
1

High-Level-Synthesis by Constraint Logic Programming

Ingolf Markhof

Universität Dortmund
Lehrstuhl Informatik XII

D-44221 Dortmund
F.R. Germany

markhof@ls12.informatik.uni-dortmund.de

January 10, 1994

Abstract: Integer programming has become popular to
synthesis since it allows tocompute optimal solutions by
efficient formal methods. The drawback of this approach
to synthesis is its resticted mathematical model. We
adopted the basic idea of handling the synthesis problem
as a constraint satisfaction problem and focus on solving
it by constraint search. We use constraint logic program-
ming, which is more flexible with repect to the represen-
tation of constrains.

1. Introduction
High-level-synthesis can be decomposed into a number
of distinct but not independent subtasks, i.e. scheduling,
allocation and binding. Solving a set of interdependent
tasks requires accurate handling of constraints, because
each (partial) solution of one task constraints the set of
solutions for dependent tasks.

Nevertheless, due to the complexity of the overall trans-
formation, most high-level synthesis systems perform the
subtasks of high-level synthesis (more or less) in sequen-
tial order, often by utilizing some heuristics [MCP90]. In
general, the resulting designs are thus suboptimal. A dif-
ferent approach to high-level-synthesis which tries to
avoid these drawbacks is integer programming (IP): The
high-level synthesis problem is mapped to a mathemati-
cal IP model, i.e., to a set of linear (in-) equations which
are to be solved in respect to a linear cost function. In this
way, dependent subproblems are solvedsimultaneously
and the obtained solution isoptimal in respect to the
model. [LM94] presents an integer programming
approach to high-level-synthesis which subsumes the
ideas of [GE91],[RJL92] and [Mar90].

While traditional synthesis systems fail to deal with con-
straints accurately, the drawback of the IP approach is
that the domain of high-level synthesis must be mapped
to a very restriced mathematical model. The formulation
of the integer program is cumbersome even for simple
high-level synthesis models and it’s probably impossible
to represent all aspects of synthesis by linear equations.
The resulting IP models get very complex for enhanced
synthesis models which causes serious run-time prob-
lems.

Nevertheless, surprising results have been achieved by
using the IP approach. We adopted the basic idea of han-

dling the synthesis problem as a constraint satisfaction
problem and focus on solving it by constraint search. This
is done by constraint logic programming (CLP) in
ECLiPSe, the ECRC Common Logic Programming Sys-
tem [Eur93].

ECLiPSe is a based on Prolog. Programming in Prolog
reduces the gap between the formal problem specification
and its implementation. Prolog also supports rapid proto-
typing and simplifies software-maintenance. Addition-
ally, ECLiPSe provides flexible built-in features for
constraint handling. Constraints that must be represented
by complex sums in the IP approach can be represented
simply by a single term in ECLiPSe. There is also no
restriction to represent constraints by linear equations,
only. Thus it is possible to utilize constraints that cannot
represented by integer programming.

Of course, it is not possible to reduce the inherent com-
plexity of the synthesis task. Although efficient mathe-
matical methods are used to compute a solution in the IP
approach, runtime is one of its main limitations. This is
also true for the CLP approach. Nevertheless, CLP is
more flexible in respect to the representation of con-
straints and it also allows user interaction.

2. Constraint Logic Programming
In logic programming [CM87], there is no semantic
attached to the primitive objects of the language. An
unbound variable may match any term. Thus, any seman-
tic of an application domain must be coded as uninterpre-
ted structures. In contrast, the key aspect of constraint
logic programming is to introduce interpreted objects,
namely variables with an attached domain [FHK+93].
Relations between these variables or between expres-
sions containing such variables are calledconstraints. A
solution of a set of constraints is a binding of the related
variables that fulfills all constraints in the set. A set of
constraints isconsistent, if there is a common solution for
all constraints in the set; otherwise it isinconsistent. By
solving a set of constraints we mean to find a solution for
the constraint set or to detect that the constraint set is
inconsistent.

In traditional logic programming the only constraint is
equality between terms and the unification algorithm is
used to solve these constraints. As constraints of the

2

application domain must be coded as uninterpreted struc-
tures, inconsistency of a set of constraints will be
detected only by failing to find a consistent binding. This
means needless backtracking.

In constraint logic programming the unification is
enhanced by a decision procedure for constraints, which
is used to cut the search space: The decision procedure
performsconsistency checking, i.e. it detects inconsisten-
tent partial solutions. It also binds variables whenever
their value is fixed by the constraint set. In ECLiPSe the
enhancement of traditional unification is based on two
new concepts, namely metaterms and delayed goals:

A metaterm is a variable with an attached attribute (a
term) to annotate additional semantics (notation:Variab-
le{ attribute}). Whenever a metaterm is bound, the sys-
tem raises an event and the decision procedure is called.
Thus, X{∈[1,2,3,4,5]}=6 will cause afail immediately.
Additionally, predefined predicates are provided for
interpretation and manipulation of metaterms, e.g.,
X{ ∈[1,2,3,4,5]}, X #< 3 will result in X{∈[1,2]}.

A delayed goal is a goal (in the sense of logic program-
ming) with unbound variables or metaterms that is not
solved immediately. In respect to the conjunction of
premises a delayed goal is handled as a true premise with-
out actually executing the goal. Once the unbounded var-
iables of the delayed goal are bound, the goal is woken up
and executed at this time.

In ECLiPSe meta terms introduce interpreted objects and
delayed goals are used to ensure that the metaterms are
not interpreted by the unification algorithm to avoid
backtracking.

3. Synthesis Model

3.1 Basic definitions

To denote the synthesis task, we use the following sets:

O The set of operations in the dataflow
T The set of funtional units types
I The set of funtional units instances
F The set of operation types
C The set of control steps

All these sets are finite. We use small letters to denote
members of these sets, i.e.,o∈O. There are attributes
attached to the sets elements by the following functions:

op_fkt: O → F
op_inputs: O → ℘(O)

ut_cost: T → ℜ
ut_fkt: T → ℘(F)
ut_ctime: T × F → N
ut_latency:T × F → N

ui_type: I → T

Op_fkt(o) is the operation performed by o, op_inputs(o)
is the set of operations that o is data depend to, ut_costs(t)

is the cost for an functional unit of typet, ut_fkts(t) is the
set of functions thatt can execute, ut_ctime(t,f) is the
delay (number of control steps) forf when performed by
t, ut_latency(t,f) is the latency (number of control steps)
of t when executingf, and ui_type(i) is the typet of i.

3.2 Design Issues

Given the setsO andT, the design task is to define the fol-
lowing functions

schedule: O → C
allocation: T → N
binding: O → I

with respect to the to the constraints described below
while minimizing the cost function

whereas C1 and C2 are user defined constants and
schedule_length = max {schedule(o) + ut_ctime(
ui_type(binding(o)), op_fkt(o)) | o∈O}

The setI of unit instances is defined implicitly by the allo-
cation (or vice versa) by the following equivalence:
∀t∈T: (allocation(t) = k ⇔ |{ i∈I | ui_type(i) = t }| = k).

3.3 Constraints

The user provides parameters for a priori design con-
straints as follows (parameter⇒ constraints):

a) CMAX∈N
⇒ ∀o∈O: 1 ≤ schedule(o) ≤ CMAX.

b) UT_MAX: T → N
⇒ ∀t∈T: allocation(t) ≤ UT_MAX(t).

c) MAX_COST∈ℜ
⇒ cost≤ MAX_COST.

Furthermore, operations must be scheduled with respect
to the data-dependencies and no functional unit instance
can perform more than one operation at any time (if not
pipelined):

d) Operation precedence constraints:
∀ o1∈O: ∀ o2∈op_inputs(o):
schedule(o2) + ut_ctime(ui_type(binding(o2)),
op_fkt(o2)) ≤ schedule(o1).

e) Resource constraints:
∀ i∈I: ∀o1,o2∈{o∈O | binding(o) = i }:
schedule(o1) + ut_latency(ui_type(i),op_fkt(o1)) ≤
schedule(o2) ∨
schedule(o2) + ut_latency(ui_type(i),op_fkt(o2)) ≤
schedule(o1).

4. Status of Implementation
To test the applicability of CLP in the domain of high-
level synthesis, we first implemented an experimental
program for a simplified scheduling problem. The high-

C2 schedule_length⋅

cost C1 ut_costt() allocationt()⋅()
t T∈
∑⋅ +=

3

level-synthesis model was simplified as follows: A unit
delay is assumed for all operations, i.e. each operation
can be executed in one control step, and there is a one-to-
one mapping between the operation types and the types of
functional units, i.e. there is exactly one type of func-
tional unit for each distinct operation type, i.e., op_fkt(o),
and every functional unit is able to perform exactly one
operation type. The program consists of less than 200
lines of source code, whereas 2/3 of the program text han-
dles input and output only; the code for the scheduling
itself is thus really short. A few goals are sufficient in
ECLiPSe to handle the required constraints:

For each operationoi, there is a domain variable Si, i.e.,
a meta term, that has to be bound to the control step of
that operation. According to constraint a) from section
3.3, the domain of the variable is defined by the goal
Si :: 1..CMax. Operation precedence constraints are sim-
ply denoted by the goals Si #< Sj (∀ oj ∀ oi ∈
op_inputs(oj)). By introducing these constraints, the
domain of each Si is already reduced to the ASAP..ALAP
interval of the according operation. Finally, no more than
allocation(t) operations performing op_fkt(o) ∈ ut_fkt(t)
may be assigned to a control step c∈ {1..CMax}, which
is represented by the constraints atmost(allocation(t), St,
c), whereasSt is the list of all Variables of operations with
op_fkt(o) ∈ ut_fkt(t).

A solution for this scheduling problem is computed by
iteratively binding the domain variables Si in a branch-
and-bound search, whereas consistency checking cares
for efficiency by pruning the search space. The imple-
mentation was successfully applied to the elliptical wave
filter benchmark.

We’re currently implementing a synthesis tool for the full
synthesis model described in section 3 by extending the
experimental program described above. Some extensions
are straigth forward, e.g., according to multiple possibil-
ities to bind an operation to different types of functional
units with different delays, the operation precedence con-
straints are now represented by (Si + Di #< Sj), whereas
domain variable Di ∈ { ut_ctime(t) | op_type(oi)
∈ut_fkt(t) }.

5. Future Work
There are several possibilities to extend the synthesis
model presented in section 3: Design aspects which are
missing are registers, memories and connections. The
time model which is simply based on control steps could
also be replaced by true execution times to include chain-
ing into the model. Next, this could be used to determine
the length of a control step automatically. The current
synthesis model also applies to basic blocks, only. To deal
with more complex behavioural descriptions including
control statements, a partitioning schema could be intro-
duced. Due to the flexibility of CLP in respect to the rep-
resentation of constraints, we believe that all these
extensions are possible. Nevertheless, such an enhanced
implementation would probably need too much runtime.

Thus, another important direction of research will be the
incorporation of user interaction, to enable the user to
specify additional constraints to cut the search space.

6. Conclusions

From the background of the integer programming
approach to synthesis, we adopted the basic idea of han-
dling the synthesis problem as a constraint satisfaction
problem. A formal description of the synthesis task was
presented that can be solved by constraint logic program-
ming. By implementing a first prototyp for a simplified
problem, we found that constraint logic programming is
very well suited to represent and solve high-level synthe-
sis constraints.

References

[CM87] William F. Clocksin and Christopher S.
Mellish. Programming in Prolog. 3rd edition, 1987.

[Eur93] European Computer-Industry Research Center,
Munic. ECLiPSe - ECRC Common Logic
Programming System, 3.3 edition, March 1993.

[FHK+93] Thom Frühwirt, Alexander Herold, Volker
Küchenhoff, Thierry Le Provost, Pierre Lim, Eric
Monfroy, and Mark Wallace. Constraint logic
programming - an informal introduction. Technical
report, European Computer-Industry Research
Centre, 1993.

[GE91] Catherine H. Gebotys and Mohamed I. Elmasry.
Simultaneous scheduling and allocation for cost
constrained architectural synthesis.28th Design
Automation Conference, pages 2–7, 1991.

[LM94] Birger Landwehr and Peter Marwedel. Oscar:
Optimum simulataneous scheduling, allocation and
ressource binding based on integer programming.
Internal report LS Informatik XII, University of
Dortmund.

[Mar90] Peter Marwedel. Matching system component
behaviour in mimola synthesis tools. InProceedings
of the European Design Automation Conference,
1990.

[MPC90] Michael C. McFarland, Alice C. Parker, and
Raul Camposano. The high-level synthesis of digital
systems.Proceedings of the IEEE, 78(2):301–318,
February 1990.

[RJL92] Minjoong Rim, Rajiv Jain, and Rento De
Leone. Optimal allocation and binding in high-level
synthesis. Proceedings of the 29th Design
Automation Conference, pages 120–123, 1992.

