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Abstract{In a hardware/software codesign environ-
ment compilers are needed that map software compo-
nents of a partitioned system behavioral description onto
a programmable processor. Since the processor struc-
ture is not static, but can repeatedly change during the
design process, the compiler should be retargetable in
order to avoid manual compiler adaption for each al-
ternative architecture. A restriction of existing retar-
getable compilers is that they only generate microcode
for the target architecture instead of machine-level code.
In this paper we introduce a bootstrapping technique
permitting to translate high-level language (HLL) pro-
grams into real machine-level code using a retargetable
microcode compiler. Retargetability is preserved, per-
mitting to compare di�erent architectural alternatives
in a codesign framework within relatively short time.

1 Introduction

The "hardware/software codesign" approach increasing-
ly gains importance in digital system synthesis from be-
havioral descriptions. Codesign implies partitioning an
abstract behavioral description into hardware and soft-
ware components forming a system with the speci�ed
behavior and meeting given timing restrictions. Espe-
cially, it aims at designing digital controllers perform-
ing real-time computations. The target architecture
might be a simple system containing a programmable
processor (core), a main memory, and several ASICs,
as proposed in [1] (�g. 1). Since communication over-
head implied by a certain system partitioning is hardly
predictable, codesigning a digital system requires sev-
eral iteration steps in general. During the iteration the
necessary hardware and software components change,
causing di�erent core requirements in each step. In
order to simulate the system behavior for a given hard-
ware/software partitioning the hardware components
have to be synthesized and the software components
have to be mapped onto the core. For the latter a com-
piler is needed that translates a HLL program into the
core instruction set. Commercial compilers are avail-
able for some standard processors but never for special
cores. Therefore we recommend using a retargetable
compiler, processing both a HLL program and a proces-
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Figure 1: System Architecture

sor (core) description, and producing machine code for
the described hardware. The compiler retargetability
enables the designer to study di�erent core alternatives
without manually changing the compiler itself.
Several retargetable compilers are mentioned in the

literature [2, 3, 4], among them our code generator
MSSC. MSSC takes both a target structure descrip-
tion and a PASCAL program emitting binary code au-
tomatically, that executes the PASCAL program on the
given structure if possible. A drawback of those compil-
ers (when using it in a codesign environment) is that
only code for the lowest programming level is gener-
ated, i.e. microinstructions. Generating machine code
is not provided by the above compilers. If the target
processor comprises a complex controller with a two-
level interpretation scheme, modelling of the controller
becomes quite di�cult. Either it does not �t into a RT-
level hardware model, or the internal controller struc-
ture is not publicly available at all. However, machine
instructions have to be produced for the assembly level
instead of the microcode level. This requires restrict-
ing the compiler to generate only available assembly
instructions, whereas the processor datapath might ex-
pose more parallelism than visible at this level. To
�ll this gap in case of an unknown internal controller
structure we apply a "bootstrapping" technique using
MSSC in a two-phase mode.
We describe the bootstrapping approach using the

TMS320C25 DSP as an example. The MSSC compiler
has been described elsewhere [5, 6], so only a short
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overview is given in the following section. After that
the basic bootstrapping idea is explained, followed by a
detailed description of the two main steps (micro-ROM
generation and machine code generation). The paper
ends with examples for generated TMS machine-level
programs and a conclusion.

2 Microcode generation in the MDS

The retargetable microcode generator MSSC is part of
the MIMOLA Design System (MDS), which supplies
hardware synthesis, generation of self-test programs,
simulation and schematics generation [7]. Each MDS
tool is based on the MIMOLA language that allows
both hardware and software descriptions [8]. Hard-
ware descriptions contain RT modules, their behavior
and their interconnections. For instance, a 32 bit ALU
might be speci�ed in MIMOLA as follows:

MODULE ALU (IN a, b : (31:0);

OUT outp: (31:0);

FCT ctr : (1:0))

BEGIN

outp <- CASE ctr OF

0: a + b;

1: a - b;

2: a;

3: a XOR b;

ENDCASE

END;

The ALU has two 32 bit data inputs, a 32 bit output,
and a 2 bit control input selecting the ALU function. A
complete hardware description enumerates all modules
and all interconnections (wires). For code generation
one register has to be marked as program counter and
one memory module as instruction storage. Module
interconnections are explicitly given in the MIMOLA
description by enumeration of source and sink ports.
Software descriptions in MIMOLA may consist of

PASCAL statements, but RT-level programming is sup-
ported, too. All high-level control structures (FOR,
WHILE, REPEAT,...) are supplied, but there are no
prede�ned data types besides the bitstring. Other scalar
types may be declared by the user. De�nition of com-
plex data types (ARRAY, RECORD) is supported as
well. Hardware and software description together form
the input to MSSC, that translates the given program
into microinstructions for the given programmable hard-
ware structure. MSSC has been described in detail in
[5, 6], we only give a rough summary of the four main
steps here.

1. Program transformation: The software de-
scription is transformed into a RT-level program.
All user variables are mapped onto physical mem-
ory locations, and loop structures are replaced

by conditional jumps. Either default or user-
de�ned replacement rules are used. The result
is a RT-level program that only may contain IF-
statements as high-level elements. IF-statements
can be mapped onto hardware directly using mul-
tiplexers and comparators.

2. Preallocation: The hardware structure is rep-
resented by the Connection Operation Graph. It
contains vertices for every operation performed
by the modules and edges for their interconnec-
tions. During preallocation suitable assignments
to instruction word �elds (versions) are calcu-
lated for each possible hardware operation. Mod-
ule control codes can be allocated directly at the
instruction word and hardwired constants or in-
directly through decoders. The latter feature is
crucial for our bootstrapping technique. Since a
large number of versions might be found for each
hardware operation during preallocation, a spe-
cial data structure is used for e�ciently handling
version alternatives.

3. Code generation: Code generation is done by
pattern matching within the Connection Opera-
tion Graph. Each assignment can be represented
by a data 
ow tree. If the CO-Graph contains
a matching subtree, the assignment can be allo-
cated immediately. Otherwise, the assignment is
sequentialized. If a statement cannot be allocated
even when using temporaries, MSSC generates an
error message indicating the failure reason and lo-
cation. The result of successful code generation
is a list of allocated microoperations.

4. Scheduling: Finally the microoperations have
to be packed into complete microinstructions (con-
trol store words). Data dependencies and com-
patibility of microoperations have to be obeyed.
Microoperations executable in parallel are heuris-
tically packed into one control step. Additionally
unused registers and tristate bus drivers must be
disabled.

The �nal result is amicroprogram executing the given
PASCAL program on the target structure.

3 Bootstrapping approach

This section gives an overview of the bootstrapping
technique. A detailed explanation containing examples
is given in sections IV and V. The basic idea for gen-
erating machine-level instead of microinstructions is a
two-phase use of MSSC. In the �rst phase MSSC pro-
duces a binary program that corresponds to the pro-
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cessor instruction set. This program is stored into a
micro-ROM (a decoder), that serves as an additional
input in the second phase. Extending the hardware
description by the micro-ROM enables MSSC to trans-
late a HLL program into machine-level code in phase
2. This means, phase 1 uses the microcode compiler
MSSC for "bootstrapping" a real HLL to machine code
compiler for a speci�ed processor structure and its ma-
chine instruction set. The whole procedure is shown in
�g. 2.
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Figure 2: Basic Idea of Bootstrapping

Phase 1: (Micro-ROM generation)

1. Hardware structure modelling: The target
processor's RT-structure is described in MIMOLA,
containing the data path, storage modules as well
as a simple microcontroller that uses separate
control �elds for each module. This controller is
dropped in the second phase and does not need
to be structurally identical to the real controller.
Therefore, when modelling the target processor
the user only needs knowledge about the data
path and storage/register modules. This informa-
tion can be taken for example from a processor
data book, whereas information about the con-
troller usually is not provided.

2. Assembly instruction modelling: The RT-le-
vel behavior of available assembly instructions is
modelled in MIMOLA. The result is a "program"
that simply consists of a listing of all assembly
instruction behaviors. This "program" forms the
software description for the �rst MSSC run.

3. Micro-ROM generation: The compiler MSSC
is applied to the hardware description and to the

"program" containing the assembly instruction
behaviors. For technical reasons we assume ev-
ery machine instruction to be executable within
a single cycle. As described later, this means
no severe restriction, however. MSSC generates
a microprogram in which each microinstruction
corresponds to a realization of a certain assembly
instruction. The microprogram is stored into the
declared microinstruction memory.

Phase 2: (Machine code generation)

1. Controller replacement: The micro-ROMgen-
erated in phase 1 is now assumed to be part of
the target hardware structure. All control lines
still start from the micro-ROM that simply serves
as a decoder here. By addressing a line in the
micro-ROM execution of a certain machine in-
struction can be selected. Addressing the micro-
ROM is now done from the "real" machine in-
struction memory which in its turn is addressed
by the "real" machine-level program counter. As
mentioned in section 2, MSSC is able to allocate
constants via decoders. Since every module only
can be controlled via the micro-ROM, and the
micro-ROM only contains microcode for machine
instructions, MSSC is restricted to generate en-
coded machine instructions when applied to the
structure and a HLL program.

2. HLL program translation: Now the same hard-
ware structure as in phase 1 serves as an input to
MSSC, extended by the micro-ROM. The soft-
ware description in principle could be any HLL
(PASCAL in our case) program. MSSC produces
binary code in which every instruction contains
an address for the micro-ROM (and thus an en-
coded machine instruction) as well as necessary
operands. This binary code can be easily trans-
formed to real machine code by table lookup. The
result is an assembly-level machine program for
the target processor realizing the given HLL pro-
gram.

For a given target processor, phase 1 has to be per-
formed only once. After that any PASCAL program
can be translated into machine code by a single call
of MSSC. Both phases are described in detail in the
two following sections. For better understanding of the
bootstrapping technique, we consider the digital signal
processor TMS320C25 as an example.
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Figure 3: Simple Controller in Phase 1

4 Micro-ROM generation

In phase 1 a micro-ROM is to be generated, in which
every control word realizes exactly one machine instruc-
tion. At �rst the target structure (here: TMS320C25)
has to be modelled. Most of the data path structure can
be found in [9] and can be written as a MIMOLA hard-
ware description, consisting of 2000 text lines in this
case. Information about the internal controller struc-
ture is not available in [9], but this causes no problems
since we only need a simple microcontroller structure
for phase 1.
The TMS contains a 16 bit program counter and a

4k program ROM. These modules are modelled, too,
but not according to their real functionality in the �rst
phase. Instead we use the simple controller shown in
�g. 3. The microinstruction storage (MIS) controls
all but the residually controlled modules directly. Its
wordlength is 150 bits in our model. It is addressed by
a microprogram counter (MPC) which is incremented
after each cycle. The software input for MSSC is a
"program" which simply lists all assembly instructions
and their RT-level behavior (in MIMOLA). This in-
formation can also be taken from [9]. The "program"
looks as follows:

PROGRAM InstructionSet IS

LABEL ADDK, CMPL, ...

BEGIN

ADDK: (* add to accu short immediate *)

PARBEGIN

ACC := ACC + ZeroExtend24(PgmROM[PC].(7:0));

PC := "INCR" PC;

PAREND;

CMPL: (* complement accumulator *)

PARBEGIN

ACC := "NOT" ACC;

PC := "INCR" PC;

PAREND;

<further instructions>

END;

This extract shows how the behavior of two simple
assembly instructions might be modelled in MIMOLA.
For every instruction a label of the same name is de-
clared. The ADDK instruction adds an 8 bit constant
from the instruction word in the program ROM (ad-
dressed by the real program counter PC) extended by
24 zero bits to the accumulator and stores the result
into the accumulator again. The PC is incremented in
parallel. The CMPL instruction inverts the accumu-
lator and can be modelled similarly. This "program"

ADDK: 0100............................0X11

CMPL: 10X0............................1101

LARP: X011............................0010

<further instructions>

150 0. . . . .

Figure 4: Contents of micro-ROM MIS

is mapped onto the target structure by MSSC. It is
never executed, only the resulting binary code is im-
portant. Since no branches occur, the incrementer (�g.
3) is su�cient for modifying the MPC. The generated
microcode is stored into MIS, containing a sequence of
150 bit microinstructions then. Each microinstruction
corresponds to a machine instruction (�g. 4). MIS con-
tains as many lines as machine instructions have been
speci�ed, because a suitable hardware model guaran-
tees that only single-cycle instructions are generated.
The initialized MIS is used as one MSSC input in the
second phase. It contains the information about avail-
able machine instructions and their implementation by
microinstructions.

5 Machine code generation

In phase 2 a PASCAL program is to be translated into
a TMS machine program. The micro-ROM is now as-
sumed to be part of the target structure and the con-
troller illustrated in �g. 5 is used. This step requires
only minor changes in the RT-model. In the second
phase the TMS 4k program ROM serves as instruc-
tion memory, addressed by the program counter PC.
The microprogram counter MPC of phase 1 is drop-
ped. The modules are controlled by the program ROM
indirectly via the micro-ROM. Thus the micro-ROM
now works as an instruction decoder. Each line in the
program ROM has the following format:

16 bit constant 8 bit address 16 bit operands

The 16 bit constant �eld is only used in case of two-
word instructions, e.g. jumps. The jump address is
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then stored in the constant �eld instead of the next
program ROM line, just to avoid the necessity of gen-
erating two-cycle instructions. This means no severe
restriction, since the above 40 bit control word format
is �nally transformed to real machine code format by
a very simple postprocessing step. Most of the TMS
two-cycle instructions may be modelled this way. An
8 bit address �eld is used for controlling the MIS. So
a certain address corresponds to a certain machine in-
struction. The 16 bit operand �elds carry immediate
operands for the current instruction if necessary.
The TMS RT-structure together with the MIS and

an arbitrary PASCAL program now forms the input for
MSSC. In addition, memory locations for user variables
and temporaries can be declared. Code generation for
a single PASCAL statement of the form

a := b + 4;

proceeds as follows. We assume the user variables
a and b to be located at addresses 0 resp. 1 of the
data RAM. At �rst MSSC recognizes that a temporary
is needed to execute the statement. Using the TMS
accumulator as a temporary, the assignment is sequen-
tialized:

(1) ACC := DataRAM[1];

(2) ACC := ACC + 4;

(3) DataRAM[0] := ACC;

Each statement can be allocated directly now, since
there are corresponding microinstructions in MIS:

(1) ZALS (zero high accu, load low accu)

(2) ADDK (add to accu short immediate)

(3) SACL (store low accu with shift)

Assuming these instructions are located at addresses
1, 2 resp. 3 of MIS, MSSC will generate the intermedi-
ate code:

No. 16 bit const 8 bit addr 16 bit operands
(1) xx: : : xx 00000001 xxxxxxxx00000001
(2) xx: : : xx 00000010 xxxxxxxx00000100
(3) xx: : : xx 00000011 xxxxx00000000000

The 16 bit constant �elds are don't cares, since each
instruction occupies only one TMS word. The 8 bit
address �elds select the particular instructions in MIS
(1, 2 and 3), and the 16 bit operand �elds provide
the instruction-speci�c operands: memory address 1 of
variable b for the ZALS instruction, the 8 bit constant
4 for ADDK, and for SACL the shift value (here: 0)
and the address 0 of variable a. This intermediate code
can be transformed to real machine code or mnemon-
ics very easily. Only a table is needed, containing the
information about correspondence between addresses
and instructions in MIS, and about operand �eld inter-
pretation for each instruction. For the above example
one obtains:

No. Assembly Code Machine Code
(1) ZALS 1 0100000100000001
(2) ADDK 4 1100110000000100
(3) SACL 0 0110000000000000

Thus, we get a translation of a PASCAL program
into real machine code, immediately executable on the
TMS. As mentioned above, this compilation is retar-
getable, too, i.e. if the target structure is changed and
a new micro-ROM is generated, machine-level output
for other processsors or cores is produced. Therefore,
several structural alternatives for software components
in a codesign framework can be tried without adapting
the compiler itself. Only the bootstrapping procedure
has to be repeated.

6 Examples

In this section we show some examples for generated
TMS assembly code. Phase 1 of the bootstrapping pro-
cedure has to be performed only once, in our model
MSSC needs 135 CPU sec for that task. Regarding
phase 2 we �rst consider a small program for Euclidian
greatest common divisor computation:

PROGRAM gcd IS

VAR u, v, t: Integer;

BEGIN

REPEAT

IF u < v THEN BEGIN

t:=u; u:=v; v:=t

END;

u := u-v

UNTIL u = 0;

END;

After termination of the REPEAT loop, variable v

contains gcd(u,v). MSSC generates the following code
for this example within 48 CPU sec. (AR denotes TMS
internal auxiliary register, help is a temporary located
at DataRAM[101]):
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1: ZALS 0 // ACC := u

2: SUBS 1 // ACC := ACC - v

3: SACL 101 // help := ACC

4: ZALS 101 // ACC := help

5: BGEZ 12 // IF ACC >= 0 GOTO 12

6: LAR AR1,0 // AR1 := u

7: SAR AR1,2 // t := u

8: LAR AR1,1 // AR1 := v

9: SAR AR1,0 // u := v

10: LAR AR1,2 // AR1 := t

11: SAR AR1,1 // v := t

12: ZALS 0 // ACC := u

13: SUBS 1 // ACC := ACC - v

14: SACL 101 // help := ACC

15: LAR AR1,101 // AR1 := help

16: SAR AR1,0 // u := AR1

17: ZALS 0 // ACC := u

18: BNZ 1 // IF ACC <> 0 GOTO 1

This code is not optimal, for example the lines 3 and
4 may be dropped. Those super
uous instructions arise
from the fact, that MSSC does not yet include book-
keeping of temporary locations beyond single state-
ments. Also the compilation speed cannot compete
with a commercial target-speci�c compiler, but that is
the price for retargetability. Important here is the abil-
ity to map software components onto a certain target
structure without compiler redesign. Future versions
of MSSC will include global book-keeping of temporary
locations.
Another example is the translation of the elliptical

wave �lter, a typical DSP application mainly consist-
ing of arithmetical operations [10], into TMS code. Due
to the limited space, we only mention the results here:
MSSC generates 184 machine instructions for 38 PAS-
CAL statements within 239 CPU sec.

7 Conclusions

We introduced a bootstrapping technique allowing re-
targetable machine code generation using a retargetable
microcode compiler. This approach extends the range
of target architectures which can be handled by retar-
getable compilers based on true structural hardware
descriptions. In order to generate only valid assembly
instructions, although no information about the inter-
nal controller structure is available, requires a large de-
coder to be integrated into the hardware model. The
purpose of the bootstrapping technique is to generate
the required decoder automatically. This is achieved
by a two-phase use of the microcode generator MSSC.
The feasibilty of this approach has been shown for a
real-life example. Further DSP models are currently
investigated. We plan to employ the MIMOLA high-
level synthesis tool for obtaining the hardware model

instead of using a manual speci�cation.
Due to its retargetability the outlined approach can-

not compete with target-speci�c compilers regarding
compilation speed. Regarding the code quality, super-

uous instructions might arise during code generation,
but this is only due to a technical limitation of MSSC.
Work is in progress to overcome that limitation. We
predict that retargetable compilers will become an es-
sential tool in hardware/software codesign. In this con-
text, the disadvantage of lower compilation speed is
more than compensated by retargetability.
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