Microcode Generation for Flexible Parallel Target Architectures
Rainer Leupers, Wolfgang Schenk, and Peter Marwedel

University of Dortmund, Department of Computer Science XII,
44221 Dortmund, Germany

Abstract: Advanced architectural features of microprocessors like instruction level parallelism and pipelined
functional hardware units require code generation techniques beyond the scope of traditional compilers. Addition-
ally, recent design styles in the area of digital signal processing pose a strong demand for retargetable compilation.
This paper presents an approach to code generation based on netlist descriptions of the target processor. The
basic features of the MSSQ microcode compiler are outlined, and novel techniques for handling complex hardware
modules and multi-cycle operations are presented.!

Keyword Codes: B.1.4
Keywords: Control Structures and Microprogramming, Microprogram Design Aids

1 Introduction

Besides instruction pipelining, two important means for increasing the throughput of microprocessors have been
identified by hardware designers: instruction level parallelism and data pipelining. Instruction level parallelism com-
prises several functional units working independently from each other, typically in combination with a VLIW type
controller, whereas the latter is often used in digital signal processors (DSPs) for accelerating multiply-accumulate
sequences. Exploiting these advanced architectural features poses new challenges for compiler technology, since
there is no longer a clear compiler/architecture interface via an instruction set. Furthermore, recent processor
design styles in the DSP area established a new view of the role of compilers in the design process. The use of
application-specific instruction set processors (ASIPs) provides a convenient compromise between pure hardware
implementations (ASICs) and pure software solutions via programmable off-the-shelf processors [1]. Usually, ASTP
architectures are not fixed, but are subject to change during the design process. This implies ?moving” pieces of
functionality between hardware and software, which in turn requires frequent re-mapping of the system behavioral
description onto the target architecture for performance evaluation. In order facilitate compilation onto different
targets, the code generation process should be retargetable, i.e. no manual compiler adaption should be necessary.
We propose retargetability based on pure structural target descriptions at the register transfer level (fig. 1). The
advantages of this approach are manifold:

1) A RT level netlist of the target structure is usually available during the system design process.

2) Code generation is based on a model given in an easy-to-learn hardware description language. Thus, the concept
“naturally” fits into a CAD system for design automation.

3) The controller structure is part of the architectural model, therefore restrictions due to encoding or sharing are
detected by the compiler, and code generation is not restricted to VLIW type controllers.

4) With the controller structure being part of the model, it is possible to map resource conflicts to instruction
conflicts, facilitating the scheduling phase.

5) Changes within the target architecture are easily reflected by adapting the architectural model.

6) No re-compilation of the compiler itself is required when moving to a new target architecture.

In this paper we present retargetable compilation techniques based on RT-level netlist models, which are capable of
exploiting instruction level parallelism as well as data pipelining. Binary machine code is generated for predefined
structures, in contrast to synthesis systems like CATHEDRAL [2] and CAPSYS [3], that perform binary code
generation for automatically synthesized structures, which 1s a less expendable task. The CodeSyn compiler by
Paulin [1] presents another approach to retargetable code generation for predefined structures which is based on

1This work has been partially supported by ESPRIT BRA project 9138 (CHIPS)



(©1994 IFIP Trans. A-50: Parallel Architectures and Compilation Techniques (PACT-94) 2

110100100100010
Target Architecture Netlist Retargetable 110110010100100
(HW Description Language) .
Compiler 100010001001001
FOR i := 1 TO 64 DO 001000100010001
BEGIN

ali] := c[i] *x[i-1];
jo= g1

IF i > j THEN ji=k;
END;

Binary Machine Code

Behavioral Description
(High Level Language)

Figure 1: Retargetable compilation based on structural descriptions

specification of data flow patterns within the target hardware. However, these data flow patterns have still to be
entered manually.

The paper is organized as follows. Sections 2 and 3 describe the modelling of architecture and behavior using
the MIMOLA language. The basic steps for retargetable code generation (preallocation, pattern matching and
scheduling/compaction) are presented in sections 4 to 6. These techniques have been implemented within the
MSSQ compiler, which is part of the MIMOLA Design System [4]. Several restrictions of MSSQ have now been
eliminated, e.g. pipelined modules and residual control are supported in the current version. These novel features
are described in section 7. The paper ends with practical results and a conclusion.

2 Architectural models

The target architecture is modelled as a netlist on the register transfer level based on the MIMOLA language? with
a PASCAL-like syntax. RTL modules are defined by their behavior based on a large set of primitive operations
(arithmetic, logic, comparison, bit manipulation).

2.1 Combinational and sequential modules

Modules performing multiple operations are assumed to have a distinguished control input, e.g. a 16 bit ALU could
be specified as follows, similar to a PASCAL procedure:

MODULE ALU (IN in1,in2:(15:0); OUT res:(15:0); FCT ctr:(1:0));
BEGIN
res <- CASE ctr OF
%00: in1 + in2;
%01: in1 - in2;
%10: in1 "AND" in2;
%11: ini1;
END_CASE;
END;

Depending on the value of the control input ctr, the ALU either computes addition, subtraction or conjunction
on the two data inputs inl and in2 or passes inl to the output res. The data types are given as bitstrings in the

?See [5] for the complete syntax. Convertors from VHDL to MIMOLA are available, but we prefer the latter throughout this paper
for sake of better readability.



(©1994 IFIP Trans. A-50: Parallel Architectures and Compilation Techniques (PACT-94) 3

format (<highbit>:<lowbit>). A 32 bit register with enabling signal and storing data at the rising clock edge is
modelled by

MODULE Reg32bit (IN data:(31:0); OUT output:(31:0); FCT enable:(0); CLK clock:(0));

CONBEGIN
CASE enable OF
%0: "NOLOAD"; (* do not load *)
%1: AT clock UP DO Reg32bit := data; (* load at rising edge *)
END_CASE;
output <- Reg32bit; (* read always *)
CONEND;
The CONBEGIN ... CONEND construct denotes concurrent execution, in this case the register i1s always readable

and concurrently stores input data at the rising edge when enable = 1. Memory modules are modelled similarly,
having an additional address input. Modelling and code generation for multiport memories is provided.

2.2 Connections
Module interconnections are specified as a list of source and sink ports:
CONNECTIONS

ALU.res -> accumulator.input;

accumulator.out -> ALU.inl;

Bit subranges of modules ports may be referenced explicitly. Busses require a separate declaration due to their
impact on the code generation process, i.e. the need for tristate operations of bus drivers:

BUS databus: (15:0);

2.3 Controller model

MSSQ was designed for code generation for microprogrammed structures. The underlying generic controller struc-
ture is depicted in fig. 2. One distinguished memory module has to be marked as the instruction memory and one

| Branch Logic conditions
|

Program

Counter

address

|

|

|
instruction |
|
Instruction |
|

Memory

1111

immediate from data path

c(?ntrol address(es)
lines

Figure 2: Generic controller structure

register as the program counter. The next program address is determined by an arbitrary branch logic possibly

dependent on several condition codes. Five versions of control flow are considered during code generation:

1) increment program counter: The program counter is set to the following program address.

2) unconditional jump: Continue at a certain program address.

3) then-branch: Branch if a condition is true, otherwise increment program counter.

4) else-branch: Branch if a condition is false, otherwise increment program counter.
)

5) two-way branch: Branch to address a; if a condition is true, otherwise branch to address as.



(©1994 IFIP Trans. A-50: Parallel Architectures and Compilation Techniques (PACT-94) 4

2.4 High-level transformations

Besides the netlist model comprising modules and interconnections, MIMOLA permits description of replacement
rules, 1.e. correctness-preserving transformations of operations. Such replacement rules allow compilation of oper-
ations that are not directly supported by the hardware. Possible replacements include

REPLACE &a * 2 WITH &a + &a EIND;
REPLACE &a * 4 WITH "SHIFTL"(&a,2) END;

where &a denotes a formal parameter of the replacement rule. Replacement rules may be unconditional (i.e. are
always applied) or conditional (i.e. the compiler decides on demand whether or not to apply the rule). A set of
standard rules, e.g. for replacing high-level language constructs like FOR or WHILE loops by conditional jumps
are provided in a library. Other replacements may be specified by the user.

3 Behavioral models

MIMOLA is a unified language for describing both structure and behavior. Behavioral descriptions in MIMOLA
are essentially PASCAL programs. Several deviations exist regarding the allowed data types. MIMOLA programs
permit bit-level addressing, direct access to hardware storages and calling hardware modules like procedures.
Therefore, behavioral descriptions can be specified at different levels of abstraction, for instance the following two
programs are valid and equivalent:

PROGRAM AtHighLevel IS PROGRAM AtRTLevel IS

TYPE Integer = (15:0); BEGIN

VAR a,b,c: Integer; DataRAM[O] := 3 * DataRAM[1];
BEGIN accu := DataRAM[O];

a := 3 * b; END;

c := a;

EID;

In the latter, the variables a and b are assumed to be located at cells 0 and 1 of memory DataRAM, and variable
¢ has been physically mapped to register accu.

4 Preprocessing and preallocation

Several preprocessing steps are applied to the behavioral description.

1) Abstract user variables are mapped to physical memory locations.

2) High-level control structures (WHILE, FOR, REPEAT, ...) are replaced by equivalent conditional jump con-
structs. Only IF-statements may remain as control structures.

3) Unconditional replacement rules are applied.

4) Different implementations of remaining IF-statements are considered. This feature permits extension of basic
blocks and thereby higher degrees of freedom for the microcode compaction phase. See [6] for an exhaustive
discussion of IF-statement implementation.

During the preallocation phase, the Connection Operation Graph (COQ) is constructed that represents the hard-
ware structure. Vertices correspond to modules; and edges represent interconnections. Semantical knowledge about
module operators is exploited by performing several local transformations within the COG. This includes entering
additional paths for commutative operations and via operations. Via operations can be used for propagating values
from a module input to the output using neutrals. When an ALU, for instance, can perform addition on the inputs
11 and 29, it implicitly has a via operation on each of the two inputs by setting the other one to zero. Allocation
of via operations provides higher flexibility for data routing during code generation.

Analyzing the COG yields a set of assertions, i.e. necessary control codes that force modules to perform certain
operations. A partial COG for the example ALU of section 2.1 i1s shown in fig. 3, assertions are denoted by
exclamation marks. Besides the COG, the result of the preallocation phase is a list of partial control word settings
(versions), each able to force execution of a certain operation on a certain module. All different versions are kept
in order to provide greater flexibility for the code generation phase.



(©1994 IFIP Trans. A-50: Parallel Architectures and Compilation Techniques (PACT-94) 5

100 !0 100 110
tr inl in2 ctr inl in2 ctr inl in2 ctr in

Y

via(4) -

res

Figure 3: Partial Connection Operation Graph for an ALU

5 Pattern matching and allocation

After the preprocessing phase, the behavioral description to be mapped onto the target hardware consists of RT-
level assignments. Assignment allocation in MSSQ is based on matching dataflow patterns with subgraphs

of the COG.

5.1 Allocation of simple assignments

Considering the assignment accu := DataRAM[0] + 17 the following subtasks have to be performed:

1) Enable accu for loading data
) Provide address 0 at DataRAM
3) If necessary, set DataRAM to a readable mode
4) Allocate the constant 17
) Allocate the addition operation on an ALU
) Route the operands DataRAM[0] and 17 through the circuit to the ALU inputs
7) Route the result to the target accu

The COG 1s traversed in order to find the required operators, in this case addition. Providing the necessary control
codes and constants relies on the results of the preallocation phase. Data routing is based on the COG interconnect
structure and may require additional control codes, e.g. when exploiting via operations. If all subtasks can be
solved, the assignment is finally tranformed into a set of partial control word settings, concurrently necessary to
execute the assignment. If allocation fails, MSSQ generates an error message indicating the failure reasons, e.g.
missing operators or data routes.

5.2 Sequentialisation
Assignments containing complex expressions like

regfile[2] := (DataRAM[1] * accu) + (regfile[1] SHIFTL 2);

in general require to be sequentialised. In this case, MSSQ relies on a list of distinguished possible temporary
locations specified in the MIMOLA input and computes possible sequential versions. The resulting sequential
assignments are treated as simple assignments.

5.3 Conditional assignments

After replacing high-level control structures in the preprocessing phase, assignments still may contain IF-statements,
e.g.

IF cond THEN accu := DataRAM[O];

for which various implementations exist. Currently, two versions are implemented in MSSQ:



(©1994 IFIP Trans. A-50: Parallel Architectures and Compilation Techniques (PACT-94) 6

Conditional jump versions The above example can be transformed into the sequence
IF cond THEN PC := PC + 1 ELSE PC := <label>

accu := DataRAM[O];
<label>: <next instruction>

only requiring a multiplexer at the PC input. The assignment can be treated as a simple assignment.

Conditional load versions require a hardware structure as depicted in fig. 4, which often occurs in real mi-
croprocessors. Depending on a condition bit, the target storage module is either enabled or disabled. The data

»DataRAM[0]”

»eond”
data REG: MODULE Reg8Bit(IN data: Byte; FCT ctr: Bit; ...);
REG CASE ctr OF
M VOO Reg8Bit := data; (* enable *)
ctr|e U ” ” * i *
/ 1: "NOLOAD?”; (* disable *)
X< v END_CASE;

Figure 4: Hardware for conditional load operations

to be conditionally loaded i1s unconditionally routed to the storage data input, and the statement can remain un-
changed. MSSQ tries to allocate both implementation versions. The better alternative is selected during microcode
compaction.

6 Scheduling and compaction

The MSSQ scheduler heuristically tries to pack as many microoperations as possible into one machine instruction
within each basic block. Since resource conflicts are mapped to instruction conflicts, it is sufficient to check
whether the corresponding partial instructions are bit-compatible. Since all versions for execution of each statement
are kept during the allocation phase, in case of incompatible operations the scheduler may select from several
alternatives, and the shortest possible instruction sequence for each basic block can be selected. In addition to
scheduling allocated assignments, any compiler based on structural hardware descriptions rather than on instruction
sets has to prevent undesired side effects for each machine cycle. Two sources of side-effects must be taken
into account:

Unused storage modules have to be disabled within each microinstruction in order to preserve their current
state.

Unused bus drivers have to be disconnected by allocating tristate modes in order to avoid bus conflicts.

In general, additional control codes have to be supplied to prevent these side-effects. If a side-effect cannot be
prevented, e.g. due to a missing register enable line, compaction fails and an error message 1s generated. The final
result of the scheduling/compaction phase is a binary microprogram which realizes the specified behavior on the
given target architecture.

7 Extensions for complex modules

MSSQ lacks from generating code for hardware structures with complex modules, such as pipelined modules,
multiple cycle operations or multiple output operators. There are also restrictions imposed by the book-keeping of
temporaries, which prevent the support of residually controlled modules.

We have overcome the deficiencies by developing a new approach, that accounts for complex modules; and has
an improved data routing and book-keeping mechanism.



(©1994 IFIP Trans. A-50: Parallel Architectures and Compilation Techniques (PACT-94) 7

7.1 Complex module classification

There 1s a number of complex modules present in contemporary processors. They can be classified for code
generation purposes — depending on the required control scheme — as described in the following.

Multiple cycle operations with fixed control are usually present at slow operators whose delay exceeds the
cycle time. The code generator has to provide the control code stable during all cycles. The assumption, that each
operation yields the result after an a priori known fixed number of cycles (the delay) is made.

Multiple cycle operations with initial control require the control code in the first cycle of an operation
only. The operation takes multiple cycles to complete but needs no further control to do so.

Multiple cycle operations with variant control occur at programmable modules. The desired operation
1s decomposed into a sequence of more basic operations, each of which with a specific control code. The code
generator emits code for each basic operation.

7.2 Residual control

A register is connected to a control input of the module. The code generator is therefore forced to load the desired
control code into the register before the operation can be carried out. Loading the control code may be done one
or more cycles in advance, but it must not be destroyed by an intermediate instruction.

7.3 Modeling complex modules

Whereas a key feature in the approach developed with MSSQ is the modeling of resource conflicts as instruction
conflicts, the new approach deals with a redefined notion of resources, that suits the need for tracking the hardware
resource usages over an interval of cycles. A resource is a register, a memory cell; a signal or an instruction field.
A resource may be occupied by a value in a specific number of cycles. A resource usage is represented as a triple
(r,v,1), where r is a resource, v is a value, and ¢ denotes an interval of cycles. The following pipelined ALU latches
all inputs in each cycle. It is of the initial control type.

MODULE MulDiv(IN a,b,c: int; OUT o: long);
VAR la,1lb,lc: int;
CONBEGIN
la := a; 1b := b; 1lc := c;
CASE 1c OF
0: o <~ la * 1b;
1: o <- la / 1b;
END
CONEND;

The resources of the module are the signals a,b,c,0 and the latches la,lb,lc. The latches are unconditionally loaded
within each cycle. Such carriers are called pipeline registers. The behavior analysis extracts sets of resource usages
for each path from a data source to a data sink. A path may include several pipeline registers, since pipeline
registers are not regarded as data sink. The book-keeping mechanism keeps track of the variable bindings as well as
the machine state. The machine state is a mapping of the resources to the values. Variables carried at a resource
are sald to be bound to it.

7.4 Code generation

A set of resource usages may contain one or more outputs of an operation, a set of side effects of the operation
and the set of prerequisites (or assertions). A template is the partition of a set of resource usages into A, S and
R. The elements of A, S| R are called assertions, side effects and results respectively. An operation is allocated
when all prerequisites are allocated. If the resource denotes an instruction field, the value is a partial code version
for the operation. If the resource refers to a register or storage cell, the book-keeping mechanism is considered
whether or not the required value is already present. The set of side effects 1s used to update the book-keeping of
the current machine state. Allocation, data routing and compaction can influence each other. During allocation



(©1994 IFIP Trans. A-50: Parallel Architectures and Compilation Techniques (PACT-94) 8

of a statement, the allocator collects partial code versions. The code generator checks for resource conflicts. Two
resource usages u1 = (r1,v1,11), ua = (2, va,12) are conflicting, if 1| = ra and vy # vy and 41 Niz # 0.

Whenever a (non pipeline) register has to be used as a temporary, the resulting partial code is tentatively
compacted. If there is no valid schedule, because resource contention is exposed, a backtracking step is initiated.
This scheme results in an exhaustive search for data routes.

With these extensions we expect a more versatile tool for a broad range of target architectures. The backtracking
approach in allocation, data routing and compaction explores all versions for implementing a given basic block.
Thus we can trade off the quality of the generated code against the time spent in searching for alternative versions.

8 Results

The MSSQ microcode compiler has been implemented by a total of about 34,000 PASCAL code lines and has been
applied to a variety of real-life designs. These include:

e Verification of the SAMP processor [7].
e Code generation for the PROLOG processor PRIPS, which was recently fabricated through EUROCHIP.
e Assembly code generation for TT’s TMS320C25 DSP, based on a novel code generation methodology [8].

Typical compilation rates are between 10 and 100 instructions per second on a SUN SparcStation 10. This
is acceptable for the intended application area, 1.e. code generation for flexible target architectures instead of
standard processors.

9 Conclusions

A feasible approach to code generation for flexible programmable target architectures was presented. Due to
higher compilation times, retargetable compilers are not expected to replace target-specific compilers for standard
processors. The main application area can be identified as code generation for ASIPs. According to Paulin [1],
there is a clear trend towards ASIPs as a design style for DSP systems. Compiler retargetability facilitates the
selection of an appropriate ASIP architecture that meets the given timing constraints. In addition, the trade-off
between hardware and software implementations of particular functions is supported.

References

[1] C.Liem, T.C.May, P.G.Paulin: Instruction Set Matching and Selection for DSP and ASIP Code Generation, Proc.
European Design and Test Conference (EDAC), 1994

[2] D. Lanneer, F. Catthoor, G. Goossens, et al.: Open-ended System for High-Level Synthesis of Flexible Signal Processors,
Proc. European Conference on Design Automation (EDAC), 1990, pp. 272-276

[3] G. Menez, M. Auguin, F Boeri, C. Carriere: Contribution of Compilation Techniques to the Synthesis of Dedicated
VLIW Architectures, IFIP Transactions on Architectures and Compilation Techniques for Fine and Medium Grain
Parallelism (A-23), 1993, pp. 217-228

[4] P. Marwedel, W. Schenk: Cooperation of Synthesis, Retargetable Code Generation and Test Generation in the MIMOLA
Software System, European Design and Test Conference (EDAC), 1993, pp. 63-69

[5] R. Johnk, P. Marwedel: MIMOLA Reference Manual V 3.45, Technical Report No. 470, available from: University of
Dortmund, Dept. of Computer Science, 44221 Dortmund, Germany

[6] P. Marwedel: Implementation of IF-statements in the TODOS microarchitecture synthesis system, IFIP Trans. on
Synthesis for Control Dominated Circuits (A-22), 1993, pp. 249-262

[7] L. Nowak: SAMP: A General Purpose Processor Based on a Self-Timed VLIW Structure, ACM Comp. Arch. News,
Vol. 15, No. 4, 1987, pp. 32-39

[8] R. Leupers, W. Schenk, P.Marwedel: Retargetable Assembly Code Generation by Bootstrapping, Proc. 7th International
Symposium on High Level Synthesis, 1994



