7 1/4 1/9 34s - - - - - -

15 2/3 0/2 1/4 13s - - - - - - - -

16 2/3 1/1 0/3 170s - - - - - - - -

17 2/2 1/1 0/3 764s 4/7 2/4 0/8 13s 3/7 2/4 0/8 5s

18
...

...
...

... 2/4 2/2 0/6 33s 3/3 1/2 0/5 81s

19 2/2 2/2 0/4 1185s 2/3 1/1 0/4 349s

Table 7.1: E�ect of di�erent speeds of components

Table 7.2 presents results with chained (left part) and unchained (right part) operations. Chaining

43

44 CHAPTER 7. EXPERIMENTAL RESULTS

was applied to +,* -operations which allows to perform both operations together within one control

step. In this example, all component delays are speci�ed in ns.

FU + * + *

delay 600ns 300ns 600ns 300ns

costs 20 10 20 10

cstep 11 4/8 1/4 - -

12 3/4 1/1 - -

13 3/3 1/1 - -

14
...

... 3/7 2/4

15 3/3 1/2

16 2/3 1/1

Table 7.2: Enabling vs. disabling chaining of add/mult-operations

For this example, the application of chaining yields a reduction by 3 control steps of the mimimum

schedule.

Table 7.3 presents synthesis results based on a complex component library. We employed MACs (see

also �gure 4.1) which are able to perform the addition and multiplication (separately or as macro-

operation) within one control step.

FU + * f*,+g

delay 1 1 1

costs 20 10 25 time

cstep 11 2/4 0/4 2/4 70s

12 2/4 0/4 1/4 975s

13 2/4 0/4 1/4 9519s

14 2/4 0/4 1/4 9464s

15 1/4 0/4 1/4 666s

16 1/4 0/4 1/4 3195s

Table 7.3: Employing complex component libraries

7.2. DIFFERENTIAL EQUATION SOLVER 45

7.2 Di�erential Equation Solver

The results calculated for the Di�-Eq benchmark are given in the following tables.

FU + - * + - *

delay 450 450 700 450 450 700

costs 20 20 30 time 20 20 30 time

cstep 3 1/2 2/2 3/4 1s - - - -

4 1/1 1/2 2/3 1s 1/2 1/1 2/4 1s

5 1/1 1/2 2/2 9s 1/1 1/1 2/2 3s

6 1/1 1/2 2/2 187s 1/1 1/1 2/2 72s

7 1/1 1/2 1/2 43s 1/1 1/1 1/2 14s

Table 7.4: Enabling vs. disabling chaining of sub/sub-operations

FU + - * f+,-g f+,*g

delay 1 1 1 1 1

costs 20 20 30 25 40 time

cstep 4 0/2 0/1 1/4 1/3 1/6 3s

5 0/2 0/1 2/2 1/2 0/3 128s

6 0/1 0/1 2/2 1/1 0/3 3569s

FU + - * f+,-g f+,*g

delay 1 1 2 1 2

costs 20 20 30 25 40 time

cstep 6 0/2 0/1 2/4 1/3 1/5 17s

7 0/2 0/1 1/3 1/3 1/4 27s

8 0/2 0/1 2/2 1/3 0/3 35s

9 0/1 0/1 2/2 1/1 0/3 948s

FU + - * f+,-g f+,*g

delay 1 1 2:1 1 2:1

costs 20 20 30 25 40 time

cstep 6 0/2 0/1 2/4 1/3 0/5 19 s

7 0/1 0/1 2/2 1/1 0/3 607 s

8 0/1 0/1 1/2 1/1 0/3 257 s

9 0/1 0/1 1/1 1/1 0/2 121 s

Table 7.5: E�ect of di�erent speeds of components

46 CHAPTER 7. EXPERIMENTAL RESULTS

Results of interconect minimization are given in table 7.6.

FU + - * + - *

delay 1 1 1 1 1 1

costs 20 20 30 interconnect time 20 20 30 interconnect time

cstep 4 1/1 1/1 2/2 5 1s 1/1 1/1 2/2 5 1s

5 1/1 1/1 2/2 4 8s 1/1 1/1 2/2 5 3s

6 1/1 1/1 2/2 4 149s 1/1 1/1 2/2 5 72s

7 1/1 1/1 1/2 4 39s 1/1 1/1 1/2 4 14s

Table 7.6: Enabling vs. disabling interconnect minimization

7.3. OPTIMIZATION OF THE DIFFERENTIAL EQUATION SOLVER 47

7.3 Optimization of the Di�erential Equation Solver

In the previous section we gave experimental results for the di�erential equation solver. All calculated

results are correct by construction and optimal with regard to a given objective function.

In section 5.3.3 we have proposed algebraic rules for a more e�cient exploitation of the underlying

component library. We have also shown that transformations can be used to yield cheaper and/or

faster hardware realizations.

A typical example was the transformation rule a * 2 -> a shl 1 such that the multiplication can

be implemented by an o�set in the wiring pattern. This special realization causes no costs and delay.

entity diffeq is

port (<port declaration>);

end diffeq;

architecture behavior of diffeq is

begin

process

<variable declaration>

<initialization>

while x < a loop

u1 := u * dx;

u2 := 5 * x;

u3 := 3 * y;

y1 := u * dx;

x := x + dx;

u4 := u1 * u2;

u5 := dx * u3;

y := y + y1;

u6 := u - u4;

u := u6 - u5;

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

considered basic block

<output of x, y, u>

end loop;

end process;

end behavior;

The di�erential equation solver is a convenient example to present more of these tricks. We will show

that the number of multiplications can be decreased by 2 with only two additional add- and one

increment operation.

48 CHAPTER 7. EXPERIMENTAL RESULTS

In the following, we only want to consider the basic block of this example. It consists of the

expressions1:

expr1 ::=

u' = (u - (u * dx) * (5 * x)) - (dx * (3 * y))

u' = u * (1 - 5 dx * x) - (3 dx * y) [5 mult, 3 add]

expr2 ::= y1 = u * dx

expr3 ::= x = x + dx

expr4 ::= y = y + y1

Obviously, expressions 2 - 4 cannot be simpli�ed excepting that expr2 is a subexpression of expr1.

However, expr1 looks very promising. Before transformation it contains 5 multiplications and 2 ad-

ditions. Since especially multiplications are characterized by expensive implementations, we want to

concentrate on this operator at the beginning.

The algebraic rule library contains a set of applicable rules { denoted as R1 to R8.

R1 : c � x ! (2k � r) � x

R2 : c � x ! (2k + r) � x

R3 : 2k � x ! x shl k implementation:

�
hardwired, if k is const.
shift-register, otherwise

Our �rst aim is to simplify products by splitting one factor into a power of two and a remainder. We

can realize, that 5dx and 3dx can by simpli�ed by these transformations. Obviously, the two products

contain the same subexpression t(= dx shl 2) which can be simply implemented by interconnect.

5dx ! 4dx+ dx ! dx shl 2 + dx

3dx ! 4dx� dx ! dx shl 2| {z }�dx
=:: t

After applying these transformations, expr01 consists now of only 3 multiplications and 4 additions.

expr01 ::= u * (1 - (t + dx) * x)| {z } - ((t - dx) * y) [3 mult, 4 add]

=:: s

However, expr1 contains still one subexpression s which can be simpli�ed. (1� (t + dx) � x) can be

transformed to �((t+ dx) � x) + 1.

1Consider that u0 represents the last value of variable u within this basic block since it appears at the right and left

side of expr1

7.3. OPTIMIZATION OF THE DIFFERENTIAL EQUATION SOLVER 49

R4 : -expr ! inc(expr)

R5 : -expr ! (expr) + 1

R6 : x+ 2k ! inc(x)[msb:k]

R7 : 1� expr ! inc(expr) + 1

R8 : 1� expr ! inc(expr)[msb:1]

At �rst, we eliminate the sign by applying R4 resp. R5 such that s becomes to ((t+ dx) � x) + 2.

Now, R6 can be applied in order to replace the addition. This is a valid transformation since x + 2k

is equivalent to the increment operation which is applied to a slice (most signi�ciant bit (MSB) to bit

k) of x. R8 represent the application of rules R5; R6; R7 in one step.

Finally, expression expr001 contains only 3 multiplications (instead of 5), 3 additions and one additional

increment.

expr001 ::= u * (inc (x * (t + dx))[msb:1]) - ((t - dx) * y)) [3 mult, 3 add, 1 inc]

This example has shown that algebraic transformation can be especially applied to expressions which

contain constants. In this example, we simpli�ed the products 3dx and 5dx as well as the expression

1� ((t+ dx) � x).

However, algebraic transformations must be applied carefully. Even if they possibly mimimize the

hardware costs for certain expression they can also increase the global hardware costs at the same

time. A simple example makes this clear:

x := a + 1;

y := b + c;

Considering the �rst expression, we could apply the transformation a + 1 -> inc (a) to replace the

add- by an increment operation. The second expression, however, contains an addition in any case

which can not be replaced. This means that the transformation increases the global costs because an

adder and an incrementer would be demanded. A local consideration of the �rst expression, however,

would suggest the transformation.

In order to avoid such inferior results we must not replace the original operations but generate ad-

ditional alternative solutions. Both the original and the transformed expression are considered as

mutual exclusive in the IP-model such that only one them will be realized.

Figure 7.1 represents synthesis results for the Di�Eq (top) and EWF (bottom) benchmarks. For

each control step (x-axes) the light gray bars represent the number of required function units for the

non-optimized version. The dark gray bars represent the optimized benchmark.

We can realize that for the Di�Eq always 1 multiplier (instead of 2) is required. In order to yield the

same solution by the original version we have to constrain the number of control steps to at least 10.

Similar results are calculated for the EWF benchmark. We are capable to generate results even for

11 control steps whereas the original version requires at least 14 control steps for an inferior result.

Figure 7.1: Results of the Di�Eq and EWF

Chapter 8

Conclusion and future research

In this report we presented a new IP-model in combination with an intelligent method for component

selection and management. We have extended existing approaches to IP-based high-level synthesis

into several directions:

The presented IP-model extends previous models for scheduling and allocation to wiring optimiza-

tion. In addition, is is capable of handling complex libraries with multi-functional components with

mixed speeds. In contrast to traditional models, libraries may contain complex components such

as multiplier-accumulators. Component libraries can be exploited more e�ciently by applying alge-

braic transformations. Additionally, alternative data-path versions are supportedi. This allows to

generate alternative versions and automatically determining the optimal data-path by the IP-solver.

Additionally, the model supports the assigning of several operations operating on short bit vectors to

components with a large bit width. Finally, the model supports chaining in its general form.

We have shown that acceptable runtimes can be achieved for standard benchmarks.

Our future research is concerned with methods for clever applications of algebraic transformations.

We believe that genetic algorithms are practical due to the following facts:

1. expressions can be suitably encoded by chromosoms. Each chromosom consists of a sequence of

genes which correspond to single subexpressions or function arguments.

2. genetic operators are able to modify the structure and the gene-information of chromosoms.

The encoded algebraic expression can be modi�ed by the following genetic operators. Each

application of genetic operators must ensure the equivalence to the original expression.

� Mutation: replace one subexpression by an other subexpression

� Insertion / deletion: Insert resp. delete a redundant subexpression

� Translocation: move parentheses in case of an associative function

� Inversion: change the order of arguments in case of a commutative function

51

52 CHAPTER 8. CONCLUSION AND FUTURE RESEARCH

� Crossing over: exchange two subexpressions which are located on di�erent chromosoms

of the same population. All members of same population represent the same algebraic

expression.

Details of the employed genetic algorithm will be decribed in a later report.

Bibliography

[Ach93] H. Achatz. Extended 0/1 LP formulation for the scheduling problem in high-level syn-

thesis. EURO-DAC'93, 1993.

[Ber92] M.R.C.M. Berkelaar. Unixtm manual page of lp solve. Eindhoven University of Technol-

ogy, Design Automation Section, 1992.

[Dut88] N. D. Dutt. GENIUS: A generic component library for high level synthesis. Technical

Report 88-22, U.C. Irvine, 1988.

[GE91] C. H. Gebotys and M. I. Elmasry. Simultaneous scheduling and allocation for cost con-

strained optimal architectural synthesis. 28th Design Automation Conference, pages 2{7,

1991.

[GE93] C. H. Gebotys and M. I. Elmasry. Global optimization approach for architectural syn-

thesis. IEEE Transactions on CAD, 1993.

[HCG92] T. Hadley, V. Chaiyakul, and D. D. Gajski. A data structure for interactive synthesis.

Technical Report 92-06, Dept. of Information and Computer Science, University of Irvine,

1992.

[HLH91] C.-T. Hwang, J-H. Lee, and Y-C. Hsu. A formal approach to the scheduling problem in

high-level synthesis. IEEE Transactions on CAD, 1991.

[KWK85] S. Y. Kung, H. J. Whitehouse, and T. Kailath. VLSI and Modern Signal Processing.

Prentice Hall, 1985.

[Mar86] P. Marwedel. A new synthesis algorithm for the MIMOLA software system. 23rd Design

Automation Conf., pages 271{277, 1986.

[Mar90] P. Marwedel. Matching system and component behaviour in MIMOLA synthesis tools.

Proc. 1st EDAC, pages 146{156, 1990.

[MPC90] M.C. McFarland, A.C. Parker, and R. Camposano. The high-level synthesis of digital

systems. Proc. of the IEEE, Vol. 78, pages 301{318, 1990.

53

54 BIBLIOGRAPHY

[RJL92] M. Rim, R. Jain, and R. De Leone. Optimal allocation and binding in high level synthesis.

Proceedings of the 29th Design Automation Conference, 1992.

[ST83] D.P. Siewiorek and C.J. Tseng. Facet: A procedure for the automated synthesis of digital

systems. 20th Design Automation Conf., pages 490{496, 1983.

[VC92] L. Ramachandran V. Chaiyakul, D. D. Gajski. Minimizing syntactic variance with as-

signment decision diagrams. Technical Report 92-34, Dept. of Information and Computer

Science, University of Irvine, 1992.

[WMGB93] T.C. Wilson, N. Mukherjee, M. K. Garg, and D. K. Banerji. An integrated and accelerated

ilp solution for scheduling, module allocation, and binding in datapath synthesis. 6th

International Conference on VLSI Design, 1993.

