
The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

1. Abstract
We show how an extended Prolog can be ex-
ploited to implement different electronic CAD
tools. Starting with a computer hardware
description language (CHDL) several problems
like digital circuit analysis, simulation, test
generation and code generation for programma-
ble microprocessors are discussed. For that pur-
pose the MIMOLA (machine independent
microprogramming language) system MSS
(MIMOLA hardware design system) is presen-
ted. Several advantages obtained by applying
techniques of logic programming to solve pro-
blems in the area of integrated circuit design are
shown. Especially maintenance, small source
code, backtracking and the extension of stan-
dard Prolog by a coroutining mechanism to
express Boolean constraints are pointed out.

2. Introduction
Due to the increasing complexity of digital
circuits, the design process is supported by a lot
of design tools covering a wide range of pro-
blems like synthesis, simulation, verification,
test generation, microcode generation, place-
ment, routing etc1. A lot of these problems are
of high complexity, e.g. test generation is even
NP-complete. Therefore electronic CAD
systems, commonly written in imperative lan-
guages, consist of a very large amount of source
code. Maintenance, portability and adaptability
become a problem. We describe significant soft-
ware engineering advantages by using Prolog
for these problems.

1. For readers not familiar with VLSI design we
will explain all design subtasks concerning this
paper in the following sections.

MIMOLA [BMSJ91] is a computer language
with Pascal-like constructs. It supports design,
test, simulation and programming of digital
computers and is integrated into the CAD
system MSS [Marw84, Marw90]. MIMOLA,
influenced by other hardware description lan-
guages like VHDL [IEEE92], allows structural
and behavioral descriptions of circuits. Origi-
nally the complete system has been written in
Pascal but onwards from MIMOLA 4.0 we star-
ted to redesign several tools using Prolog.

Using the extended Prolog system ECLIPSE
[ECRC92] new concepts to solve problems in
the area of digital circuit design have been
found. Coroutining, which allows the user to
express a condition under which a call to a
specified goal will be delayed, is a very useful
mechanism to avoid unnecessary backtracking
during simulation, test and code generation.

Several approaches to digital circuit design
using logic programming have been presented
[SvAa83, Hors83, Gull85, Cloc87, SiDi88,
Simo89, DSVH90], most of them concentrating
on the gate level or even lower levels of
abstraction. Only a few contributions consider
higher levels of abstraction in the context of
logic programming [Neil89, Rein91, LWG91].

In this paper we describe the use of Prolog for a
very high level of abstraction. A very elegant
simulator, based on a hardware description lan-
guage and an adequate Prolog circuit represen-
tation based on trees is presented. The simulator
is able to simulate a processor together with a
given microprogram. We also present a concept
to generate microcode for a given hardware
structure which finally can be used to test the
processor. The part of the MSS system concer-

Using Logic Programming and Coroutining for electronic CAD
Ulrich Bieker and Andreas Neumann

University of Dortmund, Department of Computer Science
D-44221 Dortmund, Germany

e-mail: bieker@ls12.informatik.uni-dortmund.de

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

ning this paper is shown in figure 1. Starting

with a circuit given as a MIMOLA hardware
description a tree based Prolog circuit represen-
tation is generated from a frontend compiler.
Afterwards, a circuit analyser creates a circuit
info file that can be used as input for the code-
generator. Finally the generated program can be
simulated together with the circuit description,
an initialization file for registers and memories
and a stimuli file for primary input patterns.

In what follows we first introduce a small but
illustrating processor used as an example for the
whole paper. We continue with the simulator
concept based on three levels of abstraction,
followed by a section describing the circuit ana-

MIMOLA
hardware

description

INITIALI-
ZATIONS STIMULI

Frontend

circuit
TREE

Circuit
Analyser SIMULATOR

simulation
LOG

Circuit
INFO

retargetable
Codegenerator

Micro-
Code

fig. 1

lyser. In the last section we generate a load
instruction for a storage as a typical example for
microcode generation.

3. SIMPLECPU: A small
example processor
Figure 2 shows SIMPLECPU, a small program-
mable microprocessor consisting of 8 modules.
The SIMPLECPU controller (shaded area) con-
sists of a program counter, an instruction
memory, an incrementer and a multiplexer.
Furthermore a 16 x 4 register file, a 4 bit ALU,
a second multiplexer and a clock are part of the
structure. Register file and program counter are
connected to the clock (not shown) and control
signals are denoted by c followed by an index
range. MIMOLA hardware descriptions contain
register transfer modules, their behavior and
their interconnections. For instance, the 4 bit
ALU is specified in MIMOLA as follows:

CONBEGIN and CONEND denote a concur-
rent block, containing two case expressions as
assignments to the outputs. In MIMOLA, the
default data type is the bit vector. Its index
range is denoted as (high-bit : low-bit), i.e. the
ALU has two 4 bit data inputsa andb, a 4 bit
outputresult, a 1 bit outputcondition and a 2 bit
control inputctr selecting the ALU function.

Using MIMOLA as input language, we gene-
rate a tree based Prolog intermediate format in

MODULE ALU
(IN a, b : (3:0); IN ctr : (1:0);
 OUT result: (3:0); OUT condition:(0:0));
BEHAVIOR IS
CONBEGIN

result <- CASE ctr OF
0 : a ;
1 : b ;
2 : a+b ;
3 : a-b ;
END AFTER 1;

condition <- CASE ctr OF
0 : a = 0 ;
1 : b = 0 ;
2 : a+b = 0 ;
3 : a-b = 0 ;
END AFTER 0;

CONEND;

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

Incre-
menter

two steps. First MIMOLA is transformed into
TREEMOLA [BSPJ91, BIEK92], an interme-
diate language of the MSS. The second step is
done by a converter written in Prolog, which
leads to a circuit representation as a list of
module descriptions. Every module consists of
a list of connections, a list of storing cells and a
behavior tree as shown in figure 3 for a part of
the ALU described above. Such a tree is easily

represented by a Prolog structure. The list of
connections contains information about inputs
and outputs of the module and interconnections
to other modules. Every signal is represented by
a logic variable and this variable also occurs in
the behavior tree when the signal is referenced.
If signals are instantiated elsewhere, this leads
to an immediate signal propagation to all modu-
les using this signal.

concurrent block

result condition

case case

ctr of 0 of 1 of 2 of 3 ...

a b + -

a b a b

fig. 3

4. Simulation of a CHDL
The implemented simulator is based on three
levels of abstraction: the built in operators, an
interpreter for the behavior of a single compo-
nent and an event driven simulator for a circuit
together with a microcode. Especially for the
implementation of the operators, we made
extensive use of the coroutining concept of the
Eclipse language.

4.1 Implementation of Operators
For the interpretation of a Hardware Descrip-
tion Language an implementation of its built-in
operators is necessary, which range from logic
primitives to complex arithmetic operators.
These are represented as Prolog predicates,
which mainly have to meet the following
criteria:

a) The operators must work bidirectionally, so
that they can also be used for backward
simulation of a circuit.

b) They should work deterministically, i.e.
subsequent backtracking steps must not
produce the same solution. This is
especially important for the backward
simulation, as the mapping of an operator is
not necessarily definitely reversible.
Certain backtracking alternatives have to
be pruned to avoid duplicate solutions.

c) The computation must be - at least at ope-
rator level - data driven, i.e. the application
of an operator to unbound variables is pro-
pagated symbolically as a delayed goal,
until the instantiation of the variables is
absolutely unavoidable. By this, the num-
ber of backtracking steps is reduced.

REGISTER

FILE A
L
U

MUX

P

fig. 2

SIMPLECPU

Primary Output

Primary
Input

Program
Counter

Instruction

MEMORY

Controller

Clock

4

c(18:15)

c(3:0)
4

4

4
6 6

6

c(14:9)
c(19:0)

1
c(8:7)

c(6:5)

c(19:19)

c(4:4)

address

C
M
U
X

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

The third point is achieved by using the corou-
tining mechanism of the Eclipse language,
which allows the programmer to specify condi-
tions, under which the execution of a goal shall
be delayed, depending on the bindings of its
parameters. Whenever a variable occuring in
one of these is bound, either to a value or ano-
ther variable, the goal will be woken, and the
delay conditions are checked again.

Nevertheless, at the end of a simulation the set
of all delayed constraints must be consistent,
i.e. there should be a constraint solver1 which
finds contradictions and - if possible - solutions
for variable bindings. Since such a constraint
solver is rather complex, there should only be a
few types of constraints. It would be sufficient
to consider a minimal complete set of operators,
but for efficiency reasons we used a set
containing AND, OR, XOR and NOT. The
Prolog code for those operators is now divided
into delay clauses and program clauses, e.g. the
logical AND is implemented asand/3, with X
and Y as input parameters and Z as output
parameter. :

The delay clauses cover the case, when the two
inputs parameters are distinct unbound
variables, and the output parameter is either
unbound or zero. In these cases it is impossible
to draw any conclusion, so the call to the predi-
cate is delayed. The program clauses use the
commutativity of the logical AND: the first two
of them deal with the case, when one of the
inputs is bound, and calland1with this one in
the first place. For the third clause there are -
due to the delay clauses - only two possibilities
left: either the output is 1, which forces the

1. Actually we develop a Boolean constraint sol-
ver in Prolog on top of the ECLIPSE system.

delay and (X,Y,Z)
if var(X), var(Y), var(Z), X\==Y.

delay and (X,Y,Z)
 if var(X), var(Y), Z==0, X\==Y.

and (X,Y,Z) :-
 nonvar(Y), !, and1(Y,X,Z).

and (X,Y,Z) :-
nonvar(X), !, and1(X,Y,Z).

and (X,X,X).

and1 (0,_,0).
and1 (1,X,X).

inputs to take the same value, or the two inputs
are identical variables, to which the output will
be bound, too. The auxiliary predicateand1
expect its first input to be instantiated. If it is
bound to a 0, the result must be 0 either, if it is
1, the output is identical to the second input.

The more complex operators are now based on
these four logical primitives, e.g. a full adder is
defined as follows:

Of course the set of operators is not restricted to
single bit operations, but for each of them there
is also a version for bit strings, which are repre-
sented as lists. On top of these there are built
arithmetic operators like addition and multipli-
cation and string manipulation operators like
shifting and concatenating.

4.2 Interpretation of a Behavior Tree
For the interpretation of the behavior tree of a
module it is necessary to model the context, i.e.
the contents of memory cells and input signals
at a given time. A signal is now represented as
a sorted binary tree, with a time and a value
mark at each node. Readers familiar with logic
programming recognize this as a common
dictionary. Updates on a signal are realized by
the following predicate:

Lookups are realized in a similar way, except
that if there is no entry for the specified time, the
least recent entry must be found out, because
the signals are assumed to be holding.

Input ports of a module and memory cells are
now represented by port descriptions, which are
nothing more than lists of such signals. The
contents of memory cells of a circuit are held in
a dictionary, which is a binary tree similar to the
signal tree, except that the search key is now an
atom, namely the name of a register, or a pair

halfadd (In1,In2,Sum,Cout) :-
and(In1,In2,Cout),
xor(In1,In2,Sum).

fulladd (In1,In2,Cin,Sum,Cout) :-
halfadd(In1,In2,Sum1,Carry1),
halfadd(Cin,Sum1,Sum,Carry2),
or(Carry1,Carry2,CarryOut).

sigValue((T,Val,_Before,_After),T,Val) :- !.
sigValue((Time,_Val,Before,_After),T,Val) :-

T<Time, sigValue(Before,T,Val).
sigVal((Time,_Val,_Before,After),T,Val) :-

T>Time, sigValue(After,T,Val).

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

consisting of a memory name and an address,
and the values are port descriptions. The com-
parison predicates in the clauses of the concer-
ned lookup-predicate must then be replaced by
the standard term order comparators.

The interpreter itself has only three parameters:
the behavior tree, a time frame and the dictio-
nary with all global values in it, and is imple-
mented inductively on the structure of the
behavior tree. Such a tree normally consists of
some concurrent statements, which may contain
nested expressions. For the interpretation of sta-
tements, e.g. the statement for loading the pro-
gram counter when the clock goes up, the
behavior tree and the corresponding representa-
tion as a Prolog term are shown in figure 4.

Calling the interpreter with this statement tree
will invoke one of the following clauses:

If the calls tointerpret_expare successful, the
interpreter calls itself with theload statement as
argument. This call will relate to the following
clause, which adds the specified delay factor to
the current time and enters the value of theinput
expression into the port description of the pro-
gram counter, which is taken from the dictio-
nary:

Note that thedelaystructure in the behavior tree
is distinct from the coroutining built-in with the

at_up(
input(clk),
load(

pc,
input(in),
delay(1)
)

)

at_up

input load

clk

pc input

in

delay

1 fig. 4

interpret(at_up(ClkExp,Stmnt),Time,Dictionary) :-
Time1 is Time-1,
interpret_exp(ClkExp,Time,Dictionary,[1]),
interpret_exp([ClkExp,Time1,Dictionary,[0]),
!,
interpret(Stmnt,Time,Dictionary)

interpret(at_up(_Clk,_Stmnt),_Time,_Dictionary).

interpret(load(RegId,Expr,delay(Delay)),
 Time,Dictionary) :-

lookup(RegId,Dictionary,PartPort),
interpret_exp(Expr,Time,Dictionary,Value),
NewTime is Time+Delay,
portValue(PartPort,NewTime,Value).

same name. Other constructs like conditional or
case statements, writing to an output port, con-
current nodes etc. are implemented similarly.

The interpreter for expressions has one more
argument for returning the value of an expres-
sion. Except for this, its structure is the same,
e.g. consider the behavior of the program coun-
ter incrementer in our example (fig. 5).

The interpreter clause for theoutput tree, which
is very similar to that for theload statement,
will call interpret_expwith the incr subexpres-
sion, invoking the following clause:

The method is, first to evaluate the arguments of
an operator and then to apply it to the results.
The dictionary is needed here only for theread
expression, which is evaluated as the value of a
storage. More complex expressions like the
conditional or case construct are implemented
in the same way, but available space does not
permit to explain them here.

4.3 An Event Driven Simulator
The task of the simulator is to simulate the
behavior of a circuit, given the initial states of
the storages and the values of the primary inputs
for the considered time interval. The circuit
consists of a set of modules with a specified
behavior which are interconnected by some
signals. In an event driven simulator an event is
a pair consisting of a time and a module beha-
vior. All events yet to be simulated are held in a
queue, which is initialized at the start of the
simulation by all events which are involved by
the change of a primary input, the toggle of a
clock or the initialization of a register or
memory. A new event for a module is generated
iff at least one of its input signals or one of its
storing cells has changed due to simulation of a

output

out incr

input

in

output(
out,
incr(

input(in)
)

)

fig. 5

interpret_exp(incr(Expr),Time,Dictionary,Value) :-
interpret_exp(Expr,Time,Dictionary,Value),
incr(Expr,Value).

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

former event. Thus the execution of one event is
the following:

doOneEvent(Modul,Time,Dictionary,NewEvents):-
Modul = (Name,Behavior,Connect,Stores),
interpret(Behavior,Time,Dictionary),
storeEvents(Stores,Name,Time,Events1),
newEvents(Connect,Time,Events2),
append(Events1,Events2,NewEvents).

newEvents([],_,[]).
newEvents([(Mod,Signals)|RestCons],Time,

[(Mod,ChangeTime|RestEvents]) :-
lastChange(Signals,ChangeTime),
ChangeTime > Time, !,
newEvents(RestCons,Time,RestEvents).

newEvents([_|RestConnections],Time,Events):-
 newEvents(RestConnections,Time,Events).

The predicatestoreEvents/4 is similar tonewE-
vents/3, but checks the storages of the module
for changes and if any is detected, generates an
event for the same module. The data structures
are much more complicated than the ones
described here, but it would take to much effort
to explain them. But note that e.g the event
queue must be sorted and allow no duplicates.
Moreover, there must be a kind of priority for
the order of simulation of two events with the
same time, a feature which was omitted here.

The simulator itself is now defined as follows:
simulate_circuit(CircuitName,MaxTime) :-

... % get the circuit informations
doClocks(Clocks,MaxTime,ClockEvents),
doInPorts(Stimuli,InPorts,InputEvents),
initStores(InitLines,Dictionary,InitEvents),
mergeEvents(ClockEvents,InputEvents,

InitEvents,Events)
doAllEvents(Events,Dictionary,MaxTime).

doAllEvents([],_,_).
doAllEvents([(_, Time) | _],_,MaxTime) :-

Time > MaxTime.
doAllEvents([Event|RestEvs],Dict,MaxTime):-

doOneEvent(Event,Dict,NewEvents),
merge(NewEvents,RestEvs,EventsAfter),
doAllEvents(EventsAfter,Dic,MaxTime).

The predicate merges the new events after each
step with the remaining ones from the queue
and calls itself recursively with the result, until
the queue is empty or the maximum time is rea-
ched.

For simulating a circuit together with a micro-
program, one only has to specify the code as
initialization to different lines of the instruction
memory and start the simulator. Consider the

following program for our example circuit:
PROGRAM sum_up IS
VAR x : nibble;
BEGIN

x := 1;
REPEAT x := x+pi; UNTIL x = 0;

STOP;

After initializing a variable x with 1, a loop adds
x to the value of the primary input, until x is
zero. The microcode shown in table 1 consists

of 5 instructions. IM 0 denotes the memory con-
tent of the instruction memory with address 0.

With the primary input constantly set to
[0,1,0,1], the simulation of this program passed
149 events, which took 0.83 seconds of cputime
on a SPARC 10 workstation. Note that every
event means simulation of a complete behavior
tree.

5. Circuit Analysis

5.1 Simulator Priorities
When simulating a circuit it is necessary to give
priorities to different modules concerning the
order in which to simulate two events at the
same time. The reason for this are causal depen-
dencies between components which are con-
nected without delay. This priority can be
compared to the∆-delay of VHDL. The inten-
tion is that an event may be simulated only
when all events its inputs depend on have been
considered before, i.e. the priority of a module
is the maximum of the priorities of all its prede-
cessors incremented by one. Assume that we
have already computed a priority list of triples
(Mod,Prio,Preds),wherePred is a list of pairs
(Mod’,Prio’), so that every occurence of a
module in the whole structure have itsPrio
component bound to the same variable. Now,

Table 1: Example microprogram

Bits 19 18:15 14:9 8:7 6:5 4 3:0

IM 0 0 0001 X 00 01 0 0000

IM 1 X X X 00 X 1 X

IM 2 1 X X 00 10 0 0000

IM 3 X X 000001 10 00 1 0000

IM 4 X X X 00 X 1 X

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

for each element of the priority list, we only
have to compute the maximum priorities in the
predecessor list and bind the priority to this
value incremented by one.

delay max(A,B,M) if var(A).
delay max(A,B,M) if var(B).

max(A,B,A) :- A > B,!.
max(A,B,B).

maxPriority([],Max,Max).
maxPriority([(_,Prio)|Rest],Max0,Max) :-

max(Prio,Max0,Max1),
maxPriority(Rest,Max1,Max).

setPriorities([]).
setPriorities([(Mod,Prio,Preds) | Rest]) :-

maxPriority(Preds,0,MaxPrio),
plus(MaxPrio,1,Prio),
setPriorities(Rest).

In standard Prolog this would lead to difficulties
because we could not compare unbound
variables. This is easily resolved by delaying
themax predicate. If there are no critical races
in the circuit, i.e. there are no cyclic dependen-
cies, there must be at least one module whose
predecessor list is empty, so it will get priority
1. This will wake up at least one othermax goal,
and so on, so that all priorities will be computed
correctly. If there is a cycle, then a conflict
occurs and an error must be raised. Such a con-
flict can easily be detected by checking for
delayed goals by a system call. Note that the
plus/3 predicate must also be delayed, which is

done automatically by Eclipse.

5.2 Microcode Preparation
To prepare code generation, several tasks are
done by the circuit analyser. The main task is to
generate a lot of facts describing special cha-
racteristics of a given circuit to reduce comple-
xity of code generation. Application of some
facts is shown in the following section. Table 2
gives an overview of some generated facts but
due to the lack of space not all generated facts
can be considered in detail. In the following we
want to describe these facts and provide
methods to generate them.

One of these facts istransparent/3, denoting an
identity mapping from one input to at least one
output, so that the module becomes ‘transpa-
rent’. That means that with a special control
code, the considered module is able to pass one
input to one output. Most of these facts might be
found at multiplexer modules. On the other
hand the transparent/3 example of table 2
shows a possibility to switch inputa of the
SIMPLECPUalu to the outputresult, i.e. the
signal list [D,C,B,A] is switched. This is done
by unifying input b with the neutral element
[0,0,0,0], to perform an identity mapping for the
selected operator. The binary control code
c(6:5) = [1,0] selects the add operator of the
concerned ALU.

How can we generate atransparent/3 fact?

Table 2: Some selected facts, generated by circuit analysis

fact/arity arguments example

transparent/3 module name
list of inputs
list of outputs

transparent(alu,
[[D,C,B,A], [0,0,0,0], [1,0]],
[[D,C,B,A], [Condition]]).

path/3 source
destination
Path

path(im,reg,[(im,[[_,_,_,_,_,_]],[[0, D,C,B,A,_,_,_,_,_,_,_,_,0,1, _,_,_,_,_]]),
(mux, [[_,_,_,_], [D,C,B,A], [0]], [[D,C,B,A]]),
(alu, [[_,_,_,_], [D,C,B,A], [0,1]] , [[D,C,B,A], [_]]),
(reg, [[_,_,_,_], [D,C,B,A], [_], [_]] , [[_,_,_,_]])]).

incrementPC/2 delayed goal
Path

incrementPC(incr([F,E,D,C,B,A], [L,K,J,I,H,G]), [
(inc, [[F,E,D,C,B,A]], [[L,K,J,I,H,G]]),
(pcmux, [[_], [0,0], [L,K,J,I,H,G], [_,_,_,_,_,_]], [[L,K,J,I,H,G]]),
(pcreg, [[L,K,J,I,H,G], [_]], [[F,E,D,C,B,A]])]).

jump/1 Path jump([(im,[[_,_,_,_,_,_]], [[_,_,_,_,_,F,E,D,C,B,A,0,1,_,_,_,_,_,_,_]]),
(pcmux,[[_],[0,1],[_,_,_,_,_,_],[F,E,D,C,B,A]], [[F,E,D,C,B,A]]]]),
(pcreg, [[F,E,D,C,B,A], [_]], [[_,_,_,_,_,_]])]).

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

Using the interpreter and the operators defined
in section 4, this task is easy to solve. Basic idea
is to unify one module input with one module
output and to perform an interpretation step for
this module. The interpretation step has to lead
to an instantiation of some inputs for the follo-
wing reasons:

a) Choosing a control code to select an opera-
tion that is able to perform an identity map-
ping (e.g. c(6:5) = [1,0] to select ALU
addition).

b) If necessary, choosing a neutral element for
the selected operation (some operations do
not need a neutral element, e.g. a multiple-
xer or the ALU operation selected by the
control code c(6:5) = [0,0] to switch input
a to the outputresult).

A successive selection of all operations perfor-
med by a module is done by backtracking.
Afterwards, the selected operation has to be
executed symbolically, holding the input port to
be switched as list of variables. Execution of the
selected operation (Op) is done by the clause

findTransparent/4. The lists library predicate
checklist/2 succeeds ifvar/1 succeeds for every
element of SwitchPort, ensuring that the
selected input is switched to the selected output
for all possible values ofSwitchPort. Finally,
we assert the generated fact.

The fact considered next ispath/3, describing a
path from a source module to a destination
module, possibly through certain other modules
which are able to perform an identity mapping.
A fact path/3 is a triple with parameters source,
destination andPath. Path is a list of triples
(module name, list of inputs, list of outputs).
The first element of the list is the source module
whereas the last element is the destination
module. All modules between source and
destination are able to switch an input to an out-
put by the use oftransparent/3. A path/3 fact

findTransparent(Module,Op,InPorts,OutPorts):-
member(SwitchPort, InPorts),
member(SwitchPort, OutPorts),
Operation =.. [Op, InPorts, OutPorts],
call(Operation),
checklist(var, SwitchPort),
assert(transparent(Modul,InPorts,OutPorts)),
fail.

findTransparent(_,_,_,_).

contains all control codes, i.e signals which
have to be 0 or 1 to switch thePath. As source
and destination only sequential modules, i.e.
modules that are able to store a value, are con-
sidered. Additionally, modules able to yield a
constant, e.g. a decoder, can serve as a source.
The example given in table 2 shows aPath from
the instruction memoryim through the mul-
tiplexermux and thealu to the register filereg.
Therefore binary control codes c(19) = [0] for
the multiplexer and c(6:5) = [0,1] to switch a via
through thealu are selected. [D,C,B,A] is the
list of values connected by this path.

A simplified version of the predicate generating
path/3 facts isfindPath/3. The first clause termi-

nates the search of a path ifDestin is a direct
successor ofSource. In the second clause we try
to find a path through a moduleNext, which has
to be a successor of the currentSource and must
be switched into a transparent mode. After-
wards, a recursive search withNext as source is
started. A lot of implementation details are
omitted, e.g. the check to prevent entering a
cycle and the complete circuit representation.

A frequent subtask of microcode generation is
to increment the program counter. Therefore we
generate a symbolic increment instruction
where the address is unbound. The real address
will be instantiated at the end of code genera-
tion. For that reason we generate a delayed goal,
so that the code generator is able to bind these
addresses to real values with respect to certain
constraints. As a consequence of that, an incre-
ment instructionincrementPC/2is a pair, con-
taining a delayed goal which performs the
increment operation and aPath from the output
of the program counter to the input of the pro-
gram counter. In the generatedPath two occu-
rences of the program counter are avoided by
omitting the program counter as source.Path is
a list of triples as described above. The given
example of table 2 shows the unique solution to

findPath(Source, Destin, [Source, Destin]):-
successor(Source, Destin).

findPath(Source,Destin, [Source | RestPath]):-
successor(Source, Next),
transparent(Next, Inputs, Outputs),
findPath(Next, Destin, RestPath).

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

increment the program counterpcreg for the
example processor. Therefore the binary control
code c(8:7) = [0,0] is selected for the multiple-
xerpcmux. [F,E,D,C,B,A] is the current state of
the program counter whereas [L,K,J,I,H,G] will
be the next state. The delayed goal incr([F,E,D,-
C,B,A],[L,K,J,I,H,G]) denotes the operation to
be executed at the end of code generation.

A further subtask of code generation is to per-
fom unconditional jumps, i.e. to move a con-
stant value into the program counter without
consideration of a condition from the arithmetic
unit. Therefore,jump/1 is simply a fact deno-
ting aPath from a sequential source module to
the program counter. SIMPLECPU has only
one possibility to perform such an unconditio-
nal jump by selecting c(8:7) = [0,1] as control
code for the multiplexerpcmux as shown in
table 2. The new symbolic jump address
[F,E,D,C,B,A] originates from the instruction
memoryim.

The factsincrementPC/2 andjump/1 are mainly
generated by the use ofpath/3 and transpa-
rent/3. Using failure driven loops (see e.g.
findTransparent/4), all possible solutions of the
described facts are generated and asserted.

We conclude this section by enumerating some
additional facts not considered here:

a) constant/3: denotes a module that is able to
yield a constant as output (e.g. a decoder).

b) conditionalJump/2: denotes a conditional
jump version, i.e. a conditional path to the
program counter.

c) noload/3: denotes a micro instruction, indi-
cating that the contents of a register or
memory must not change to prevent side
effects.

We have tested the circuit analyser with several
examples. One of them is PRIPS, a coprocessor
with a RISC-like instruction set, which provi-
des data types and instructions supporting the
execution of Prolog programs. The structure
consists of 50 register transfer modules. A com-
plete circuit analysis took 77 seconds leading to
1/2 MB of facts.

6. Code Generation
A microcode generator is a tool for mapping
algorithms to predefined hardware structures,
by generating the required binary code. Since

such a compiler is target independent, i.e. the
programmable microprocessor is an input of the
compiler, we call this method retargetable com-
pilation [Nowa87, MaNo89]. Original intention
for this work is to generate self-test microcode,
i.e. microcode that is able to perform a test for
programmable microprocessors. The following
example describes code generation for a
variable assignment, called load instruction.

Assuming the assignment reg[0] := 1 to be
generated as used as first instruction of the
simulation example, i.e. we want to load regi-
ster 0 of the register file with 1. The binary
values are [0,0,0,0] for the address and [0,0,0,1]
for the data to be loaded. After a justification
step has driven necessary values for the load
instruction to the inputs of the register file, the
following three values have to be generated:

address = [0,0,0,0]; data = [0,0,0,1]; c(4:4) = [0]

Having unified the input ports of the register file
with these values, we have to perform a back-
ward simulation to search for modules which
are able to yield the constants. This module is
usually the programmable instruction memory
or a decoder. Backward simulation in general is
non-deterministic and therefore backtracking
and bidirectionality of Prolog is advantageous.

In our example, the control code c(4:4) and the
address = c(3:0) are direct predecessors of the
instruction memory. More difficult is to have
the data loaded, because we have to pass the
value [0,0,0,1] through certain modules. Howe-
ver, with the use of thepath/3 facts generated
before, the problem is easy to solve. Thepath/3
fact shown in table 2 gives all information to
generate a solution for the required data trans-
fer. Table 3 shows the resulting binary code. If

this instruction is part of a complete micropro-
gram, additional tasks could be done concur-
rently. The address for the next instruction has
to be determined which could be done by incre-
menting the program counter by c(8:7) = [0,0].
Alternativly a jump or a conditional jump could
be performed, leading to values for the 6-bit

Table 3: Binary code for reg[0] := 1

Bits 19 18 : 15 14 : 9 8 : 7 6 : 5 4 3 : 0

Code 0 0 0 0 1 X 0 0 0 1 0 0 0 0 0

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

jump address c(14:9). Therefore the facts
jump/1 andconditionalJump/2 are used, whe-
reas incrementPC/2 is used to increment the
program counter. At the end of code generation
the microprogram has to be bound to real
addresses of the instruction memory. This is
done by unifying the symbolic address of the
first instruction with the start address e.g. 0.
Now all delayed goals likeincr/2 are woken and
this leads to a successive binding of concerned
addresses. Such microinstructions or even com-
plete microprograms can be simulated by the
simulator described above.

7. Experimental Results
The tools mentioned above have been applied
to several target structures. Table 4 gives infor-

mations about some example circuits:
simplecpu, as shown in section 3, demo
[BMSJ91], prips [ABMNS93] and mano
[Mano93]. The number of RTL components
and the width of the microinstruction controller
are given. The results shown here indicate that
the tools can be applied even to realistic structu-
res. All times are measured on a SPARC 10
workstation.

The times shown in table 5 are achieved by

simulating a simple loop, such as the program
mentioned in section 4. Note that every event

Table 4: Example Circuits

circuit RTL modules instruction width

simplecpu 10 20

demo 16 84

prips 50 83

mano 21 50

Table 5: Simulation CPU times

circuit events CPU sec events/sec

simplecpu 149 0.83 179.5

demo 1394 25.05 55.6

prips 1003 21.99 45.6

mano 478 4.3 111.1

means simulation of a complete behavior tree.

The results shown in table 6 are measured for
the microcode preparation phase of section 5.2.

We can see that for larger circuits a lot of facts
are generated by the circuit analyser. Most of
the extracted facts can be seen as microoperati-
ons, i.e operations which can be performed by
the circuit.

8. Conclusion
We have presented how logic programming and
coroutining are exploited for some tools of the
MIMOLA hardware design system. A
simulator for structural hardware models,
described in a hardware description language,
has been presented. The simulator consists of
2700 lines of code whereas the original Pascal
simulator has about four times more lines of
code. Most of the new simulator can be used
bidirectionally and symbolically which is very
important for code and test generation. Using
coroutining to express certain constraints, a lot
of backtracking steps can be avoided. The
circuit analyser consists of 1200 lines of code.
Final aim of this work is to get a retargetable
self-test microcode generator.

Moreover, the original simulator is very dif-
ficult to maintain. Time to develop VLSI tools
using logic programming is much shorter than
for imperative languages. On the other hand,
software written in standard Prolog is slower,
but with the new concept of constraint logic
programming this disadvantage becomes smal-
ler, because this technique leads to a significant
reduction of unnecessary backtracking steps.

Additionally, a tool to generate schematics for
structural hardware models has been implemen-
ted in Prolog.

Table 6: Microcode Preparation Times

circuit
generated

facts
CPU sec

simplecpu 26 0.56

demo 61 2.96

prips 415 77.03

mano 131 11.85

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

This work was supported by the DFG, the Ger-
man research foundation.

9. References
[ABMNS93] C. Albrecht, S. Bashford, P.

Marwedel, A. Neumann, W.
Schenk. The design of the
PRIPS microprocessor, 4th
EUROCHIP-Workshop on
VLSI Training, 1993.

[BMSJ91] R. Beckmann, P. Marwedel,
W. Schenk, and R. Jöhnk. The
MIMOLA Language Reference
Manual - Version 4.0. Research
Report 401, Computer Science
Dpt., University of Dortmund,
February 1991.

[BSPJ91] R. Beckmann, W. Schenk,
D. Pusch, and R. Jöhnk. The
TREEMOLA Language
Reference Manual – Version
4.0. Research Report 391,
Computer Science Dpt.,
University of Dortmund, July
1991.

[Biek92] U. Bieker. On the Semantics of
the TREEMOLA Language
Version 4.0. Research Report
435, Computer Science Dpt.,
University of Dortmund, July
1992.

[Clock87] W. F. Clocksin. Logic
Programming and Digital
Circuit Analysis. The Journal of
Logic Programming, pp. 59 - 82,
March 1987.

[DSVH90] M. Dincbas, H. Simonis, P. Van
Hentenryck. Solving Large
Combinational Problems in
Logic Programming. J. Logic
Programming, 1990.

[ECRC92] ECLIPSE 3.3 User Manual.
ECRC Common Logic
Progamming System. ECRC
GmbH, Arabellastr. 17, Munich,
Germany, August 1992.

[Gull85] E. Gullichsen. Heuristic circuit
simulation using PROLOG.
North-Holland, Integration, the

VLSI-Journal, No. 3, pp. 283 -
318, 1985.

[Hors83] P. W. Horstmann. Automation
of the Design for Testability
Using Logic Programming.
Dissertation, University of
Missouri.

[IEEE92] Design Automation Standards
Subcommittee of the IEEE.
Draft standard VHDL language
reference manual. IEEE
Standards Department, 1992.

[LWG91] Y. Lichtenstein, B. Welham, A.
Gupta. Time Representation in
Prolog Circuit Modelling. 3rd
UK Annual Conference on
Logic Programming,
Edingburgh 1991.

[MaNo89] P. Marwedel, L. Nowak.
Verification of Hardware
Descriptions by Retargetable
Code Generation. 26th Design
Automation Conference, pp.
441 - 447, 1989.

[Mano93] M. Morris Mano. Computer
System Architecture. Prentice-
Hall International, Inc., Third
Edition, 1993.

[Marw84] P. Marwedel. The MIMOLA
Design System: Tools for the
Design of Digital Processors,
Proc. 21st Design Automation
Conference, pp. 587 - 593, 1984.

[Marw90] P. Marwedel. Matching system
and component behavior in
MIMOLA synthesis tools.Proc.
EDAC 1990, 1990.

[Neil89] M. D. O. Neill, D. D. Jani, C. H.
Cho, J. R. Armstrong. BTG: A
Behavioral Test Generator,
Computer Hardware
Description Languages and their
Applications, Proceedings of the
IFIP WG 10.2 Ninth
International Symposium on
Computer Hardware
Description Languages and their
Applications, Washington, DC,
USA, pp. 347 - 360, June 1989.

The Second International Conference on the Practical Applications of Prolog London 26th - 29th April 1994

[Nowa87] L. Nowak. Graph based
retargetable microcode
compilation in the MIMOLA
design system. 20th Annual
Workshop on
Microprogramming (Micro-20),
pp. 126 - 132, 1987.

[Rein91] P. B. Reintjes. A Setof Tools for
VHDL Design. Logic
Programming, Proc. of the eigth
Int. Conference, pp549 - 562,
1991.

[SiDi88] H. Simonis, M. Dincbas.
Verification of Digital Circuits
Using CHIP. The Fusion of
Hardware Design and
Verification, Elsevier Science
Publishers B.V., North-Holland,
pp. 421 - 442, 1988.

[Simo89] H. Simonis. Test Generation
using the Constraint Logic
Programming Language CHIP.
In Proceedings of the 6th
International Conference on
Logic Programming, Lisboa,
Portugal, pp. 101 - 112, June
1989.

[SvAa83] D. Svanaes, E. J. Aas. Test
generation through logic
programming. North-Holland,
INTEGRATION, the VLSI
journal, No. 2, pp. 49 - 67, 1984.

